• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2021-2023 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "src/cpu/operators/CpuGemmConv2d.h"
25 
26 #include "arm_compute/core/Size2D.h"
27 #include "arm_compute/core/TensorInfo.h"
28 #include "arm_compute/core/Utils.h"
29 #include "arm_compute/core/Validate.h"
30 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
31 #include "arm_compute/core/utils/quantization/AsymmHelpers.h"
32 #include "arm_compute/runtime/NEON/NEScheduler.h"
33 
34 #include "src/common/utils/Log.h"
35 #include "src/core/helpers/MemoryHelpers.h"
36 #include "src/cpu/kernels/CpuCol2ImKernel.h"
37 #include "src/cpu/kernels/CpuIm2ColKernel.h"
38 #include "src/cpu/kernels/CpuReshapeKernel.h"
39 #include "src/cpu/kernels/CpuWeightsReshapeKernel.h"
40 #include "src/cpu/operators/CpuGemm.h"
41 #include "src/cpu/operators/CpuGemmLowpMatrixMultiplyCore.h"
42 #include "src/cpu/operators/CpuGemmLowpOutputStage.h"
43 #include "src/cpu/utils/CpuAuxTensorHandler.h"
44 
45 #include <set>
46 #include <tuple>
47 
48 using namespace arm_compute::misc::shape_calculator;
49 using namespace arm_compute::experimental;
50 
51 namespace arm_compute
52 {
53 namespace cpu
54 {
skip_im_col_info(const ITensorInfo * src,const ITensorInfo * weights,const PadStrideInfo & conv_info,const Size2D & dilation,const ActivationLayerInfo & act_info)55 CpuGemmConv2d::SkipInfo CpuGemmConv2d::skip_im_col_info(const ITensorInfo *src, const ITensorInfo *weights, const PadStrideInfo &conv_info,
56                                                         const Size2D &dilation, const ActivationLayerInfo &act_info)
57 {
58     const DataLayout   data_layout   = src->data_layout();
59     const int          idx_width     = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
60     const int          idx_height    = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
61     const unsigned int kernel_width  = weights->dimension(idx_width);
62     const unsigned int kernel_height = weights->dimension(idx_height);
63     unsigned int       conv_w        = 0;
64     unsigned int       conv_h        = 0;
65     std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
66                                                  src->dimension(idx_height),
67                                                  kernel_width,
68                                                  kernel_height,
69                                                  conv_info,
70                                                  dilation);
71     const bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
72 
73     if(skip_im2col)
74     {
75         const bool skip_col2im = (data_layout == DataLayout::NHWC && (bool(CpuGemmConv2d::validate_gemm3d(src, weights, act_info, conv_h, /*skip_im2col*/ true))));
76         if(skip_col2im)
77         {
78             return { true, true };
79         }
80     }
81     else
82     {
83         const bool skip_col2im = (data_layout == DataLayout::NHWC && (bool(CpuGemmConv2d::validate_gemm3d(src, weights, act_info, conv_h, /*skip_im2col*/ false))));
84         if(skip_col2im)
85         {
86             return { false, true };
87         }
88     }
89 
90     // Default case when we cannot reinterpret the input and output as 3D.
