1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator.h"
18 #include "base/globals.h"
19
20 #ifdef ART_ENABLE_CODEGEN_arm
21 #include "code_generator_arm_vixl.h"
22 #endif
23
24 #ifdef ART_ENABLE_CODEGEN_arm64
25 #include "code_generator_arm64.h"
26 #endif
27
28 #ifdef ART_ENABLE_CODEGEN_riscv64
29 #include "code_generator_riscv64.h"
30 #endif
31
32 #ifdef ART_ENABLE_CODEGEN_x86
33 #include "code_generator_x86.h"
34 #endif
35
36 #ifdef ART_ENABLE_CODEGEN_x86_64
37 #include "code_generator_x86_64.h"
38 #endif
39
40 #include "art_method-inl.h"
41 #include "base/bit_utils.h"
42 #include "base/bit_utils_iterator.h"
43 #include "base/casts.h"
44 #include "base/leb128.h"
45 #include "class_linker.h"
46 #include "class_root-inl.h"
47 #include "dex/bytecode_utils.h"
48 #include "dex/code_item_accessors-inl.h"
49 #include "graph_visualizer.h"
50 #include "image.h"
51 #include "gc/space/image_space.h"
52 #include "intern_table.h"
53 #include "intrinsics.h"
54 #include "mirror/array-inl.h"
55 #include "mirror/object_array-inl.h"
56 #include "mirror/object_reference.h"
57 #include "mirror/reference.h"
58 #include "mirror/string.h"
59 #include "parallel_move_resolver.h"
60 #include "scoped_thread_state_change-inl.h"
61 #include "ssa_liveness_analysis.h"
62 #include "stack_map.h"
63 #include "stack_map_stream.h"
64 #include "string_builder_append.h"
65 #include "thread-current-inl.h"
66 #include "utils/assembler.h"
67
68 namespace art HIDDEN {
69
70 // Return whether a location is consistent with a type.
CheckType(DataType::Type type,Location location)71 static bool CheckType(DataType::Type type, Location location) {
72 if (location.IsFpuRegister()
73 || (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
74 return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
75 } else if (location.IsRegister() ||
76 (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
77 return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
78 } else if (location.IsRegisterPair()) {
79 return type == DataType::Type::kInt64;
80 } else if (location.IsFpuRegisterPair()) {
81 return type == DataType::Type::kFloat64;
82 } else if (location.IsStackSlot()) {
83 return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
84 || (type == DataType::Type::kFloat32)
85 || (type == DataType::Type::kReference);
86 } else if (location.IsDoubleStackSlot()) {
87 return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
88 } else if (location.IsConstant()) {
89 if (location.GetConstant()->IsIntConstant()) {
90 return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
91 } else if (location.GetConstant()->IsNullConstant()) {
92 return type == DataType::Type::kReference;
93 } else if (location.GetConstant()->IsLongConstant()) {
94 return type == DataType::Type::kInt64;
95 } else if (location.GetConstant()->IsFloatConstant()) {
96 return type == DataType::Type::kFloat32;
97 } else {
98 return location.GetConstant()->IsDoubleConstant()
99 && (type == DataType::Type::kFloat64);
100 }
101 } else {
102 return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
103 }
104 }
105
106 // Check that a location summary is consistent with an instruction.
CheckTypeConsistency(HInstruction * instruction)107 static bool CheckTypeConsistency(HInstruction* instruction) {
108 LocationSummary* locations = instruction->GetLocations();
109 if (locations == nullptr) {
110 return true;
111 }
112
113 if (locations->Out().IsUnallocated()
114 && (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
115 DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
116 << instruction->GetType()
117 << " " << locations->InAt(0);
118 } else {
119 DCHECK(CheckType(instruction->GetType(), locations->Out()))
120 << instruction->GetType()
121 << " " << locations->Out();
122 }
123
124 HConstInputsRef inputs = instruction->GetInputs();
125 for (size_t i = 0; i < inputs.size(); ++i) {
126 DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
127 << inputs[i]->GetType() << " " << locations->InAt(i);
128 }
129
130 HEnvironment* environment = instruction->GetEnvironment();
131 for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
132 if (environment->GetInstructionAt(i) != nullptr) {
133 DataType::Type type = environment->GetInstructionAt(i)->GetType();
134 DCHECK(CheckType(type, environment->GetLocationAt(i)))
135 << type << " " << environment->GetLocationAt(i);
136 } else {
137 DCHECK(environment->GetLocationAt(i).IsInvalid())
138 << environment->GetLocationAt(i);
139 }
140 }
141 return true;
142 }
143
144 class CodeGenerator::CodeGenerationData : public DeletableArenaObject<kArenaAllocCodeGenerator> {
145 public:
Create(ArenaStack * arena_stack,InstructionSet instruction_set)146 static std::unique_ptr<CodeGenerationData> Create(ArenaStack* arena_stack,
147 InstructionSet instruction_set) {
148 ScopedArenaAllocator allocator(arena_stack);
149 void* memory = allocator.Alloc<CodeGenerationData>(kArenaAllocCodeGenerator);
150 return std::unique_ptr<CodeGenerationData>(
151 ::new (memory) CodeGenerationData(std::move(allocator), instruction_set));
152 }
153
GetScopedAllocator()154 ScopedArenaAllocator* GetScopedAllocator() {
155 return &allocator_;
156 }
157
AddSlowPath(SlowPathCode * slow_path)158 void AddSlowPath(SlowPathCode* slow_path) {
159 slow_paths_.emplace_back(std::unique_ptr<SlowPathCode>(slow_path));
160 }
161
GetSlowPaths() const162 ArrayRef<const std::unique_ptr<SlowPathCode>> GetSlowPaths() const {
163 return ArrayRef<const std::unique_ptr<SlowPathCode>>(slow_paths_);
164 }
165
GetStackMapStream()166 StackMapStream* GetStackMapStream() { return &stack_map_stream_; }
167
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)168 void ReserveJitStringRoot(StringReference string_reference, Handle<mirror::String> string) {
169 jit_string_roots_.Overwrite(string_reference,
170 reinterpret_cast64<uint64_t>(string.GetReference()));
171 }
172
GetJitStringRootIndex(StringReference string_reference) const173 uint64_t GetJitStringRootIndex(StringReference string_reference) const {
174 return jit_string_roots_.Get(string_reference);
175 }
176
GetNumberOfJitStringRoots() const177 size_t GetNumberOfJitStringRoots() const {
178 return jit_string_roots_.size();
179 }
180
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)181 void ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
182 jit_class_roots_.Overwrite(type_reference, reinterpret_cast64<uint64_t>(klass.GetReference()));
183 }
184
GetJitClassRootIndex(TypeReference type_reference) const185 uint64_t GetJitClassRootIndex(TypeReference type_reference) const {
186 return jit_class_roots_.Get(type_reference);
187 }
188
GetNumberOfJitClassRoots() const189 size_t GetNumberOfJitClassRoots() const {
190 return jit_class_roots_.size();
191 }
192
GetNumberOfJitRoots() const193 size_t GetNumberOfJitRoots() const {
194 return GetNumberOfJitStringRoots() + GetNumberOfJitClassRoots();
195 }
196
197 void EmitJitRoots(/*out*/std::vector<Handle<mirror::Object>>* roots)
198 REQUIRES_SHARED(Locks::mutator_lock_);
199
200 private:
CodeGenerationData(ScopedArenaAllocator && allocator,InstructionSet instruction_set)201 CodeGenerationData(ScopedArenaAllocator&& allocator, InstructionSet instruction_set)
202 : allocator_(std::move(allocator)),
203 stack_map_stream_(&allocator_, instruction_set),
204 slow_paths_(allocator_.Adapter(kArenaAllocCodeGenerator)),
205 jit_string_roots_(StringReferenceValueComparator(),
206 allocator_.Adapter(kArenaAllocCodeGenerator)),
207 jit_class_roots_(TypeReferenceValueComparator(),
208 allocator_.Adapter(kArenaAllocCodeGenerator)) {
209 slow_paths_.reserve(kDefaultSlowPathsCapacity);
210 }
211
212 static constexpr size_t kDefaultSlowPathsCapacity = 8;
213
214 ScopedArenaAllocator allocator_;
215 StackMapStream stack_map_stream_;
216 ScopedArenaVector<std::unique_ptr<SlowPathCode>> slow_paths_;
217
218 // Maps a StringReference (dex_file, string_index) to the index in the literal table.
219 // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
220 // will compute all the indices.
221 ScopedArenaSafeMap<StringReference, uint64_t, StringReferenceValueComparator> jit_string_roots_;
222
223 // Maps a ClassReference (dex_file, type_index) to the index in the literal table.
224 // Entries are intially added with a pointer in the handle zone, and `EmitJitRoots`
225 // will compute all the indices.
226 ScopedArenaSafeMap<TypeReference, uint64_t, TypeReferenceValueComparator> jit_class_roots_;
227 };
228
EmitJitRoots(std::vector<Handle<mirror::Object>> * roots)229 void CodeGenerator::CodeGenerationData::EmitJitRoots(
230 /*out*/std::vector<Handle<mirror::Object>>* roots) {
231 DCHECK(roots->empty());
232 roots->reserve(GetNumberOfJitRoots());
233 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
234 size_t index = 0;
235 for (auto& entry : jit_string_roots_) {
236 // Update the `roots` with the string, and replace the address temporarily
237 // stored to the index in the table.
238 uint64_t address = entry.second;
239 roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
240 DCHECK(roots->back() != nullptr);
241 DCHECK(roots->back()->IsString());
242 entry.second = index;
243 // Ensure the string is strongly interned. This is a requirement on how the JIT
244 // handles strings. b/32995596
245 class_linker->GetInternTable()->InternStrong(roots->back()->AsString());
246 ++index;
247 }
248 for (auto& entry : jit_class_roots_) {
249 // Update the `roots` with the class, and replace the address temporarily
250 // stored to the index in the table.
