Home
last modified time | relevance | path

Searched refs:y_pred (Results 1 – 25 of 77) sorted by relevance

1234

/external/tensorflow/tensorflow/python/keras/
Dlosses.py120 def __call__(self, y_true, y_pred, sample_weight=None): argument
149 y_true, y_pred, sample_weight)
155 losses = call_fn(y_true, y_pred)
177 def call(self, y_true, y_pred): argument
245 def call(self, y_true, y_pred): argument
255 if tensor_util.is_tf_type(y_pred) and tensor_util.is_tf_type(y_true):
256 y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(y_pred, y_true)
259 return ag_fn(y_true, y_pred, **self._fn_kwargs)
1192 def mean_squared_error(y_true, y_pred): argument
1216 y_pred = ops.convert_to_tensor_v2_with_dispatch(y_pred)
[all …]
Dmetrics.py575 def update_state(self, y_true, y_pred, sample_weight=None): argument
589 y_pred = math_ops.cast(y_pred, self._dtype)
590 [y_pred, y_true], sample_weight = \
592 [y_pred, y_true], sample_weight)
593 y_pred, y_true = losses_utils.squeeze_or_expand_dimensions(
594 y_pred, y_true)
596 y_pred, self.normalizer = losses_utils.remove_squeezable_dimensions(
597 y_pred, self.normalizer)
598 y_pred.shape.assert_is_compatible_with(y_true.shape)
600 math_ops.abs(y_true - y_pred), self.normalizer)
[all …]
/external/tensorflow/tensorflow/tools/api/golden/v2/
Dtensorflow.losses.pbtxt77 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
81 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
85 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
89 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
93 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
97 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=N…
101 …argspec: "args=[\'y_true\', \'y_pred\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_lo…
105 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=N…
109 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
113 …argspec: "args=[\'y_true\', \'y_pred\', \'axis\'], varargs=None, keywords=None, defaults=[\'-1\'],…
[all …]
Dtensorflow.metrics.pbtxt177 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
181 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
185 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
189 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
193 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
197 …argspec: "args=[\'y_true\', \'y_pred\', \'threshold\'], varargs=None, keywords=None, defaults=[\'0…
201 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=N…
205 …argspec: "args=[\'y_true\', \'y_pred\', \'apply_class_balancing\', \'alpha\', \'gamma\', \'from_lo…
209 argspec: "args=[\'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
213 …argspec: "args=[\'y_true\', \'y_pred\', \'from_logits\', \'label_smoothing\', \'axis\'], varargs=N…
[all …]
Dtensorflow.losses.-loss.pbtxt11 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
Dtensorflow.losses.-cosine-similarity.pbtxt13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
Dtensorflow.losses.-squared-hinge.pbtxt13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
Dtensorflow.losses.-mean-absolute-percentage-error.pbtxt13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
Dtensorflow.losses.-huber.pbtxt13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
Dtensorflow.losses.-hinge.pbtxt13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
Dtensorflow.losses.-mean-absolute-error.pbtxt13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
Dtensorflow.losses.-log-cosh.pbtxt13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
Dtensorflow.losses.-mean-squared-logarithmic-error.pbtxt13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
Dtensorflow.losses.-poisson.pbtxt13 argspec: "args=[\'self\', \'y_true\', \'y_pred\'], varargs=None, keywords=None, defaults=None"