91     return { false, false };
92 }
93 
CpuGemmConv2d()94 CpuGemmConv2d::CpuGemmConv2d()
95     : _weights_reshape_kernel(nullptr), _im2col_kernel(), _mm_gemm(), _mm_gemmlowp(), _col2im_kernel(), _reshape_kernel(), _im2col_output(), _weights_reshaped(), _gemm_output(), _gemm_output_3d(),
96       _data_layout(DataLayout::NCHW), _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _is_prepared(false), _aux_mem(AuxTensorIdx::Count)
97 {
98 }
99 CpuGemmConv2d::~CpuGemmConv2d() = default;
100 
configure_mm(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,ITensorInfo * dst,const ActivationLayerInfo & act_info,bool enable_fast_math,int gemm_3d_depth,bool fixed_format,arm_compute::WeightFormat weight_format)101 void CpuGemmConv2d::configure_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const ActivationLayerInfo &act_info,
102                                  bool enable_fast_math, int gemm_3d_depth, bool fixed_format, arm_compute::WeightFormat weight_format)
103 {
104     ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights);
105     ARM_COMPUTE_ERROR_THROW_ON(validate_mm(src, weights, biases, dst, act_info, enable_fast_math, gemm_3d_depth, _skip_im2col, fixed_format, weight_format));
106 
107     // Create GEMMInfo structure
108     const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
109                                          gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
110                                          false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, experimental::PostOpList<ITensorInfo *>(), fixed_format, weight_format);
111 
112     // Supported activations in GEMM
113     const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
114                                                                                ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
115                                                                                ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
116                                                                              };
117 
118     if(_is_quantized)
119     {
120         TensorInfo tmp_src{ *src };
121         TensorInfo tmp_weights{ *weights };
122         // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
123         // Extract and negate input and weights offset
124         const QuantizationInfo        iqinfo    = src->quantization_info();
125         const QuantizationInfo        wqinfo    = weights->quantization_info();
126         const QuantizationInfo        oqinfo    = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
127         const UniformQuantizationInfo uiqinfo   = iqinfo.uniform();
128         const UniformQuantizationInfo uoqinfo   = oqinfo.uniform();
129         const DataType                data_type = src->data_type();
130 
131         tmp_src.set_quantization_info(QuantizationInfo(uiqinfo.scale, -uiqinfo.offset));
132         if(!is_data_type_quantized_per_channel(tmp_weights.data_type()))
133         {
134             const UniformQuantizationInfo uwqinfo = wqinfo.uniform();
135             tmp_weights.set_quantization_info(QuantizationInfo(uwqinfo.scale, -uwqinfo.offset));
136         }
137 
138         // Merge activation with output stage
139         PixelValue type_min{};
140         PixelValue type_max{};
141         std::tie(type_min, type_max) = get_min_max(data_type);
142         int32_t min_activation = type_min.get<int32_t>();
143         int32_t max_activation = type_max.get<int32_t>();
144 
145         if(supported_acts.count(act_info.activation()) != 0)
146         {
147             std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
148         }
149 
150         GEMMLowpOutputStageInfo output_info;
151         output_info.type                     = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
152         output_info.gemmlowp_offset          = uoqinfo.offset;
153         output_info.gemmlowp_min_bound       = min_activation;
154         output_info.gemmlowp_max_bound       = max_activation;
155         output_info.is_quantized_per_channel = (tmp_weights.data_type() == DataType::QSYMM8_PER_CHANNEL);
156         quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info);
157 
158         _mm_gemmlowp = std::make_unique<CpuGemmLowpMatrixMultiplyCore>();
159         _mm_gemmlowp->configure(&tmp_src, &tmp_weights, biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, _skip_im2col, false, output_info, false, enable_fast_math, false, act_info,
160                                                                               experimental::PostOpList<ITensorInfo *>(), fixed_format, weight_format));
161 
162         auto mm_mem_req = _mm_gemmlowp->workspace();
163         for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