251 uint64_t address = entry.second;
252 roots->emplace_back(reinterpret_cast<StackReference<mirror::Object>*>(address));
253 DCHECK(roots->back() != nullptr);
254 DCHECK(roots->back()->IsClass());
255 entry.second = index;
256 ++index;
257 }
258 }
259
GetScopedAllocator()260 ScopedArenaAllocator* CodeGenerator::GetScopedAllocator() {
261 DCHECK(code_generation_data_ != nullptr);
262 return code_generation_data_->GetScopedAllocator();
263 }
264
GetStackMapStream()265 StackMapStream* CodeGenerator::GetStackMapStream() {
266 DCHECK(code_generation_data_ != nullptr);
267 return code_generation_data_->GetStackMapStream();
268 }
269
ReserveJitStringRoot(StringReference string_reference,Handle<mirror::String> string)270 void CodeGenerator::ReserveJitStringRoot(StringReference string_reference,
271 Handle<mirror::String> string) {
272 DCHECK(code_generation_data_ != nullptr);
273 code_generation_data_->ReserveJitStringRoot(string_reference, string);
274 }
275
GetJitStringRootIndex(StringReference string_reference)276 uint64_t CodeGenerator::GetJitStringRootIndex(StringReference string_reference) {
277 DCHECK(code_generation_data_ != nullptr);
278 return code_generation_data_->GetJitStringRootIndex(string_reference);
279 }
280
ReserveJitClassRoot(TypeReference type_reference,Handle<mirror::Class> klass)281 void CodeGenerator::ReserveJitClassRoot(TypeReference type_reference, Handle<mirror::Class> klass) {
282 DCHECK(code_generation_data_ != nullptr);
283 code_generation_data_->ReserveJitClassRoot(type_reference, klass);
284 }
285
GetJitClassRootIndex(TypeReference type_reference)286 uint64_t CodeGenerator::GetJitClassRootIndex(TypeReference type_reference) {
287 DCHECK(code_generation_data_ != nullptr);
288 return code_generation_data_->GetJitClassRootIndex(type_reference);
289 }
290
EmitJitRootPatches(uint8_t * code ATTRIBUTE_UNUSED,const uint8_t * roots_data ATTRIBUTE_UNUSED)291 void CodeGenerator::EmitJitRootPatches(uint8_t* code ATTRIBUTE_UNUSED,
292 const uint8_t* roots_data ATTRIBUTE_UNUSED) {
293 DCHECK(code_generation_data_ != nullptr);
294 DCHECK_EQ(code_generation_data_->GetNumberOfJitStringRoots(), 0u);
295 DCHECK_EQ(code_generation_data_->GetNumberOfJitClassRoots(), 0u);
296 }
297
GetArrayLengthOffset(HArrayLength * array_length)298 uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
299 return array_length->IsStringLength()
300 ? mirror::String::CountOffset().Uint32Value()
301 : mirror::Array::LengthOffset().Uint32Value();
302 }
303
GetArrayDataOffset(HArrayGet * array_get)304 uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
305 DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
306 return array_get->IsStringCharAt()
307 ? mirror::String::ValueOffset().Uint32Value()
308 : mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
309 }
310
GoesToNextBlock(HBasicBlock * current,HBasicBlock * next) const311 bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
312 DCHECK_EQ((*block_order_)[current_block_index_], current);
313 return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
314 }
315
GetNextBlockToEmit() const316 HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
317 for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
318 HBasicBlock* block = (*block_order_)[i];
319 if (!block->IsSingleJump()) {
320 return block;
321 }
322 }
323 return nullptr;
324 }
325
FirstNonEmptyBlock(HBasicBlock * block) const326 HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
327 while (block->IsSingleJump()) {
328 block = block->GetSuccessors()[0];
329 }
330 return block;
331 }
332
333 class DisassemblyScope {
334 public:
DisassemblyScope(HInstruction * instruction,const CodeGenerator & codegen)335 DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
336 : codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
337 if (codegen_.GetDisassemblyInformation() != nullptr) {
338 start_offset_ = codegen_.GetAssembler().CodeSize();
339 }
340 }
341
~DisassemblyScope()342 ~DisassemblyScope() {
343 // We avoid building this data when we know it will not be used.
344 if (codegen_.GetDisassemblyInformation() != nullptr) {
345 codegen_.GetDisassemblyInformation()->AddInstructionInterval(
346 instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
347 }
348 }
349
350 private:
351 const CodeGenerator& codegen_;
352 HInstruction* instruction_;
353 size_t start_offset_;
354 };
355
356
GenerateSlowPaths()357 void CodeGenerator::GenerateSlowPaths() {
358 DCHECK(code_generation_data_ != nullptr);
359 size_t code_start = 0;
360 for (const std::unique_ptr<SlowPathCode>& slow_path_ptr : code_generation_data_->GetSlowPaths()) {
361 SlowPathCode* slow_path = slow_path_ptr.get();
362 current_slow_path_ = slow_path;
363 if (disasm_info_ != nullptr) {
364 code_start = GetAssembler()->CodeSize();
365 }
366 // Record the dex pc at start of slow path (required for java line number mapping).
367 MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
368 slow_path->EmitNativeCode(this);
369 if (disasm_info_ != nullptr) {
370 disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
371 }
372 }
373 current_slow_path_ = nullptr;
374 }
375
InitializeCodeGenerationData()376 void CodeGenerator::InitializeCodeGenerationData() {
377 DCHECK(code_generation_data_ == nullptr);
378 code_generation_data_ = CodeGenerationData::Create(graph_->GetArenaStack(), GetInstructionSet());
379 }
380
Compile(CodeAllocator * allocator)381 void CodeGenerator::Compile(CodeAllocator* allocator) {
382 InitializeCodeGenerationData();
383
384 // The register allocator already called `InitializeCodeGeneration`,
385 // where the frame size has been computed.
386 DCHECK(block_order_ != nullptr);
387 Initialize();
388
389 HGraphVisitor* instruction_visitor = GetInstructionVisitor();
390 DCHECK_EQ(current_block_index_, 0u);
391
392 GetStackMapStream()->BeginMethod(HasEmptyFrame() ? 0 : frame_size_,
393 core_spill_mask_,
394 fpu_spill_mask_,
395 GetGraph()->GetNumberOfVRegs(),
396 GetGraph()->IsCompilingBaseline(),
397 GetGraph()->IsDebuggable());
398
399 size_t frame_start = GetAssembler()->CodeSize();
400 GenerateFrameEntry();
401 DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
402 if (disasm_info_ != nullptr) {
403 disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
404 }
405
406 for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
407 HBasicBlock* block = (*block_order_)[current_block_index_];
408 // Don't generate code for an empty block. Its predecessors will branch to its successor
409 // directly. Also, the label of that block will not be emitted, so this helps catch
410 // errors where we reference that label.
411 if (block->IsSingleJump()) continue;
412 Bind(block);
413 // This ensures that we have correct native line mapping for all native instructions.
414 // It is necessary to make stepping over a statement work. Otherwise, any initial
415 // instructions (e.g. moves) would be assumed to be the start of next statement.
416 MaybeRecordNativeDebugInfo(/* instruction= */ nullptr, block->GetDexPc());
417 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
418 HInstruction* current = it.Current();
419 if (current->HasEnvironment()) {
420 // Catch StackMaps are dealt with later on in `RecordCatchBlockInfo`.
421 if (block->IsCatchBlock() && block->GetFirstInstruction() == current) {
422 DCHECK(current->IsNop());
423 continue;
424 }
425
426 // Create stackmap for HNop or any instruction which calls native code.
427 // Note that we need correct mapping for the native PC of the call instruction,
428 // so the runtime's stackmap is not sufficient since it is at PC after the call.
429 MaybeRecordNativeDebugInfo(current, block->GetDexPc());
430 }
431 DisassemblyScope disassembly_scope(current, *this);
432 DCHECK(CheckTypeConsistency(current));
433 current->Accept(instruction_visitor);
434 }
435 }
436
437 GenerateSlowPaths();
438
439 // Emit catch stack maps at the end of the stack map stream as expected by the
440 // runtime exception handler.
441 if (graph_->HasTryCatch()) {
442 RecordCatchBlockInfo();
443 }
444
445 // Finalize instructions in assember;
446 Finalize(allocator);
447
448 GetStackMapStream()->EndMethod(GetAssembler()->CodeSize());
449 }
450
Finalize(CodeAllocator * allocator)451 void CodeGenerator::Finalize(CodeAllocator* allocator) {
452 size_t code_size = GetAssembler()->CodeSize();
453 uint8_t* buffer = allocator->Allocate(code_size);
454
455 MemoryRegion code(buffer, code_size);
456 GetAssembler()->FinalizeInstructions(code);
457 }
458
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches ATTRIBUTE_UNUSED)459 void CodeGenerator::EmitLinkerPatches(
460 ArenaVector<linker::LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
461 // No linker patches by default.
462 }
463
NeedsThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED) const464 bool CodeGenerator::NeedsThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED) const {
465 // Code generators that create patches requiring thunk compilation should override this function.
466 return false;
467 }
468
EmitThunkCode(const linker::LinkerPatch & patch ATTRIBUTE_UNUSED,ArenaVector<uint8_t> * code ATTRIBUTE_UNUSED,std::string * debug_name ATTRIBUTE_UNUSED)469 void CodeGenerator::EmitThunkCode(const linker::LinkerPatch& patch ATTRIBUTE_UNUSED,
470 /*out*/ ArenaVector<uint8_t>* code ATTRIBUTE_UNUSED,
471 /*out*/ std::string* debug_name ATTRIBUTE_UNUSED) {
472 // Code generators that create patches requiring thunk compilation should override this function.