/external/tensorflow/tensorflow/python/keras/engine/
Dcompile_utils.py36 def build(self, y_pred): argument
40 self._output_names = create_pseudo_output_names(y_pred)
130 def build(self, y_pred): argument
132 super(LossesContainer, self).build(y_pred)
134 self._losses = self._maybe_broadcast_to_outputs(y_pred, self._losses)
135 self._losses = self._conform_to_outputs(y_pred, self._losses)
140 y_pred, self._loss_weights)
141 self._loss_weights = self._conform_to_outputs(y_pred, self._loss_weights)
166 y_pred, argument
183 y_true = self._conform_to_outputs(y_pred, y_true)
[all …]
/external/tensorflow/tensorflow/python/keras/utils/
Dmetrics_utils.py283 y_pred, argument
383 math_ops.cast(sample_weights, dtype=y_pred.dtype), y_pred)
391 y_pred)
398 y_pred = clip_ops.clip_by_value(y_pred,
404 y_pred = array_ops.reshape(y_pred, [-1])
413 bucket_indices = math_ops.ceil(y_pred * (num_thresholds - 1)) - 1
507 y_pred, argument
586 y_pred = math_ops.cast(y_pred, dtype=variable_dtype)
607 [y_pred,
608 y_true], _ = ragged_assert_compatible_and_get_flat_values([y_pred, y_true],
[all …]
Dlosses_utils.py154 def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): argument
178 y_pred_shape = y_pred.shape
191 y_true, y_pred = remove_squeezable_dimensions(
192 y_true, y_pred)
195 rank_diff = array_ops.rank(y_pred) - array_ops.rank(y_true)
197 y_true, y_pred)
198 is_last_dim_1 = math_ops.equal(1, array_ops.shape(y_pred)[-1])
200 is_last_dim_1, squeeze_dims, lambda: (y_true, y_pred))
201 y_true, y_pred = control_flow_ops.cond(
205 return y_pred, y_true
[all …]
/external/tensorflow/tensorflow/python/ops/losses/
Dutil.py30 def squeeze_or_expand_dimensions(y_pred, y_true=None, sample_weight=None): argument
54 y_pred_shape = y_pred.shape
67 y_true, y_pred = confusion_matrix.remove_squeezable_dimensions(
68 y_true, y_pred)
71 rank_diff = array_ops.rank(y_pred) - array_ops.rank(y_true)
73 y_true, y_pred)
74 is_last_dim_1 = math_ops.equal(1, array_ops.shape(y_pred)[-1])
76 is_last_dim_1, squeeze_dims, lambda: (y_true, y_pred))
77 y_true, y_pred = control_flow_ops.cond(
81 return y_pred, y_true
[all …]
/external/rnnoise/training/
Drnn_train.py31 def my_crossentropy(y_true, y_pred): argument
32 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
37 def msse(y_true, y_pred): argument
38 return K.mean(mymask(y_true) * K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1)
40 def mycost(y_true, y_pred): argument
41 …square(K.square(K.sqrt(y_pred) - K.sqrt(y_true))) + K.square(K.sqrt(y_pred) - K.sqrt(y_true)) + 0.…
43 def my_accuracy(y_true, y_pred): argument
44 return K.mean(2*K.abs(y_true-0.5) * K.equal(y_true, K.round(y_pred)), axis=-1)
Ddump_rnn.py74 def mean_squared_sqrt_error(y_true, y_pred): argument
75 return K.mean(K.square(K.sqrt(y_pred) - K.sqrt(y_true)), axis=-1)
/external/tensorflow/tensorflow/python/keras/benchmarks/
Dmetrics_memory_benchmark_test.py39 self.y_pred = np.random.rand(1024, 1024)
57 auc(self.y_true, self.y_pred)
69 auc(self.y_true, self.y_pred)
/external/libopus/training/
Drnn_train.py28 def binary_crossentrop2(y_true, y_pred): argument
29 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_true, y_pred), axis=-1)
31 def binary_accuracy2(y_true, y_pred): argument
32 …return K.mean(K.cast(K.equal(y_true, K.round(y_pred)), 'float32') + K.cast(K.equal(y_true, 0.5), '…
Drnn_dump.py35 def binary_crossentrop2(y_true, y_pred): argument
36 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
/external/libopus/scripts/
Ddump_rnn.py32 def binary_crossentrop2(y_true, y_pred): argument
33 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)
Drnn_train.py19 def binary_crossentrop2(y_true, y_pred): argument
20 return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_pred, y_true), axis=-1)

1234