164         {
165             _aux_mem[cont] = mm_mem_req[cont];
166         }
167     }
168     else
169     {
170         // Configure matrix multiply function
171         _mm_gemm = std::make_unique<CpuGemm>();
172         _mm_gemm->configure(src, weights, biases, dst, 1.0f, 0.0f, gemm_info);
173         auto mm_mem_req = _mm_gemm->workspace();
174         for(unsigned int cont = 0; cont < mm_mem_req.size(); ++cont)
175         {
176             _aux_mem[cont] = mm_mem_req[cont];
177         }
178     }
179 }
180 
validate_mm(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,const ActivationLayerInfo & act_info,bool enable_fast_math,int gemm_3d_depth,bool skip_im2col,bool fixed_format,arm_compute::WeightFormat weight_format)181 Status CpuGemmConv2d::validate_mm(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
182                                   const ActivationLayerInfo &act_info, bool enable_fast_math, int gemm_3d_depth, bool skip_im2col, bool fixed_format, arm_compute::WeightFormat weight_format)
183 {
184     const DataType data_type             = src->data_type();
185     const bool     is_quantized          = is_data_type_quantized_asymmetric(data_type);
186     const bool     is_activation_enabled = act_info.enabled();
187 
188     // Create GEMMInfo structure
189     const GEMMInfo gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
190                                         gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
191                                         false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, experimental::PostOpList<ITensorInfo *>(), fixed_format, weight_format);
192 
193     if(is_quantized)
194     {
195         // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
196         // Extract and negate input and weights offset
197         const QuantizationInfo       &iqinfo  = src->quantization_info();
198         const QuantizationInfo       &wqinfo  = weights->quantization_info();
199         const QuantizationInfo       &oqinfo  = (dst->total_size() == 0) ? iqinfo : dst->quantization_info();
200         const UniformQuantizationInfo uoqinfo = oqinfo.uniform();
201 
202         // Merge activation with output stage
203         PixelValue type_min{};
204         PixelValue type_max{};
205         std::tie(type_min, type_max) = get_min_max(data_type);
206         int32_t min_activation = type_min.get<int32_t>();
207         int32_t max_activation = type_max.get<int32_t>();
208 
209         const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
210                                                                                    ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
211                                                                                    ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
212                                                                                  };
213         if(is_activation_enabled && supported_acts.count(act_info.activation()) != 0)
214         {
215             std::tie(min_activation, max_activation) = get_quantized_activation_min_max(act_info, data_type, uoqinfo);
216         }
217 
218         GEMMLowpOutputStageInfo output_info;
219         output_info.type                     = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
220         output_info.gemmlowp_offset          = uoqinfo.offset;
221         output_info.gemmlowp_min_bound       = min_activation;
222         output_info.gemmlowp_max_bound       = max_activation;
223         output_info.is_quantized_per_channel = (weights->data_type() == DataType::QSYMM8_PER_CHANNEL);
224         ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multipliers(iqinfo, wqinfo, oqinfo, output_info));
225 
226         // Perform validation step on GEMMLowp
227         std::unique_ptr<ITensorInfo> input_qa   = src->clone();
228         std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
229         input_qa->set_quantization_info(QuantizationInfo(iqinfo.uniform().scale, -iqinfo.uniform().offset));
230         weights_qa->set_quantization_info(QuantizationInfo(wqinfo.uniform().scale, -wqinfo.uniform().offset));
231 
232         return CpuGemmLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), biases, dst, GEMMInfo(false, false, true, gemm_3d_depth, skip_im2col, false, output_info, false, enable_fast_math,
233                                                                                                                false, act_info));
234     }
235     else
236     {
237         // Perform validation step on Matrix multiply function
238         return CpuGemm::validate(src, weights, nullptr, dst, 1.0f, 0.0f, gemm_info);
239     }
240 }
241 