473 LOG(FATAL) << "Unexpected call to EmitThunkCode().";
474 }
475
InitializeCodeGeneration(size_t number_of_spill_slots,size_t maximum_safepoint_spill_size,size_t number_of_out_slots,const ArenaVector<HBasicBlock * > & block_order)476 void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
477 size_t maximum_safepoint_spill_size,
478 size_t number_of_out_slots,
479 const ArenaVector<HBasicBlock*>& block_order) {
480 block_order_ = &block_order;
481 DCHECK(!block_order.empty());
482 DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
483 ComputeSpillMask();
484 first_register_slot_in_slow_path_ = RoundUp(
485 (number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
486
487 if (number_of_spill_slots == 0
488 && !HasAllocatedCalleeSaveRegisters()
489 && IsLeafMethod()
490 && !RequiresCurrentMethod()) {
491 DCHECK_EQ(maximum_safepoint_spill_size, 0u);
492 SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
493 } else {
494 SetFrameSize(RoundUp(
495 first_register_slot_in_slow_path_
496 + maximum_safepoint_spill_size
497 + (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
498 + FrameEntrySpillSize(),
499 kStackAlignment));
500 }
501 }
502
CreateCommonInvokeLocationSummary(HInvoke * invoke,InvokeDexCallingConventionVisitor * visitor)503 void CodeGenerator::CreateCommonInvokeLocationSummary(
504 HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
505 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
506 LocationSummary* locations = new (allocator) LocationSummary(invoke,
507 LocationSummary::kCallOnMainOnly);
508
509 for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
510 HInstruction* input = invoke->InputAt(i);
511 locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
512 }
513
514 locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
515
516 if (invoke->IsInvokeStaticOrDirect()) {
517 HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
518 MethodLoadKind method_load_kind = call->GetMethodLoadKind();
519 CodePtrLocation code_ptr_location = call->GetCodePtrLocation();
520 if (code_ptr_location == CodePtrLocation::kCallCriticalNative) {
521 locations->AddTemp(Location::RequiresRegister()); // For target method.
522 }
523 if (code_ptr_location == CodePtrLocation::kCallCriticalNative ||
524 method_load_kind == MethodLoadKind::kRecursive) {
525 // For `kCallCriticalNative` we need the current method as the hidden argument
526 // if we reach the dlsym lookup stub for @CriticalNative.
527 locations->SetInAt(call->GetCurrentMethodIndex(), visitor->GetMethodLocation());
528 } else {
529 locations->AddTemp(visitor->GetMethodLocation());
530 if (method_load_kind == MethodLoadKind::kRuntimeCall) {
531 locations->SetInAt(call->GetCurrentMethodIndex(), Location::RequiresRegister());
532 }
533 }
534 } else if (!invoke->IsInvokePolymorphic()) {
535 locations->AddTemp(visitor->GetMethodLocation());
536 }
537 }
538
PrepareCriticalNativeArgumentMoves(HInvokeStaticOrDirect * invoke,InvokeDexCallingConventionVisitor * visitor,HParallelMove * parallel_move)539 void CodeGenerator::PrepareCriticalNativeArgumentMoves(
540 HInvokeStaticOrDirect* invoke,
541 /*inout*/InvokeDexCallingConventionVisitor* visitor,
542 /*out*/HParallelMove* parallel_move) {
543 LocationSummary* locations = invoke->GetLocations();
544 for (size_t i = 0, num = invoke->GetNumberOfArguments(); i != num; ++i) {
545 Location in_location = locations->InAt(i);
546 DataType::Type type = invoke->InputAt(i)->GetType();
547 DCHECK_NE(type, DataType::Type::kReference);
548 Location out_location = visitor->GetNextLocation(type);
549 if (out_location.IsStackSlot() || out_location.IsDoubleStackSlot()) {
550 // Stack arguments will need to be moved after adjusting the SP.
551 parallel_move->AddMove(in_location, out_location, type, /*instruction=*/ nullptr);
552 } else {
553 // Register arguments should have been assigned their final locations for register allocation.
554 DCHECK(out_location.Equals(in_location)) << in_location << " -> " << out_location;
555 }
556 }
557 }
558
FinishCriticalNativeFrameSetup(size_t out_frame_size,HParallelMove * parallel_move)559 void CodeGenerator::FinishCriticalNativeFrameSetup(size_t out_frame_size,
560 /*inout*/HParallelMove* parallel_move) {
561 DCHECK_NE(out_frame_size, 0u);
562 IncreaseFrame(out_frame_size);
563 // Adjust the source stack offsets by `out_frame_size`, i.e. the additional
564 // frame size needed for outgoing stack arguments.
565 for (size_t i = 0, num = parallel_move->NumMoves(); i != num; ++i) {
566 MoveOperands* operands = parallel_move->MoveOperandsAt(i);
567 Location source = operands->GetSource();
568 if (operands->GetSource().IsStackSlot()) {
569 operands->SetSource(Location::StackSlot(source.GetStackIndex() + out_frame_size));
570 } else if (operands->GetSource().IsDoubleStackSlot()) {
571 operands->SetSource(Location::DoubleStackSlot(source.GetStackIndex() + out_frame_size));
572 }
573 }
574 // Emit the moves.
575 GetMoveResolver()->EmitNativeCode(parallel_move);
576 }
577
GetCriticalNativeShorty(HInvokeStaticOrDirect * invoke,uint32_t * shorty_len)578 const char* CodeGenerator::GetCriticalNativeShorty(HInvokeStaticOrDirect* invoke,
579 uint32_t* shorty_len) {
580 ScopedObjectAccess soa(Thread::Current());
581 DCHECK(invoke->GetResolvedMethod()->IsCriticalNative());
582 return invoke->GetResolvedMethod()->GetShorty(shorty_len);
583 }
584
GenerateInvokeStaticOrDirectRuntimeCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)585 void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
586 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
587 MethodReference method_reference(invoke->GetMethodReference());
588 MoveConstant(temp, method_reference.index);
589
590 // The access check is unnecessary but we do not want to introduce
591 // extra entrypoints for the codegens that do not support some
592 // invoke type and fall back to the runtime call.
593
594 // Initialize to anything to silent compiler warnings.
595 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
596 switch (invoke->GetInvokeType()) {
597 case kStatic:
598 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
599 break;
600 case kDirect:
601 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
602 break;
603 case kSuper:
604 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
605 break;
606 case kVirtual:
607 case kInterface:
608 case kPolymorphic:
609 case kCustom:
610 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
611 UNREACHABLE();
612 }
613
614 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
615 }
GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved * invoke)616 void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
617 MethodReference method_reference(invoke->GetMethodReference());
618 MoveConstant(invoke->GetLocations()->GetTemp(0), method_reference.index);
619
620 // Initialize to anything to silent compiler warnings.
621 QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
622 switch (invoke->GetInvokeType()) {
623 case kStatic:
624 entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
625 break;
626 case kDirect:
627 entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
628 break;
629 case kVirtual:
630 entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
631 break;
632 case kSuper:
633 entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
634 break;
635 case kInterface:
636 entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
637 break;
638 case kPolymorphic:
639 case kCustom:
640 LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
641 UNREACHABLE();
642 }
643 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
644 }
645
GenerateInvokePolymorphicCall(HInvokePolymorphic * invoke,SlowPathCode * slow_path)646 void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke,
647 SlowPathCode* slow_path) {
648 // invoke-polymorphic does not use a temporary to convey any additional information (e.g. a
649 // method index) since it requires multiple info from the instruction (registers A, B, H). Not
650 // using the reservation has no effect on the registers used in the runtime call.
651 QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
652 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
653 }
654
GenerateInvokeCustomCall(HInvokeCustom * invoke)655 void CodeGenerator::GenerateInvokeCustomCall(HInvokeCustom* invoke) {
656 MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetCallSiteIndex());
657 QuickEntrypointEnum entrypoint = kQuickInvokeCustom;
658 InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
659 }
660
CreateStringBuilderAppendLocations(HStringBuilderAppend * instruction,Location out)661 void CodeGenerator::CreateStringBuilderAppendLocations(HStringBuilderAppend* instruction,
662 Location out) {
663 ArenaAllocator* allocator = GetGraph()->GetAllocator();
664 LocationSummary* locations =
665 new (allocator) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
666 locations->SetOut(out);
667 instruction->GetLocations()->SetInAt(instruction->FormatIndex(),
668 Location::ConstantLocation(instruction->GetFormat()));
669
670 uint32_t format = static_cast<uint32_t>(instruction->GetFormat()->GetValue());
671 uint32_t f = format;
672 PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet());
673 size_t stack_offset = static_cast<size_t>(pointer_size); // Start after the ArtMethod*.
674 for (size_t i = 0, num_args = instruction->GetNumberOfArguments(); i != num_args; ++i) {
675 StringBuilderAppend::Argument arg_type =
676 static_cast<StringBuilderAppend::Argument>(f & StringBuilderAppend::kArgMask);
677 switch (arg_type) {
678 case StringBuilderAppend::Argument::kStringBuilder:
679 case StringBuilderAppend::Argument::kString:
680 case StringBuilderAppend::Argument::kCharArray:
681 static_assert(sizeof(StackReference<mirror::Object>) == sizeof(uint32_t), "Size check.");
682 FALLTHROUGH_INTENDED;
683 case StringBuilderAppend::Argument::kBoolean:
684 case StringBuilderAppend::Argument::kChar:
685 case StringBuilderAppend::Argument::kInt:
686 case StringBuilderAppend::Argument::kFloat:
687 locations->SetInAt(i, Location::StackSlot(stack_offset));
688 break;
689 case StringBuilderAppend::Argument::kLong:
690 case StringBuilderAppend::Argument::kDouble:
691 stack_offset = RoundUp(stack_offset, sizeof(uint64_t));
692 locations->SetInAt(i, Location::DoubleStackSlot(stack_offset));
693 // Skip the low word, let the common code skip the high word.
694 stack_offset += sizeof(uint32_t);
695 break;
696 default:
697 LOG(FATAL) << "Unexpected arg format: 0x" << std::hex
698 << (f & StringBuilderAppend::kArgMask) << " full format: 0x" << format;
699 UNREACHABLE();
700 }
701 f >>= StringBuilderAppend::kBitsPerArg;
702 stack_offset += sizeof(uint32_t);
703 }
704 DCHECK_EQ(f, 0u);
705
706 size_t param_size = stack_offset - static_cast<size_t>(pointer_size);
707 DCHECK_ALIGNED(param_size, kVRegSize);
708 size_t num_vregs = param_size / kVRegSize;
709 graph_->UpdateMaximumNumberOfOutVRegs(num_vregs);
710 }
711
CreateUnresolvedFieldLocationSummary(HInstruction * field_access,DataType::Type field_type,const FieldAccessCallingConvention & calling_convention)712 void CodeGenerator::CreateUnresolvedFieldLocationSummary(
713 HInstruction* field_access,
714 DataType::Type field_type,
715 const FieldAccessCallingConvention& calling_convention) {
716 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
717 || field_access->IsUnresolvedInstanceFieldSet();
718 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
719 || field_access->IsUnresolvedStaticFieldGet();
720
721 ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator();
722 LocationSummary* locations =
723 new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
724
725 locations->AddTemp(calling_convention.GetFieldIndexLocation());
726
727 if (is_instance) {
728 // Add the `this` object for instance field accesses.
729 locations->SetInAt(0, calling_convention.GetObjectLocation());
730 }
731
732 // Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
733 // regardless of the the type. Because of that we forced to special case
734 // the access to floating point values.
735 if (is_get) {
736 if (DataType::IsFloatingPointType(field_type)) {
737 // The return value will be stored in regular registers while register
738 // allocator expects it in a floating point register.
739 // Note We don't need to request additional temps because the return
740 // register(s) are already blocked due the call and they may overlap with
741 // the input or field index.
742 // The transfer between the two will be done at codegen level.
743 locations->SetOut(calling_convention.GetFpuLocation(field_type));
744 } else {
745 locations->SetOut(calling_convention.GetReturnLocation(field_type));
746 }
747 } else {
748 size_t set_index = is_instance ? 1 : 0;
749 if (DataType::IsFloatingPointType(field_type)) {
750 // The set value comes from a float location while the calling convention
751 // expects it in a regular register location. Allocate a temp for it and
752 // make the transfer at codegen.
753 AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
754 locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
755 } else {
756 locations->SetInAt(set_index,
757 calling_convention.GetSetValueLocation(field_type, is_instance));
758 }
759 }
760 }
761
GenerateUnresolvedFieldAccess(HInstruction * field_access,DataType::Type field_type,uint32_t field_index,uint32_t dex_pc,const FieldAccessCallingConvention & calling_convention)762 void CodeGenerator::GenerateUnresolvedFieldAccess(
763 HInstruction* field_access,
764 DataType::Type field_type,
765 uint32_t field_index,
766 uint32_t dex_pc,
767 const FieldAccessCallingConvention& calling_convention) {
768 LocationSummary* locations = field_access->GetLocations();
769
770 MoveConstant(locations->GetTemp(0), field_index);
771
772 bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
773 || field_access->IsUnresolvedInstanceFieldSet();
774 bool is_get = field_access->IsUnresolvedInstanceFieldGet()
775 || field_access->IsUnresolvedStaticFieldGet();
776
777 if (!is_get && DataType::IsFloatingPointType(field_type)) {
778 // Copy the float value to be set into the calling convention register.
779 // Note that using directly the temp location is problematic as we don't
780 // support temp register pairs. To avoid boilerplate conversion code, use
781 // the location from the calling convention.
782 MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
783 locations->InAt(is_instance ? 1 : 0),
784 (DataType::Is64BitType(field_type) ? DataType::Type::kInt64
785 : DataType::Type::kInt32));
786 }
787
788 QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings.
789 switch (field_type) {
790 case DataType::Type::kBool:
791 entrypoint = is_instance
792 ? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
793 : (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
794 break;
795 case DataType::Type::kInt8:
796 entrypoint = is_instance
797 ? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
798 : (is_get ? kQuickGetByteStatic : kQuickSet8Static);
799 break;
800 case DataType::Type::kInt16:
801 entrypoint = is_instance
802 ? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
803 : (is_get ? kQuickGetShortStatic : kQuickSet16Static);
804 break;
805 case DataType::Type::kUint16:
806 entrypoint = is_instance
807 ? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
808 : (is_get ? kQuickGetCharStatic : kQuickSet16Static);
809 break;
810 case DataType::Type::kInt32:
811 case DataType::Type::kFloat32:
812 entrypoint = is_instance
813 ? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
814 : (is_get ? kQuickGet32Static : kQuickSet32Static);
815 break;
816 case DataType::Type::kReference:
817 entrypoint = is_instance
818 ? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
819 : (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
820 break;
821 case DataType::Type::kInt64:
822 case DataType::Type::kFloat64:
823 entrypoint = is_instance
824 ? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
825 : (is_get ? kQuickGet64Static : kQuickSet64Static);
826 break;
827 default:
828 LOG(FATAL) << "Invalid type " << field_type;
829 }
830 InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
831
832 if (is_get && DataType::IsFloatingPointType(field_type)) {
833 MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
834 }
835 }
836
CreateLoadClassRuntimeCallLocationSummary(HLoadClass * cls,Location runtime_type_index_location,Location runtime_return_location)837 void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
838 Location runtime_type_index_location,
839 Location runtime_return_location) {
840 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
841 DCHECK_EQ(cls->InputCount(), 1u);
842 LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
843 cls, LocationSummary::kCallOnMainOnly);
844 locations->SetInAt(0, Location::NoLocation());
845 locations->AddTemp(runtime_type_index_location);
846 locations->SetOut(runtime_return_location);
847 }
848
GenerateLoadClassRuntimeCall(HLoadClass * cls)849 void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
850 DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
851 DCHECK(!cls->MustGenerateClinitCheck());
852 LocationSummary* locations = cls->GetLocations();
853 MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
854 if (cls->NeedsAccessCheck()) {
855 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
856 InvokeRuntime(kQuickResolveTypeAndVerifyAccess, cls, cls->GetDexPc());
857 } else {
858 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
859 InvokeRuntime(kQuickResolveType, cls, cls->GetDexPc());
860 }
861 }
862
CreateLoadMethodHandleRuntimeCallLocationSummary(HLoadMethodHandle * method_handle,Location runtime_proto_index_location,Location runtime_return_location)863 void CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(
864 HLoadMethodHandle* method_handle,
865 Location runtime_proto_index_location,
866 Location runtime_return_location) {
867 DCHECK_EQ(method_handle->InputCount(), 1u);
868 LocationSummary* locations =
869 new (method_handle->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
870 method_handle, LocationSummary::kCallOnMainOnly);
871 locations->SetInAt(0, Location::NoLocation());
872 locations->AddTemp(runtime_proto_index_location);
873 locations->SetOut(runtime_return_location);
874 }
875
GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle * method_handle)876 void CodeGenerator::GenerateLoadMethodHandleRuntimeCall(HLoadMethodHandle* method_handle) {
877 LocationSummary* locations = method_handle->GetLocations();
878 MoveConstant(locations->GetTemp(0), method_handle->GetMethodHandleIndex());
879 CheckEntrypointTypes<kQuickResolveMethodHandle, void*, uint32_t>();
880 InvokeRuntime(kQuickResolveMethodHandle, method_handle, method_handle->GetDexPc());
881 }
882
CreateLoadMethodTypeRuntimeCallLocationSummary(HLoadMethodType * method_type,Location runtime_proto_index_location,Location runtime_return_location)883 void CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(
884 HLoadMethodType* method_type,
885 Location runtime_proto_index_location,
886 Location runtime_return_location) {
887 DCHECK_EQ(method_type->InputCount(), 1u);
888 LocationSummary* locations =
889 new (method_type->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
890 method_type, LocationSummary::kCallOnMainOnly);
891 locations->SetInAt(0, Location::NoLocation());
892 locations->AddTemp(runtime_proto_index_location);
893 locations->SetOut(runtime_return_location);
894 }
895
GenerateLoadMethodTypeRuntimeCall(HLoadMethodType * method_type)896 void CodeGenerator::GenerateLoadMethodTypeRuntimeCall(HLoadMethodType* method_type) {
897 LocationSummary* locations = method_type->GetLocations();
898 MoveConstant(locations->GetTemp(0), method_type->GetProtoIndex().index_);
899 CheckEntrypointTypes<kQuickResolveMethodType, void*, uint32_t>();
900 InvokeRuntime(kQuickResolveMethodType, method_type, method_type->GetDexPc());
901 }
902
GetBootImageOffsetImpl(const void * object,ImageHeader::ImageSections section)903 static uint32_t GetBootImageOffsetImpl(const void* object, ImageHeader::ImageSections section) {
904 Runtime* runtime = Runtime::Current();
905 const std::vector<gc::space::ImageSpace*>& boot_image_spaces =
906 runtime->GetHeap()->GetBootImageSpaces();
907 // Check that the `object` is in the expected section of one of the boot image files.
908 DCHECK(std::any_of(boot_image_spaces.begin(),
909 boot_image_spaces.end(),
910 [object, section](gc::space::ImageSpace* space) {
911 uintptr_t begin = reinterpret_cast<uintptr_t>(space->Begin());
912 uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
913 return space->GetImageHeader().GetImageSection(section).Contains(offset);
914 }));
915 uintptr_t begin = reinterpret_cast<uintptr_t>(boot_image_spaces.front()->Begin());
916 uintptr_t offset = reinterpret_cast<uintptr_t>(object) - begin;
917 return dchecked_integral_cast<uint32_t>(offset);
918 }
919
GetBootImageOffset(ObjPtr<mirror::Object> object)920 uint32_t CodeGenerator::GetBootImageOffset(ObjPtr<mirror::Object> object) {
921 return GetBootImageOffsetImpl(object.Ptr(), ImageHeader::kSectionObjects);
922 }
923
924 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
GetBootImageOffset(HLoadClass * load_class)925 uint32_t CodeGenerator::GetBootImageOffset(HLoadClass* load_class) NO_THREAD_SAFETY_ANALYSIS {
926 DCHECK_EQ(load_class->GetLoadKind(), HLoadClass::LoadKind::kBootImageRelRo);
927 ObjPtr<mirror::Class> klass = load_class->GetClass().Get();
928 DCHECK(klass != nullptr);
929 return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
930 }
931
932 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image strings are non-moveable.
GetBootImageOffset(HLoadString * load_string)933 uint32_t CodeGenerator::GetBootImageOffset(HLoadString* load_string) NO_THREAD_SAFETY_ANALYSIS {
934 DCHECK_EQ(load_string->GetLoadKind(), HLoadString::LoadKind::kBootImageRelRo);
935 ObjPtr<mirror::String> string = load_string->GetString().Get();
936 DCHECK(string != nullptr);
937 return GetBootImageOffsetImpl(string.Ptr(), ImageHeader::kSectionObjects);
938 }
939
GetBootImageOffset(HInvoke * invoke)940 uint32_t CodeGenerator::GetBootImageOffset(HInvoke* invoke) {
941 ArtMethod* method = invoke->GetResolvedMethod();
942 DCHECK(method != nullptr);
943 return GetBootImageOffsetImpl(method, ImageHeader::kSectionArtMethods);
944 }
945
946 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image objects are non-moveable.