validate_gemm3d(const ITensorInfo * input_info,const ITensorInfo * weights_info,const ActivationLayerInfo & act_info,int gemm_3d_depth,bool skip_im2col)242 Status CpuGemmConv2d::validate_gemm3d(const ITensorInfo *input_info, const ITensorInfo *weights_info, const ActivationLayerInfo &act_info, int gemm_3d_depth, bool skip_im2col)
243 {
244     const DataType     data_type = input_info->data_type();
245     const unsigned int mult_y    = skip_im2col ? 1U : gemm_3d_depth;
246     const unsigned int mult_z    = skip_im2col ? gemm_3d_depth : 1U;
247 
248     // Set dummy tensor shapes for the validation
249     const TensorInfo dummy_input_info(TensorShape(4U, 4U * mult_y, 1U * mult_z), 1, data_type, input_info->quantization_info());
250     const TensorInfo dummy_weights_info(TensorShape(4U, 4U), 1, data_type, weights_info->quantization_info());
251     const TensorInfo dummy_output_info(TensorShape(4U, 4U, gemm_3d_depth), 1, data_type, input_info->quantization_info());
252 
253     return validate_mm(&dummy_input_info, &dummy_weights_info, nullptr, &dummy_output_info, act_info, false, gemm_3d_depth, skip_im2col);
254 }
255 
configure(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,ITensorInfo * dst,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const Size2D & dilation,const ActivationLayerInfo & act_info,bool enable_fast_math,unsigned int num_groups)256 void CpuGemmConv2d::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, ITensorInfo *dst, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
257                               const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
258 {
259     ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
260     ARM_COMPUTE_UNUSED(num_groups, weights_info);
261     ARM_COMPUTE_ERROR_THROW_ON(CpuGemmConv2d::validate(src,
262                                                        weights,
263                                                        biases,
264                                                        dst,
265                                                        conv_info,
266                                                        weights_info,
267                                                        dilation,
268                                                        act_info,
269                                                        enable_fast_math,
270                                                        num_groups));
271     ARM_COMPUTE_LOG_PARAMS(src, weights, biases, dst, conv_info, weights_info, dilation, act_info, enable_fast_math, num_groups);
272 
273     const DataType   data_type   = src->data_type();
274     const DataLayout data_layout = src->data_layout();
275     const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
276     const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
277     const int        idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
278 
279     const unsigned int kernel_width  = weights->dimension(idx_width);
280     const unsigned int kernel_height = weights->dimension(idx_height);
281 
282     _is_prepared  = weights_info.retain_internal_weights();
283     _is_quantized = is_data_type_quantized_asymmetric(src->data_type());
284     _data_layout  = data_layout;
285     _skip_im2col  = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
286 
287     const ITensorInfo *gemm_input_to_use  = src;
288     ITensorInfo       *gemm_output_to_use = dst;
289 
290     // Get convolved dimensions
291     unsigned int conv_w = 0;
292     unsigned int conv_h = 0;
293     std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
294                                                  src->dimension(idx_height),
295                                                  kernel_width,
296                                                  kernel_height,
297                                                  conv_info,
298                                                  dilation);
299 
300     ARM_COMPUTE_ERROR_ON_MSG((dst->dimension(idx_width) != conv_w) || (dst->dimension(idx_height) != conv_h),
301                              "Output shape does not match the expected one");
302 
303     // Check if GEMM3D is supported
304     const CpuGemmConv2d::SkipInfo skip_info = CpuGemmConv2d::skip_im_col_info(src, weights, conv_info, dilation, act_info);
305     _skip_im2col                            = skip_info.skip_im2col;
306     _skip_col2im                            = skip_info.skip_col2im;
307 
308     // Get parameters from conv_info
309     unsigned int stride_x = 0;
310     unsigned int stride_y = 0;
311     std::tie(stride_x, stride_y) = conv_info.stride();
312 
313     unsigned int mat_weights_cols = weights->dimension(idx_kernels);
314 
315     // _weights_reshaped will be auto configured in the kernel.