GetBootImageOffset(ClassRoot class_root)947 uint32_t CodeGenerator::GetBootImageOffset(ClassRoot class_root) NO_THREAD_SAFETY_ANALYSIS {
948 ObjPtr<mirror::Class> klass = GetClassRoot<kWithoutReadBarrier>(class_root);
949 return GetBootImageOffsetImpl(klass.Ptr(), ImageHeader::kSectionObjects);
950 }
951
952 // NO_THREAD_SAFETY_ANALYSIS: Avoid taking the mutator lock, boot image classes are non-moveable.
GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke * invoke)953 uint32_t CodeGenerator::GetBootImageOffsetOfIntrinsicDeclaringClass(HInvoke* invoke)
954 NO_THREAD_SAFETY_ANALYSIS {
955 DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
956 ArtMethod* method = invoke->GetResolvedMethod();
957 DCHECK(method != nullptr);
958 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass<kWithoutReadBarrier>();
959 return GetBootImageOffsetImpl(declaring_class.Ptr(), ImageHeader::kSectionObjects);
960 }
961
BlockIfInRegister(Location location,bool is_out) const962 void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
963 // The DCHECKS below check that a register is not specified twice in
964 // the summary. The out location can overlap with an input, so we need
965 // to special case it.
966 if (location.IsRegister()) {
967 DCHECK(is_out || !blocked_core_registers_[location.reg()]);
968 blocked_core_registers_[location.reg()] = true;
969 } else if (location.IsFpuRegister()) {
970 DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
971 blocked_fpu_registers_[location.reg()] = true;
972 } else if (location.IsFpuRegisterPair()) {
973 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
974 blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
975 DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
976 blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
977 } else if (location.IsRegisterPair()) {
978 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
979 blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
980 DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
981 blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
982 }
983 }
984
AllocateLocations(HInstruction * instruction)985 void CodeGenerator::AllocateLocations(HInstruction* instruction) {
986 for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
987 env->AllocateLocations();
988 }
989 instruction->Accept(GetLocationBuilder());
990 DCHECK(CheckTypeConsistency(instruction));
991 LocationSummary* locations = instruction->GetLocations();
992 if (!instruction->IsSuspendCheckEntry()) {
993 if (locations != nullptr) {
994 if (locations->CanCall()) {
995 MarkNotLeaf();
996 if (locations->NeedsSuspendCheckEntry()) {
997 MarkNeedsSuspendCheckEntry();
998 }
999 } else if (locations->Intrinsified() &&
1000 instruction->IsInvokeStaticOrDirect() &&
1001 !instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
1002 // A static method call that has been fully intrinsified, and cannot call on the slow
1003 // path or refer to the current method directly, no longer needs current method.
1004 return;
1005 }
1006 }
1007 if (instruction->NeedsCurrentMethod()) {
1008 SetRequiresCurrentMethod();
1009 }
1010 }
1011 }
1012
Create(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)1013 std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
1014 const CompilerOptions& compiler_options,
1015 OptimizingCompilerStats* stats) {
1016 ArenaAllocator* allocator = graph->GetAllocator();
1017 switch (compiler_options.GetInstructionSet()) {
1018 #ifdef ART_ENABLE_CODEGEN_arm
1019 case InstructionSet::kArm:
1020 case InstructionSet::kThumb2: {
1021 return std::unique_ptr<CodeGenerator>(
1022 new (allocator) arm::CodeGeneratorARMVIXL(graph, compiler_options, stats));
1023 }
1024 #endif
1025 #ifdef ART_ENABLE_CODEGEN_arm64
1026 case InstructionSet::kArm64: {
1027 return std::unique_ptr<CodeGenerator>(
1028 new (allocator) arm64::CodeGeneratorARM64(graph, compiler_options, stats));
1029 }
1030 #endif
1031 #ifdef ART_ENABLE_CODEGEN_x86
1032 case InstructionSet::kX86: {
1033 return std::unique_ptr<CodeGenerator>(
1034 new (allocator) x86::CodeGeneratorX86(graph, compiler_options, stats));
1035 }
1036 #endif
1037 #ifdef ART_ENABLE_CODEGEN_x86_64
1038 case InstructionSet::kX86_64: {
1039 return std::unique_ptr<CodeGenerator>(
1040 new (allocator) x86_64::CodeGeneratorX86_64(graph, compiler_options, stats));
1041 }
1042 #endif
1043 default:
1044 UNUSED(allocator);
1045 UNUSED(graph);
1046 UNUSED(stats);
1047 return nullptr;
1048 }
1049 }
1050
CodeGenerator(HGraph * graph,size_t number_of_core_registers,size_t number_of_fpu_registers,size_t number_of_register_pairs,uint32_t core_callee_save_mask,uint32_t fpu_callee_save_mask,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats,const art::ArrayRef<const bool> & unimplemented_intrinsics)1051 CodeGenerator::CodeGenerator(HGraph* graph,
1052 size_t number_of_core_registers,
1053 size_t number_of_fpu_registers,
1054 size_t number_of_register_pairs,
1055 uint32_t core_callee_save_mask,
1056 uint32_t fpu_callee_save_mask,
1057 const CompilerOptions& compiler_options,
1058 OptimizingCompilerStats* stats,
1059 const art::ArrayRef<const bool>& unimplemented_intrinsics)
1060 : frame_size_(0),
1061 core_spill_mask_(0),
1062 fpu_spill_mask_(0),
1063 first_register_slot_in_slow_path_(0),
1064 allocated_registers_(RegisterSet::Empty()),
1065 blocked_core_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_core_registers,
1066 kArenaAllocCodeGenerator)),
1067 blocked_fpu_registers_(graph->GetAllocator()->AllocArray<bool>(number_of_fpu_registers,
1068 kArenaAllocCodeGenerator)),
1069 number_of_core_registers_(number_of_core_registers),
1070 number_of_fpu_registers_(number_of_fpu_registers),
1071 number_of_register_pairs_(number_of_register_pairs),
1072 core_callee_save_mask_(core_callee_save_mask),
1073 fpu_callee_save_mask_(fpu_callee_save_mask),
1074 block_order_(nullptr),
1075 disasm_info_(nullptr),
1076 stats_(stats),
1077 graph_(graph),
1078 compiler_options_(compiler_options),
1079 current_slow_path_(nullptr),
1080 current_block_index_(0),
1081 is_leaf_(true),
1082 needs_suspend_check_entry_(false),
1083 requires_current_method_(false),
1084 code_generation_data_(),
1085 unimplemented_intrinsics_(unimplemented_intrinsics) {
1086 if (GetGraph()->IsCompilingOsr()) {
1087 // Make OSR methods have all registers spilled, this simplifies the logic of
1088 // jumping to the compiled code directly.
1089 for (size_t i = 0; i < number_of_core_registers_; ++i) {
1090 if (IsCoreCalleeSaveRegister(i)) {
1091 AddAllocatedRegister(Location::RegisterLocation(i));
1092 }
1093 }
1094 for (size_t i = 0; i < number_of_fpu_registers_; ++i) {
1095 if (IsFloatingPointCalleeSaveRegister(i)) {
1096 AddAllocatedRegister(Location::FpuRegisterLocation(i));
1097 }
1098 }
1099 }
1100 if (GetGraph()->IsCompilingBaseline()) {
1101 // We need the current method in case we reach the hotness threshold. As a
1102 // side effect this makes the frame non-empty.
1103 SetRequiresCurrentMethod();
1104 }
1105 }
1106
~CodeGenerator()1107 CodeGenerator::~CodeGenerator() {}
1108
GetNumberOfJitRoots() const1109 size_t CodeGenerator::GetNumberOfJitRoots() const {
1110 DCHECK(code_generation_data_ != nullptr);
1111 return code_generation_data_->GetNumberOfJitRoots();
1112 }
1113
CheckCovers(uint32_t dex_pc,const HGraph & graph,const CodeInfo & code_info,const ArenaVector<HSuspendCheck * > & loop_headers,ArenaVector<size_t> * covered)1114 static void CheckCovers(uint32_t dex_pc,
1115 const HGraph& graph,
1116 const CodeInfo& code_info,
1117 const ArenaVector<HSuspendCheck*>& loop_headers,
1118 ArenaVector<size_t>* covered) {
1119 for (size_t i = 0; i < loop_headers.size(); ++i) {
1120 if (loop_headers[i]->GetDexPc() == dex_pc) {
1121 if (graph.IsCompilingOsr()) {
1122 DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc).IsValid());
1123 }
1124 ++(*covered)[i];
1125 }
1126 }
1127 }
1128
1129 // Debug helper to ensure loop entries in compiled code are matched by
1130 // dex branch instructions.
CheckLoopEntriesCanBeUsedForOsr(const HGraph & graph,const CodeInfo & code_info,const dex::CodeItem & code_item)1131 static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
1132 const CodeInfo& code_info,
1133 const dex::CodeItem& code_item) {
1134 if (graph.HasTryCatch()) {
1135 // One can write loops through try/catch, which we do not support for OSR anyway.
1136 return;
1137 }
1138 ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
1139 for (HBasicBlock* block : graph.GetReversePostOrder()) {
1140 if (block->IsLoopHeader()) {
1141 HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
1142 if (suspend_check != nullptr && !suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
1143 loop_headers.push_back(suspend_check);
1144 }
1145 }
1146 }
1147 ArenaVector<size_t> covered(
1148 loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
1149 for (const DexInstructionPcPair& pair : CodeItemInstructionAccessor(graph.GetDexFile(),
1150 &code_item)) {
1151 const uint32_t dex_pc = pair.DexPc();
1152 const Instruction& instruction = pair.Inst();
1153 if (instruction.IsBranch()) {
1154 uint32_t target = dex_pc + instruction.GetTargetOffset();
1155 CheckCovers(target, graph, code_info, loop_headers, &covered);
1156 } else if (instruction.IsSwitch()) {
1157 DexSwitchTable table(instruction, dex_pc);
1158 uint16_t num_entries = table.GetNumEntries();
1159 size_t offset = table.GetFirstValueIndex();
1160
1161 // Use a larger loop counter type to avoid overflow issues.