316     // Just append biases and do not transpose 1xW as it will be reshaped in CpuGemm
317     _weights_reshape_kernel = std::make_unique<kernels::CpuWeightsReshapeKernel>();
318     _weights_reshape_kernel->configure(weights, nullptr, &_weights_reshaped);
319     _weights_reshaped.set_quantization_info(weights->quantization_info());
320 
321     // Create tensor to store im2col reshaped inputs
322     if(!_skip_im2col)
323     {
324         // Configure
325         _im2col_kernel = std::make_unique<kernels::CpuIm2ColKernel>();
326         _im2col_kernel->configure(src, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, false, dilation);
327 
328         // Update GEMM input
329         gemm_input_to_use = &_im2col_output;
330     }
331 
332     // Create temporary GEMM output tensor in case we cannot skip col2im
333     const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
334     if(!_skip_col2im)
335     {
336         TensorShape shape_gemm;
337 
338         // Calculate GEMM output shape
339         shape_gemm = _im2col_output.tensor_shape();
340         shape_gemm.set(0, mat_weights_cols);
341         shape_gemm.set(1, conv_w * conv_h);
342 
343         _gemm_output = TensorInfo(shape_gemm, 1, output_data_type);
344         _gemm_output.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
345         _gemm_output_3d = TensorInfo(_gemm_output);
346 
347         // Update GEMM output
348         gemm_output_to_use = &_gemm_output;
349     }
350     else
351     {
352         _gemm_output_3d = TensorInfo(*dst);
353         _gemm_output_3d.set_data_type(output_data_type).set_data_layout(src->data_layout()).set_is_resizable(true);
354         _gemm_output = TensorInfo(_gemm_output_3d);
355 
356         // Update GEMM output
357         gemm_output_to_use = &_gemm_output_3d;
358     }
359 
360     // Configure GEMM
361     // In case we need to skip col2im, GEMM3D (gemm_3d_depth != 0) must be called in order to avoid reshaping the output matrix
362     const unsigned int gemm_3d_depth = _skip_col2im ? conv_h : 0;
363     const bool         fixed_format  = weights_info.weight_format() != arm_compute::WeightFormat::UNSPECIFIED;
364     configure_mm(gemm_input_to_use, &_weights_reshaped, biases, gemm_output_to_use, act_info, enable_fast_math, gemm_3d_depth, fixed_format, weights_info.weight_format());
365 
366     if(!_skip_col2im && _data_layout == DataLayout::NCHW)
367     {
368         // Configure col2im
369         _col2im_kernel = std::make_unique<kernels::CpuCol2ImKernel>();
370         _col2im_kernel->configure(gemm_output_to_use, dst, Size2D(conv_w, conv_h));
371     }
372     else
373     {
374         // Configure reshape layer
375         _reshape_kernel = std::make_unique<kernels::CpuReshapeKernel>();
376         _reshape_kernel->configure(gemm_output_to_use, dst);
377     }
378 
379     // Check if GEMM transforms weights
380     // Modernise through COMPMID-4535
381     bool gemm_trans_wei = _aux_mem[1].size > 0;                                            // Asm Pretranspose
382     gemm_trans_wei      = _mm_gemm != nullptr ? _aux_mem[3].size > 0 : gemm_trans_wei;     // Tranpose RHS
383     gemm_trans_wei      = _mm_gemmlowp != nullptr ? _aux_mem[5].size > 0 : gemm_trans_wei; // Transpose RHS
384 
385     // Check lifetime
386     _aux_mem[Im2ColOutput]    = MemoryInfo(offset_int_vec(Im2ColOutput), MemoryLifetime::Temporary, _im2col_output.total_size());
387     _aux_mem[WeightsReshaped] = MemoryInfo(offset_int_vec(WeightsReshaped), gemm_trans_wei ? MemoryLifetime::Prepare : MemoryLifetime::Persistent, _weights_reshaped.total_size());
388     _aux_mem[GemmOutput]      = MemoryInfo(offset_int_vec(GemmOutput), MemoryLifetime::Temporary, _gemm_output.total_size());
389 }
390 
has_opt_impl(arm_compute::WeightFormat & expected_weight_format,const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const Size2D & dilation,const ActivationLayerInfo & act_info,const bool enable_fast_math)391 Status CpuGemmConv2d::has_opt_impl(arm_compute::WeightFormat &expected_weight_format, const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst,
392                                    const PadStrideInfo &conv_info,
393                                    const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, const bool enable_fast_math)
394 {
395     const DataLayout   data_layout   = src->data_layout();
396     const int          idx_width     = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
397     const int          idx_height    = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