1162 for (size_t i = 0; i < num_entries; ++i) {
1163 // The target of the case.
1164 uint32_t target = dex_pc + table.GetEntryAt(i + offset);
1165 CheckCovers(target, graph, code_info, loop_headers, &covered);
1166 }
1167 }
1168 }
1169
1170 for (size_t i = 0; i < covered.size(); ++i) {
1171 DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
1172 }
1173 }
1174
BuildStackMaps(const dex::CodeItem * code_item)1175 ScopedArenaVector<uint8_t> CodeGenerator::BuildStackMaps(const dex::CodeItem* code_item) {
1176 ScopedArenaVector<uint8_t> stack_map = GetStackMapStream()->Encode();
1177 if (kIsDebugBuild && code_item != nullptr) {
1178 CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map.data()), *code_item);
1179 }
1180 return stack_map;
1181 }
1182
1183 // Returns whether stackmap dex register info is needed for the instruction.
1184 //
1185 // The following cases mandate having a dex register map:
1186 // * Deoptimization
1187 // when we need to obtain the values to restore actual vregisters for interpreter.
1188 // * Debuggability
1189 // when we want to observe the values / asynchronously deoptimize.
1190 // * Monitor operations
1191 // to allow dumping in a stack trace locked dex registers for non-debuggable code.
1192 // * On-stack-replacement (OSR)
1193 // when entering compiled for OSR code from the interpreter we need to initialize the compiled
1194 // code values with the values from the vregisters.
1195 // * Method local catch blocks
1196 // a catch block must see the environment of the instruction from the same method that can
1197 // throw to this block.
NeedsVregInfo(HInstruction * instruction,bool osr)1198 static bool NeedsVregInfo(HInstruction* instruction, bool osr) {
1199 HGraph* graph = instruction->GetBlock()->GetGraph();
1200 return instruction->IsDeoptimize() ||
1201 graph->IsDebuggable() ||
1202 graph->HasMonitorOperations() ||
1203 osr ||
1204 instruction->CanThrowIntoCatchBlock();
1205 }
1206
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path,bool native_debug_info)1207 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1208 uint32_t dex_pc,
1209 SlowPathCode* slow_path,
1210 bool native_debug_info) {
1211 RecordPcInfo(instruction, dex_pc, GetAssembler()->CodePosition(), slow_path, native_debug_info);
1212 }
1213
RecordPcInfo(HInstruction * instruction,uint32_t dex_pc,uint32_t native_pc,SlowPathCode * slow_path,bool native_debug_info)1214 void CodeGenerator::RecordPcInfo(HInstruction* instruction,
1215 uint32_t dex_pc,
1216 uint32_t native_pc,
1217 SlowPathCode* slow_path,
1218 bool native_debug_info) {
1219 if (instruction != nullptr) {
1220 // The code generated for some type conversions
1221 // may call the runtime, thus normally requiring a subsequent
1222 // call to this method. However, the method verifier does not
1223 // produce PC information for certain instructions, which are
1224 // considered "atomic" (they cannot join a GC).
1225 // Therefore we do not currently record PC information for such
1226 // instructions. As this may change later, we added this special
1227 // case so that code generators may nevertheless call
1228 // CodeGenerator::RecordPcInfo without triggering an error in
1229 // CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
1230 // thereafter.
1231 if (instruction->IsTypeConversion()) {
1232 return;
1233 }
1234 if (instruction->IsRem()) {
1235 DataType::Type type = instruction->AsRem()->GetResultType();
1236 if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) {
1237 return;
1238 }
1239 }
1240 }
1241
1242 StackMapStream* stack_map_stream = GetStackMapStream();
1243 if (instruction == nullptr) {
1244 // For stack overflow checks and native-debug-info entries without dex register
1245 // mapping (i.e. start of basic block or start of slow path).
1246 stack_map_stream->BeginStackMapEntry(dex_pc, native_pc);
1247 stack_map_stream->EndStackMapEntry();
1248 return;
1249 }
1250
1251 LocationSummary* locations = instruction->GetLocations();
1252 uint32_t register_mask = locations->GetRegisterMask();
1253 DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
1254 if (locations->OnlyCallsOnSlowPath()) {
1255 // In case of slow path, we currently set the location of caller-save registers
1256 // to register (instead of their stack location when pushed before the slow-path
1257 // call). Therefore register_mask contains both callee-save and caller-save
1258 // registers that hold objects. We must remove the spilled caller-save from the
1259 // mask, since they will be overwritten by the callee.
1260 uint32_t spills = GetSlowPathSpills(locations, /* core_registers= */ true);
1261 register_mask &= ~spills;
1262 } else {
1263 // The register mask must be a subset of callee-save registers.
1264 DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
1265 }
1266
1267 uint32_t outer_dex_pc = dex_pc;
1268 uint32_t inlining_depth = 0;
1269 HEnvironment* const environment = instruction->GetEnvironment();
1270 if (environment != nullptr) {
1271 HEnvironment* outer_environment = environment;
1272 while (outer_environment->GetParent() != nullptr) {
1273 outer_environment = outer_environment->GetParent();
1274 ++inlining_depth;
1275 }
1276 outer_dex_pc = outer_environment->GetDexPc();
1277 }
1278
1279 HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
1280 bool osr =
1281 instruction->IsSuspendCheck() &&
1282 (info != nullptr) &&
1283 graph_->IsCompilingOsr() &&
1284 (inlining_depth == 0);
1285 StackMap::Kind kind = native_debug_info
1286 ? StackMap::Kind::Debug
1287 : (osr ? StackMap::Kind::OSR : StackMap::Kind::Default);
1288 bool needs_vreg_info = NeedsVregInfo(instruction, osr);
1289 stack_map_stream->BeginStackMapEntry(outer_dex_pc,
1290 native_pc,
1291 register_mask,
1292 locations->GetStackMask(),
1293 kind,
1294 needs_vreg_info);
1295
1296 EmitEnvironment(environment, slow_path, needs_vreg_info);
1297 stack_map_stream->EndStackMapEntry();
1298
1299 if (osr) {
1300 DCHECK_EQ(info->GetSuspendCheck(), instruction);
1301 DCHECK(info->IsIrreducible());
1302 DCHECK(environment != nullptr);
1303 if (kIsDebugBuild) {
1304 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1305 HInstruction* in_environment = environment->GetInstructionAt(i);
1306 if (in_environment != nullptr) {
1307 DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
1308 Location location = environment->GetLocationAt(i);
1309 DCHECK(location.IsStackSlot() ||
1310 location.IsDoubleStackSlot() ||
1311 location.IsConstant() ||
1312 location.IsInvalid());
1313 if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
1314 DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
1315 }
1316 }
1317 }
1318 }
1319 }
1320 }
1321
HasStackMapAtCurrentPc()1322 bool CodeGenerator::HasStackMapAtCurrentPc() {
1323 uint32_t pc = GetAssembler()->CodeSize();
1324 StackMapStream* stack_map_stream = GetStackMapStream();
1325 size_t count = stack_map_stream->GetNumberOfStackMaps();
1326 if (count == 0) {
1327 return false;
1328 }
1329 return stack_map_stream->GetStackMapNativePcOffset(count - 1) == pc;
1330 }
1331
MaybeRecordNativeDebugInfo(HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1332 void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
1333 uint32_t dex_pc,
1334 SlowPathCode* slow_path) {
1335 if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
1336 if (HasStackMapAtCurrentPc()) {
1337 // Ensure that we do not collide with the stack map of the previous instruction.
1338 GenerateNop();
1339 }
1340 RecordPcInfo(instruction, dex_pc, slow_path, /* native_debug_info= */ true);
1341 }
1342 }
1343
RecordCatchBlockInfo()1344 void CodeGenerator::RecordCatchBlockInfo() {
1345 StackMapStream* stack_map_stream = GetStackMapStream();
1346
1347 for (HBasicBlock* block : *block_order_) {
1348 if (!block->IsCatchBlock()) {
1349 continue;
1350 }
1351
1352 // Get the outer dex_pc. We save the full environment list for DCHECK purposes in kIsDebugBuild.
1353 std::vector<uint32_t> dex_pc_list_for_verification;
1354 if (kIsDebugBuild) {
1355 dex_pc_list_for_verification.push_back(block->GetDexPc());
1356 }
1357 DCHECK(block->GetFirstInstruction()->IsNop());
1358 DCHECK(block->GetFirstInstruction()->AsNop()->NeedsEnvironment());
1359 HEnvironment* const environment = block->GetFirstInstruction()->GetEnvironment();
1360 DCHECK(environment != nullptr);
1361 HEnvironment* outer_environment = environment;
1362 while (outer_environment->GetParent() != nullptr) {
1363 outer_environment = outer_environment->GetParent();
1364 if (kIsDebugBuild) {
1365 dex_pc_list_for_verification.push_back(outer_environment->GetDexPc());
1366 }
1367 }
1368
1369 if (kIsDebugBuild) {
1370 // dex_pc_list_for_verification is set from innnermost to outermost. Let's reverse it
1371 // since we are expected to pass from outermost to innermost.
1372 std::reverse(dex_pc_list_for_verification.begin(), dex_pc_list_for_verification.end());
1373 DCHECK_EQ(dex_pc_list_for_verification.front(), outer_environment->GetDexPc());
1374 }
1375
1376 uint32_t native_pc = GetAddressOf(block);
1377 stack_map_stream->BeginStackMapEntry(outer_environment->GetDexPc(),
1378 native_pc,
1379 /* register_mask= */ 0,
1380 /* sp_mask= */ nullptr,
1381 StackMap::Kind::Catch,
1382 /* needs_vreg_info= */ true,
1383 dex_pc_list_for_verification);
1384
1385 EmitEnvironment(environment,
1386 /* slow_path= */ nullptr,
1387 /* needs_vreg_info= */ true,
1388 /* is_for_catch_handler= */ true);
1389
1390 stack_map_stream->EndStackMapEntry();
1391 }
1392 }
1393
AddSlowPath(SlowPathCode * slow_path)1394 void CodeGenerator::AddSlowPath(SlowPathCode* slow_path) {
1395 DCHECK(code_generation_data_ != nullptr);
1396 code_generation_data_->AddSlowPath(slow_path);
1397 }
1398
EmitVRegInfo(HEnvironment * environment,SlowPathCode * slow_path,bool is_for_catch_handler)1399 void CodeGenerator::EmitVRegInfo(HEnvironment* environment,
1400 SlowPathCode* slow_path,
1401 bool is_for_catch_handler) {
1402 StackMapStream* stack_map_stream = GetStackMapStream();
1403 // Walk over the environment, and record the location of dex registers.
1404 for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
1405 HInstruction* current = environment->GetInstructionAt(i);
1406 if (current == nullptr) {
1407 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1408 continue;
1409 }
1410
1411 using Kind = DexRegisterLocation::Kind;
1412 Location location = environment->GetLocationAt(i);
1413 switch (location.GetKind()) {
1414 case Location::kConstant: {
1415 DCHECK_EQ(current, location.GetConstant());
1416 if (current->IsLongConstant()) {
1417 int64_t value = current->AsLongConstant()->GetValue();
1418 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1419 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1420 ++i;
1421 DCHECK_LT(i, environment_size);
1422 } else if (current->IsDoubleConstant()) {
1423 int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
1424 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, Low32Bits(value));
1425 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, High32Bits(value));
1426 ++i;
1427 DCHECK_LT(i, environment_size);
1428 } else if (current->IsIntConstant()) {
1429 int32_t value = current->AsIntConstant()->GetValue();
1430 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1431 } else if (current->IsNullConstant()) {
1432 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, 0);
1433 } else {
1434 DCHECK(current->IsFloatConstant()) << current->DebugName();
1435 int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
1436 stack_map_stream->AddDexRegisterEntry(Kind::kConstant, value);
1437 }
1438 break;
1439 }
1440
1441 case Location::kStackSlot: {
1442 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1443 break;
1444 }
1445
1446 case Location::kDoubleStackSlot: {
1447 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, location.GetStackIndex());
1448 stack_map_stream->AddDexRegisterEntry(
1449 Kind::kInStack, location.GetHighStackIndex(kVRegSize));
1450 ++i;
1451 DCHECK_LT(i, environment_size);
1452 break;
1453 }
1454
1455 case Location::kRegister : {
1456 DCHECK(!is_for_catch_handler);
1457 int id = location.reg();
1458 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
1459 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
1460 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1461 if (current->GetType() == DataType::Type::kInt64) {
1462 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1463 ++i;
1464 DCHECK_LT(i, environment_size);
1465 }
1466 } else {
1467 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, id);
1468 if (current->GetType() == DataType::Type::kInt64) {
1469 stack_map_stream->AddDexRegisterEntry(Kind::kInRegisterHigh, id);
1470 ++i;
1471 DCHECK_LT(i, environment_size);
1472 }
1473 }
1474 break;
1475 }
1476
1477 case Location::kFpuRegister : {
1478 DCHECK(!is_for_catch_handler);
1479 int id = location.reg();
1480 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
1481 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
1482 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1483 if (current->GetType() == DataType::Type::kFloat64) {
1484 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset + kVRegSize);
1485 ++i;
1486 DCHECK_LT(i, environment_size);
1487 }
1488 } else {
1489 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, id);
1490 if (current->GetType() == DataType::Type::kFloat64) {
1491 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegisterHigh, id);
1492 ++i;
1493 DCHECK_LT(i, environment_size);
1494 }
1495 }
1496 break;
1497 }
1498
1499 case Location::kFpuRegisterPair : {
1500 DCHECK(!is_for_catch_handler);
1501 int low = location.low();
1502 int high = location.high();
1503 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
1504 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
1505 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1506 } else {
1507 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, low);
1508 }
1509 if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
1510 uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
1511 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1512 ++i;
1513 } else {
1514 stack_map_stream->AddDexRegisterEntry(Kind::kInFpuRegister, high);
1515 ++i;
1516 }
1517 DCHECK_LT(i, environment_size);
1518 break;
1519 }
1520
1521 case Location::kRegisterPair : {
1522 DCHECK(!is_for_catch_handler);
1523 int low = location.low();
1524 int high = location.high();
1525 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
1526 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
1527 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1528 } else {
1529 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, low);
1530 }
1531 if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
1532 uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
1533 stack_map_stream->AddDexRegisterEntry(Kind::kInStack, offset);
1534 } else {
1535 stack_map_stream->AddDexRegisterEntry(Kind::kInRegister, high);
1536 }
1537 ++i;
1538 DCHECK_LT(i, environment_size);
1539 break;
1540 }
1541
1542 case Location::kInvalid: {
1543 stack_map_stream->AddDexRegisterEntry(Kind::kNone, 0);
1544 break;
1545 }
1546
1547 default:
1548 LOG(FATAL) << "Unexpected kind " << location.GetKind();
1549 }
1550 }
1551 }
1552
EmitVRegInfoOnlyCatchPhis(HEnvironment * environment)1553 void CodeGenerator::EmitVRegInfoOnlyCatchPhis(HEnvironment* environment) {
1554 StackMapStream* stack_map_stream = GetStackMapStream();
1555 DCHECK(environment->GetHolder()->GetBlock()->IsCatchBlock());
1556 DCHECK_EQ(environment->GetHolder()->GetBlock()->GetFirstInstruction(), environment->GetHolder());
1557 HInstruction* current_phi = environment->GetHolder()->GetBlock()->GetFirstPhi();
1558 for (size_t vreg = 0; vreg < environment->Size(); ++vreg) {
1559 while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
1560 HInstruction* next_phi = current_phi->GetNext();
1561 DCHECK(next_phi == nullptr ||
1562 current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
1563 << "Phis need to be sorted by vreg number to keep this a linear-time loop.";
1564 current_phi = next_phi;
1565 }
1566
1567 if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
1568 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
1569 } else {
1570 Location location = current_phi->GetLocations()->Out();
1571 switch (location.GetKind()) {
1572 case Location::kStackSlot: {
1573 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
1574 location.GetStackIndex());
1575 break;
1576 }
1577 case Location::kDoubleStackSlot: {
1578 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
1579 location.GetStackIndex());
1580 stack_map_stream->AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack,
1581 location.GetHighStackIndex(kVRegSize));
1582 ++vreg;
1583 DCHECK_LT(vreg, environment->Size());
1584 break;
1585 }
1586 default: {
1587 LOG(FATAL) << "All catch phis must be allocated to a stack slot. Unexpected kind "
1588 << location.GetKind();
1589 UNREACHABLE();
1590 }
1591 }
1592 }
1593 }
1594 }
1595
EmitEnvironment(HEnvironment * environment,SlowPathCode * slow_path,bool needs_vreg_info,bool is_for_catch_handler,bool innermost_environment)1596 void CodeGenerator::EmitEnvironment(HEnvironment* environment,
1597 SlowPathCode* slow_path,
1598 bool needs_vreg_info,
1599 bool is_for_catch_handler,
1600 bool innermost_environment) {
1601 if (environment == nullptr) return;
1602
1603 StackMapStream* stack_map_stream = GetStackMapStream();
1604 bool emit_inline_info = environment->GetParent() != nullptr;
1605
1606 if (emit_inline_info) {
1607 // We emit the parent environment first.
1608 EmitEnvironment(environment->GetParent(),
1609 slow_path,
1610 needs_vreg_info,
1611 is_for_catch_handler,
1612 /* innermost_environment= */ false);
1613 stack_map_stream->BeginInlineInfoEntry(environment->GetMethod(),
1614 environment->GetDexPc(),
1615 needs_vreg_info ? environment->Size() : 0,
1616 &graph_->GetDexFile(),
1617 this);
1618 }
1619
1620 // If a dex register map is not required we just won't emit it.
1621 if (needs_vreg_info) {
1622 if (innermost_environment && is_for_catch_handler) {
1623 EmitVRegInfoOnlyCatchPhis(environment);
1624 } else {
1625 EmitVRegInfo(environment, slow_path, is_for_catch_handler);
1626 }
1627 }
1628
1629 if (emit_inline_info) {
1630 stack_map_stream->EndInlineInfoEntry();
1631 }
1632 }
1633
CanMoveNullCheckToUser(HNullCheck * null_check)1634 bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
1635 return null_check->IsEmittedAtUseSite();
1636 }
1637
MaybeRecordImplicitNullCheck(HInstruction * instr)1638 void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
1639 HNullCheck* null_check = instr->GetImplicitNullCheck();
1640 if (null_check != nullptr) {
1641 RecordPcInfo(null_check, null_check->GetDexPc(), GetAssembler()->CodePosition());
1642 }
1643 }
1644
CreateThrowingSlowPathLocations(HInstruction * instruction,RegisterSet caller_saves)1645 LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
1646 RegisterSet caller_saves) {
1647 // Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
1648 // HSuspendCheck from entry block). However, it will still get a valid stack frame
1649 // because the HNullCheck needs an environment.
1650 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
1651 // When throwing from a try block, we may need to retrieve dalvik registers from
1652 // physical registers and we also need to set up stack mask for GC. This is
1653 // implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
1654 bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
1655 if (can_throw_into_catch_block) {
1656 call_kind = LocationSummary::kCallOnSlowPath;
1657 }
1658 LocationSummary* locations =
1659 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
1660 if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
1661 locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers.