398     const unsigned int kernel_width  = weights->dimension(idx_width);
399     const unsigned int kernel_height = weights->dimension(idx_height);
400     unsigned int       conv_w        = 0;
401     unsigned int       conv_h        = 0;
402     std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
403                                                  src->dimension(idx_height),
404                                                  kernel_width,
405                                                  kernel_height,
406                                                  conv_info,
407                                                  dilation);
408 
409     const CpuGemmConv2d::SkipInfo skip_info = CpuGemmConv2d::skip_im_col_info(src, weights, conv_info,
410                                                                               dilation, act_info);
411 
412     const bool         skip_im2col   = skip_info.skip_im2col;
413     const bool         skip_col2im   = skip_info.skip_col2im;
414     const unsigned int gemm_3d_depth = skip_col2im ? conv_h : 0;
415     const bool         fixed_format  = weights_info.weight_format() != arm_compute::WeightFormat::UNSPECIFIED;
416     const GEMMInfo     gemm_info     = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
417                                                 gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */,
418                                                 false, GEMMLowpOutputStageInfo(), false, enable_fast_math, false, act_info, experimental::PostOpList<ITensorInfo *>(), fixed_format, weights_info.weight_format());
419 
420     return CpuGemm::has_opt_impl(expected_weight_format, src, weights, biases, dst, gemm_info);
421 }
422 
validate(const ITensorInfo * src,const ITensorInfo * weights,const ITensorInfo * biases,const ITensorInfo * dst,const PadStrideInfo & conv_info,const WeightsInfo & weights_info,const Size2D & dilation,const ActivationLayerInfo & act_info,bool enable_fast_math,unsigned int num_groups)423 Status CpuGemmConv2d::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *dst, const PadStrideInfo &conv_info,
424                                const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, bool enable_fast_math, unsigned int num_groups)
425 {
426     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, weights, dst);
427     ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
428     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::BFLOAT16, DataType::F16, DataType::F32);
429     ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::QSYMM8_PER_CHANNEL, DataType::BFLOAT16, DataType::F16, DataType::F32);
430 
431     if (!is_fixed_format(weights_info.weight_format()))
432     {
433         ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(src, weights);
434     }
435 
436     ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Grouping (num_groups != 1) is not supported");
437 
438     const DataLayout data_layout = src->data_layout();
439     const DataType   data_type   = src->data_type();
440     const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
441     const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
442     const int        idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
443     const int        idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
444 
445     const unsigned int kernel_width  = weights->dimension(idx_width);
446     const unsigned int kernel_height = weights->dimension(idx_height);
447 
448     TensorInfo         im2col_reshaped_info{};
449     TensorInfo         info_gemm{};
450     TensorInfo         tmp_info{};
451     TensorInfo         weights_reshaped_info{};
452     const ITensorInfo *gemm_input_to_use  = src;
453     const ITensorInfo *gemm_output_to_use = dst;
454     const ITensorInfo *weights_to_use     = weights;
455 
456     const bool append_bias  = false;
457     const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
458     const bool is_bf16      = data_type == DataType::BFLOAT16;
459 
460     // Get convolved dimensions
461     unsigned int conv_w = 0;
462     unsigned int conv_h = 0;
463 
464     std::tie(conv_w, conv_h) = scaled_dimensions(src->dimension(idx_width),
465                                                  src->dimension(idx_height),
466                                                  kernel_width,
467                                                  kernel_height,
468                                                  conv_info,
469                                                  dilation);
470 
471     // Check if GEMM3D is supported
472     const CpuGemmConv2d::SkipInfo skip_info = CpuGemmConv2d::skip_im_col_info(src, weights, conv_info,
473                                                                               dilation, act_info);
474     const bool skip_im2col = skip_info.skip_im2col, skip_col2im = skip_info.skip_col2im;
475 
476     ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_channel) != src->dimension(idx_channel));
477     ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
478 
479     // Validate biases
480     if(biases != nullptr)
481     {
482         if(is_quantized)
483         {
484             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
485         }
486         else if(is_bf16)
487         {
488             ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32);
489         }
490         else
491         {
492             ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, biases);
493         }
494         ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != dst->dimension(idx_channel));
495         ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
496     }
497 
498     unsigned int mat_weights_cols = weights->dimension(idx_kernels);
499     unsigned int mat_weights_rows = weights->dimension(idx_width) * weights->dimension(idx_height) * weights->dimension(idx_channel);
500 
501     weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, append_bias), 1, weights->data_type());
502     weights_reshaped_info.set_quantization_info(weights->quantization_info());
503     weights_to_use = &weights_reshaped_info;
504 
505     if(!skip_im2col)
506     {
507         // Create tensor info for im2col reshaped inputs
508         // For CPU, the batch size is on the fourth dimension
509         TensorShape shape_im2col = src->tensor_shape();
510         shape_im2col.set(0, mat_weights_rows);
511         shape_im2col.set(1, conv_w * conv_h);
512         shape_im2col.set(2, 1);
513 
514         im2col_reshaped_info = TensorInfo(shape_im2col, 1, data_type);
515         im2col_reshaped_info.set_quantization_info(src->quantization_info());
516         ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuIm2ColKernel::validate(src, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation, 1));
517         gemm_input_to_use = &im2col_reshaped_info;
518     }
519 
520     // Create temporary GEMM output tensor in case we cannot skip col2im
521     const DataType output_data_type = data_type == DataType::BFLOAT16 ? DataType::F32 : data_type;
522     if(!skip_col2im)
523     {
524         TensorShape shape_gemm = gemm_input_to_use->tensor_shape();
525         shape_gemm.set(0, mat_weights_cols);
526         shape_gemm.set(1, conv_w * conv_h);
527         info_gemm = TensorInfo(shape_gemm, 1, output_data_type);
528     }
529     else
530     {
531         info_gemm = TensorInfo(dst->tensor_shape(), 1, output_data_type);
532     }
533     info_gemm.set_quantization_info(dst->quantization_info()).set_data_layout(src->data_layout());
534     gemm_output_to_use      = &info_gemm;
535     const bool fixed_format = weights_info.weight_format() != arm_compute::WeightFormat::UNSPECIFIED;
536 
537     ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, biases, gemm_output_to_use, act_info, enable_fast_math, skip_col2im ? conv_h : 0, skip_im2col, fixed_format,
538                                             weights_info.weight_format()));
539 
540     // Validate Col2Im/ReshapeLayer
541     if(!skip_col2im && (data_layout == DataLayout::NCHW))
542     {
543         ARM_COMPUTE_RETURN_ON_ERROR(kernels::CpuCol2ImKernel::validate(gemm_output_to_use, dst, Size2D(conv_w, conv_h)));
544     }
545 
546     return Status{};
547 }
548 
run(ITensorPack & tensors)549 void CpuGemmConv2d::run(ITensorPack &tensors)
550 {
551     prepare(tensors);
552 
553     auto src               = tensors.get_const_tensor(ACL_SRC_0);
554     auto dst               = tensors.get_tensor(ACL_DST);
555     auto gemm_input_to_use = src;
556 
557     CpuAuxTensorHandler im2col_output(offset_int_vec(Im2ColOutput), _im2col_output, tensors, false);
558     CpuAuxTensorHandler gemm_output(offset_int_vec(GemmOutput), _gemm_output, tensors, false);
559     CpuAuxTensorHandler reshaped_wei(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors, false);
560 
561     bool out_has_padding = _skip_col2im && (dst->info()->padding().bottom != 0 || dst->info()->padding().top != 0);
562     if(!_skip_im2col)