1662 }
1663 DCHECK(!instruction->HasUses());
1664 return locations;
1665 }
1666
GenerateNullCheck(HNullCheck * instruction)1667 void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
1668 if (compiler_options_.GetImplicitNullChecks()) {
1669 MaybeRecordStat(stats_, MethodCompilationStat::kImplicitNullCheckGenerated);
1670 GenerateImplicitNullCheck(instruction);
1671 } else {
1672 MaybeRecordStat(stats_, MethodCompilationStat::kExplicitNullCheckGenerated);
1673 GenerateExplicitNullCheck(instruction);
1674 }
1675 }
1676
ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck * suspend_check,HParallelMove * spills) const1677 void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check,
1678 HParallelMove* spills) const {
1679 LocationSummary* locations = suspend_check->GetLocations();
1680 HBasicBlock* block = suspend_check->GetBlock();
1681 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
1682 DCHECK(block->IsLoopHeader());
1683 DCHECK(block->GetFirstInstruction() == spills);
1684
1685 for (size_t i = 0, num_moves = spills->NumMoves(); i != num_moves; ++i) {
1686 Location dest = spills->MoveOperandsAt(i)->GetDestination();
1687 // All parallel moves in loop headers are spills.
1688 DCHECK(dest.IsStackSlot() || dest.IsDoubleStackSlot() || dest.IsSIMDStackSlot()) << dest;
1689 // Clear the stack bit marking a reference. Do not bother to check if the spill is
1690 // actually a reference spill, clearing bits that are already zero is harmless.
1691 locations->ClearStackBit(dest.GetStackIndex() / kVRegSize);
1692 }
1693 }
1694
EmitParallelMoves(Location from1,Location to1,DataType::Type type1,Location from2,Location to2,DataType::Type type2)1695 void CodeGenerator::EmitParallelMoves(Location from1,
1696 Location to1,
1697 DataType::Type type1,
1698 Location from2,
1699 Location to2,
1700 DataType::Type type2) {
1701 HParallelMove parallel_move(GetGraph()->GetAllocator());
1702 parallel_move.AddMove(from1, to1, type1, nullptr);
1703 parallel_move.AddMove(from2, to2, type2, nullptr);
1704 GetMoveResolver()->EmitNativeCode(¶llel_move);
1705 }
1706
ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,SlowPathCode * slow_path)1707 void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
1708 HInstruction* instruction,
1709 SlowPathCode* slow_path) {
1710 // Ensure that the call kind indication given to the register allocator is
1711 // coherent with the runtime call generated.
1712 if (slow_path == nullptr) {
1713 DCHECK(instruction->GetLocations()->WillCall())
1714 << "instruction->DebugName()=" << instruction->DebugName();
1715 } else {
1716 DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
1717 << "instruction->DebugName()=" << instruction->DebugName()
1718 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1719 }
1720
1721 // Check that the GC side effect is set when required.
1722 // TODO: Reverse EntrypointCanTriggerGC
1723 if (EntrypointCanTriggerGC(entrypoint)) {
1724 if (slow_path == nullptr) {
1725 DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
1726 << "instruction->DebugName()=" << instruction->DebugName()
1727 << " instruction->GetSideEffects().ToString()="
1728 << instruction->GetSideEffects().ToString();
1729 } else {
1730 // 'CanTriggerGC' side effect is used to restrict optimization of instructions which depend
1731 // on GC (e.g. IntermediateAddress) - to ensure they are not alive across GC points. However
1732 // if execution never returns to the compiled code from a GC point this restriction is
1733 // unnecessary - in particular for fatal slow paths which might trigger GC.
1734 DCHECK((slow_path->IsFatal() && !instruction->GetLocations()->WillCall()) ||
1735 instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
1736 // When (non-Baker) read barriers are enabled, some instructions
1737 // use a slow path to emit a read barrier, which does not trigger
1738 // GC.
1739 (gUseReadBarrier &&
1740 !kUseBakerReadBarrier &&
1741 (instruction->IsInstanceFieldGet() ||
1742 instruction->IsPredicatedInstanceFieldGet() ||
1743 instruction->IsStaticFieldGet() ||
1744 instruction->IsArrayGet() ||
1745 instruction->IsLoadClass() ||
1746 instruction->IsLoadString() ||
1747 instruction->IsInstanceOf() ||
1748 instruction->IsCheckCast() ||
1749 (instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
1750 << "instruction->DebugName()=" << instruction->DebugName()
1751 << " instruction->GetSideEffects().ToString()="
1752 << instruction->GetSideEffects().ToString()
1753 << " slow_path->GetDescription()=" << slow_path->GetDescription() << std::endl
1754 << "Instruction and args: " << instruction->DumpWithArgs();
1755 }
1756 } else {
1757 // The GC side effect is not required for the instruction. But the instruction might still have
1758 // it, for example if it calls other entrypoints requiring it.
1759 }
1760
1761 // Check the coherency of leaf information.
1762 DCHECK(instruction->IsSuspendCheck()
1763 || ((slow_path != nullptr) && slow_path->IsFatal())
1764 || instruction->GetLocations()->CanCall()
1765 || !IsLeafMethod())
1766 << instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
1767 }
1768
ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction * instruction,SlowPathCode * slow_path)1769 void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
1770 SlowPathCode* slow_path) {
1771 DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
1772 << "instruction->DebugName()=" << instruction->DebugName()
1773 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1774 // Only the Baker read barrier marking slow path used by certains
1775 // instructions is expected to invoke the runtime without recording
1776 // PC-related information.
1777 DCHECK(kUseBakerReadBarrier);
1778 DCHECK(instruction->IsInstanceFieldGet() ||
1779 instruction->IsPredicatedInstanceFieldGet() ||
1780 instruction->IsStaticFieldGet() ||
1781 instruction->IsArrayGet() ||
1782 instruction->IsArraySet() ||
1783 instruction->IsLoadClass() ||
1784 instruction->IsLoadString() ||
1785 instruction->IsInstanceOf() ||
1786 instruction->IsCheckCast() ||
1787 (instruction->IsInvoke() && instruction->GetLocations()->Intrinsified()))
1788 << "instruction->DebugName()=" << instruction->DebugName()
1789 << " slow_path->GetDescription()=" << slow_path->GetDescription();
1790 }
1791
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1792 void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1793 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1794
1795 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1796 for (uint32_t i : LowToHighBits(core_spills)) {
1797 // If the register holds an object, update the stack mask.
1798 if (locations->RegisterContainsObject(i)) {
1799 locations->SetStackBit(stack_offset / kVRegSize);
1800 }
1801 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1802 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1803 saved_core_stack_offsets_[i] = stack_offset;
1804 stack_offset += codegen->SaveCoreRegister(stack_offset, i);
1805 }
1806
1807 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1808 for (uint32_t i : LowToHighBits(fp_spills)) {
1809 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1810 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1811 saved_fpu_stack_offsets_[i] = stack_offset;
1812 stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
1813 }
1814 }
1815
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)1816 void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
1817 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
1818
1819 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
1820 for (uint32_t i : LowToHighBits(core_spills)) {
1821 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1822 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1823 stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
1824 }
1825
1826 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
1827 for (uint32_t i : LowToHighBits(fp_spills)) {
1828 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
1829 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
1830 stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
1831 }
1832 }
1833
CreateSystemArrayCopyLocationSummary(HInvoke * invoke)1834 void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
1835 // Check to see if we have known failures that will cause us to have to bail out
1836 // to the runtime, and just generate the runtime call directly.
1837 HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
1838 HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
1839
1840 // The positions must be non-negative.
1841 if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
1842 (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
1843 // We will have to fail anyways.
1844 return;
1845 }
1846
1847 // The length must be >= 0.
1848 HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
1849 if (length != nullptr) {
1850 int32_t len = length->GetValue();
1851 if (len < 0) {
1852 // Just call as normal.
1853 return;
1854 }
1855 }
1856
1857 SystemArrayCopyOptimizations optimizations(invoke);
1858
1859 if (optimizations.GetDestinationIsSource()) {
1860 if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
1861 // We only support backward copying if source and destination are the same.
1862 return;
1863 }
1864 }
1865
1866 if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
1867 // We currently don't intrinsify primitive copying.
1868 return;
1869 }
1870
1871 ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
1872 LocationSummary* locations = new (allocator) LocationSummary(invoke,
1873 LocationSummary::kCallOnSlowPath,
1874 kIntrinsified);
1875 // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
1876 locations->SetInAt(0, Location::RequiresRegister());
1877 locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
1878 locations->SetInAt(2, Location::RequiresRegister());
1879 locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
1880 locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
1881
1882 locations->AddTemp(Location::RequiresRegister());
1883 locations->AddTemp(Location::RequiresRegister());
1884 locations->AddTemp(Location::RequiresRegister());
1885 }
1886
EmitJitRoots(uint8_t * code,const uint8_t * roots_data,std::vector<Handle<mirror::Object>> * roots)1887 void CodeGenerator::EmitJitRoots(uint8_t* code,
1888 const uint8_t* roots_data,
1889 /*out*/std::vector<Handle<mirror::Object>>* roots) {
1890 code_generation_data_->EmitJitRoots(roots);
1891 EmitJitRootPatches(code, roots_data);
1892 }
1893
GetArrayAllocationEntrypoint(HNewArray * new_array)1894 QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(HNewArray* new_array) {
1895 switch (new_array->GetComponentSizeShift()) {
1896 case 0: return kQuickAllocArrayResolved8;
1897 case 1: return kQuickAllocArrayResolved16;
1898 case 2: return kQuickAllocArrayResolved32;
1899 case 3: return kQuickAllocArrayResolved64;
1900 }
1901 LOG(FATAL) << "Unreachable";
1902 UNREACHABLE();
1903 }
1904
ScaleFactorForType(DataType::Type type)1905 ScaleFactor CodeGenerator::ScaleFactorForType(DataType::Type type) {
1906 switch (type) {
1907 case DataType::Type::kBool:
1908 case DataType::Type::kUint8:
1909 case DataType::Type::kInt8:
1910 return TIMES_1;
1911 case DataType::Type::kUint16:
1912 case DataType::Type::kInt16:
1913 return TIMES_2;
1914 case DataType::Type::kInt32:
1915 case DataType::Type::kUint32:
1916 case DataType::Type::kFloat32:
1917 case DataType::Type::kReference:
1918 return TIMES_4;
1919 case DataType::Type::kInt64:
1920 case DataType::Type::kUint64:
1921 case DataType::Type::kFloat64:
1922 return TIMES_8;
1923 case DataType::Type::kVoid:
1924 LOG(FATAL) << "Unreachable type " << type;
1925 UNREACHABLE();
1926 }
1927 }
1928
1929 } // namespace art
1930