563     {
564         // Run input reshaping
565         unsigned int y_dim = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
566         ITensorPack  pack =
567         {
568             { TensorType::ACL_SRC, src },
569             { TensorType::ACL_DST, im2col_output.get() }
570         };
571         NEScheduler::get().schedule_op(_im2col_kernel.get(), y_dim, _im2col_kernel->window(), pack);
572         gemm_input_to_use = im2col_output.get();
573     }
574 
575     // Handle the case where output has top/bottom padding
576     const ITensor *out_to_use = out_has_padding ? gemm_output.get() : dst;
577     Tensor         gemm3d;
578     _gemm_output_3d.extend_padding(out_to_use->info()->padding());
579     gemm3d.allocator()->soft_init(_gemm_output_3d);
580     gemm3d.allocator()->import_memory(out_to_use->buffer());
581     auto gemm_output_to_use = gemm_output.get();
582 
583     if(_skip_im2col)
584     {
585         gemm_output_to_use = &gemm3d;
586     }
587     if(_skip_col2im && !out_has_padding)
588     {
589         gemm_output_to_use = dst;
590     }
591 
592     // Runs CpuGemm or CpuGemmLowpMatrixMultiplyCore functions
593     ITensorPack pack_mm = tensors;
594     pack_mm.add_const_tensor(TensorType::ACL_SRC_0, gemm_input_to_use);
595     if(!this->isVarWeightsKernel())
596     {
597         pack_mm.add_const_tensor(TensorType::ACL_SRC_1, reshaped_wei.get());
598     }
599     pack_mm.add_tensor(TensorType::ACL_DST, gemm_output_to_use);
600     if(_is_quantized)
601     {
602         // Run gemmlowp
603         _mm_gemmlowp->run(pack_mm);
604     }
605     else
606     {
607         // Run gemm
608         _mm_gemm->run(pack_mm);
609     }
610 
611     // Reshape output matrix
612     if(!_skip_col2im)
613     {
614         if(_data_layout == DataLayout::NCHW)
615         {
616             ITensorPack pack =
617             {
618                 { TensorType::ACL_SRC, gemm_output.get() },
619                 { TensorType::ACL_DST, dst }
620             };
621             NEScheduler::get().schedule_op(_col2im_kernel.get(), Window::DimY, _col2im_kernel->window(), pack);
622         }
623         else
624         {
625             ITensorPack pack =
626             {
627                 { TensorType::ACL_SRC, gemm_output_to_use },
628                 { TensorType::ACL_DST, dst }
629             };
630             NEScheduler::get().schedule_op(_reshape_kernel.get(), Window::DimY, _reshape_kernel->window(), pack);
631         }
632     }
633     else if(out_has_padding)
634     {
635         ITensorPack pack =
636         {
637             { TensorType::ACL_SRC, gemm_output_to_use },
638             { TensorType::ACL_DST, dst }
639         };
640         NEScheduler::get().schedule_op(_reshape_kernel.get(), Window::DimY, _reshape_kernel->window(), pack);
641     }
642 }
643 
prepare(ITensorPack & tensors)644 void CpuGemmConv2d::prepare(ITensorPack &tensors)
645 {
646     if(!_is_prepared)
647     {
648         // Variable weights executions that use fixed-format kernels
649         // need no reshaping of the weights.
650         if(this->isVarWeightsKernel())
651         {
652             _is_quantized ? _mm_gemmlowp->prepare(tensors) : _mm_gemm->prepare(tensors);
653             _is_prepared = true;
654             return;
655         }
656 
657         // Run weights reshaping and mark original weights tensor as unused
658         CpuAuxTensorHandler weights_reshaped(offset_int_vec(WeightsReshaped), _weights_reshaped, tensors);
659         auto                weights = tensors.get_const_tensor(TensorType::ACL_SRC_1);
660         ITensorPack         pack =
661         {
662             { TensorType::ACL_SRC, weights },
663             { TensorType::ACL_DST, weights_reshaped.get() }
664         };
665         NEScheduler::get().schedule_op(_weights_reshape_kernel.get(), 3, _weights_reshape_kernel->window(), pack);
666         weights->mark_as_unused();
667         ITensorPack gemm_pack = tensors;
668         gemm_pack.add_const_tensor(TensorType::ACL_SRC_1, weights_reshaped.get());
669         _is_quantized ? _mm_gemmlowp->prepare(gemm_pack) : _mm_gemm->prepare(gemm_pack);
670         _is_prepared = true;
671     }
672 }
workspace() const673 experimental::MemoryRequirements CpuGemmConv2d::workspace() const
674 {
675     return _aux_mem;
676 }
isVarWeightsKernel() const677 bool CpuGemmConv2d::isVarWeightsKernel() const
678 {
679     return _mm_gemm && _mm_gemm->isVarWeightsKernel();
680 }
681 } // namespace cpu
682 } // namespace arm_compute
683