• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018-2021 NXP
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  *
6  */
7 
8 #include <assert.h>
9 
10 #include <arch.h>
11 #include <bl31/interrupt_mgmt.h>
12 #include <caam.h>
13 #include <cassert.h>
14 #include <ccn.h>
15 #include <common/debug.h>
16 #include <dcfg.h>
17 #ifdef I2C_INIT
18 #include <i2c.h>
19 #endif
20 #include <lib/mmio.h>
21 #include <lib/xlat_tables/xlat_tables_v2.h>
22 #include <ls_interconnect.h>
23 #ifdef POLICY_FUSE_PROVISION
24 #include <nxp_gpio.h>
25 #endif
26 #if TRUSTED_BOARD_BOOT
27 #include <nxp_smmu.h>
28 #endif
29 #include <nxp_timer.h>
30 #include <plat_console.h>
31 #include <plat_gic.h>
32 #include <plat_tzc400.h>
33 #include <pmu.h>
34 #if defined(NXP_SFP_ENABLED)
35 #include <sfp.h>
36 #endif
37 
38 #include <errata.h>
39 #include <ls_interrupt_mgmt.h>
40 #include "plat_common.h"
41 #ifdef NXP_NV_SW_MAINT_LAST_EXEC_DATA
42 #include <plat_nv_storage.h>
43 #endif
44 #ifdef NXP_WARM_BOOT
45 #include <plat_warm_rst.h>
46 #endif
47 #include "platform_def.h"
48 #include "soc.h"
49 
50 static struct soc_type soc_list[] =  {
51 	SOC_ENTRY(LX2160A, LX2160A, 8, 2),
52 	SOC_ENTRY(LX2080A, LX2080A, 8, 1),
53 	SOC_ENTRY(LX2120A, LX2120A, 6, 2),
54 };
55 
56 static dcfg_init_info_t dcfg_init_data = {
57 			.g_nxp_dcfg_addr = NXP_DCFG_ADDR,
58 			.nxp_sysclk_freq = NXP_SYSCLK_FREQ,
59 			.nxp_ddrclk_freq = NXP_DDRCLK_FREQ,
60 			.nxp_plat_clk_divider = NXP_PLATFORM_CLK_DIVIDER,
61 		};
62 static const unsigned char master_to_6rn_id_map[] = {
63 	PLAT_6CLUSTER_TO_CCN_ID_MAP
64 };
65 
66 static const unsigned char master_to_rn_id_map[] = {
67 	PLAT_CLUSTER_TO_CCN_ID_MAP
68 };
69 
70 CASSERT(ARRAY_SIZE(master_to_rn_id_map) == NUMBER_OF_CLUSTERS,
71 		assert_invalid_cluster_count_for_ccn_variant);
72 
73 static const ccn_desc_t plat_six_cluster_ccn_desc = {
74 	.periphbase = NXP_CCN_ADDR,
75 	.num_masters = ARRAY_SIZE(master_to_6rn_id_map),
76 	.master_to_rn_id_map = master_to_6rn_id_map
77 };
78 
79 static const ccn_desc_t plat_ccn_desc = {
80 	.periphbase = NXP_CCN_ADDR,
81 	.num_masters = ARRAY_SIZE(master_to_rn_id_map),
82 	.master_to_rn_id_map = master_to_rn_id_map
83 };
84 
85 /******************************************************************************
86  * Function returns the base counter frequency
87  * after reading the first entry at CNTFID0 (0x20 offset).
88  *
89  * Function is used by:
90  *   1. ARM common code for PSCI management.
91  *   2. ARM Generic Timer init.
92  *
93  *****************************************************************************/
plat_get_syscnt_freq2(void)94 unsigned int plat_get_syscnt_freq2(void)
95 {
96 	unsigned int counter_base_frequency;
97 	/*
98 	 * Below register specifies the base frequency of the system counter.
99 	 * As per NXP Board Manuals:
100 	 * The system counter always works with SYS_REF_CLK/4 frequency clock.
101 	 *
102 	 *
103 	 */
104 	counter_base_frequency = mmio_read_32(NXP_TIMER_ADDR + CNTFID_OFF);
105 
106 	return counter_base_frequency;
107 }
108 
109 #ifdef IMAGE_BL2
110 
111 #ifdef POLICY_FUSE_PROVISION
112 static gpio_init_info_t gpio_init_data = {
113 	.gpio1_base_addr = NXP_GPIO1_ADDR,
114 	.gpio2_base_addr = NXP_GPIO2_ADDR,
115 	.gpio3_base_addr = NXP_GPIO3_ADDR,
116 	.gpio4_base_addr = NXP_GPIO4_ADDR,
117 };
118 #endif
119 
soc_interconnect_config(void)120 static void soc_interconnect_config(void)
121 {
122 	unsigned long long val = 0x0U;
123 	uint8_t num_clusters, cores_per_cluster;
124 
125 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list),
126 			&num_clusters, &cores_per_cluster);
127 
128 	if (num_clusters == 6U) {
129 		ccn_init(&plat_six_cluster_ccn_desc);
130 	} else {
131 		ccn_init(&plat_ccn_desc);
132 	}
133 
134 	/*
135 	 * Enable Interconnect coherency for the primary CPU's cluster.
136 	 */
137 	plat_ls_interconnect_enter_coherency(num_clusters);
138 
139 	val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET);
140 	val |= (1 << 17);
141 	ccn_write_node_reg(NODE_TYPE_HNI, 13, PCIeRC_RN_I_NODE_ID_OFFSET, val);
142 
143 	/* PCIe is Connected to RN-I 17 which is connected to HN-I 13. */
144 	val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET);
145 	val |= (1 << 17);
146 	ccn_write_node_reg(NODE_TYPE_HNI, 30, PCIeRC_RN_I_NODE_ID_OFFSET, val);
147 
148 	val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET);
149 	val |= SERIALIZE_DEV_nGnRnE_WRITES;
150 	ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val);
151 
152 	val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET);
153 	val &= ~(ENABLE_RESERVE_BIT53);
154 	val |= SERIALIZE_DEV_nGnRnE_WRITES;
155 	ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val);
156 
157 	val = ccn_read_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET);
158 	val &= ~(HNI_POS_EN);
159 	ccn_write_node_reg(NODE_TYPE_HNI, 13, PoS_CONTROL_REG_OFFSET, val);
160 
161 	val = ccn_read_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET);
162 	val &= ~(HNI_POS_EN);
163 	ccn_write_node_reg(NODE_TYPE_HNI, 30, PoS_CONTROL_REG_OFFSET, val);
164 
165 	val = ccn_read_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET);
166 	val &= ~(POS_EARLY_WR_COMP_EN);
167 	ccn_write_node_reg(NODE_TYPE_HNI, 13, SA_AUX_CTRL_REG_OFFSET, val);
168 
169 	val = ccn_read_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET);
170 	val &= ~(POS_EARLY_WR_COMP_EN);
171 	ccn_write_node_reg(NODE_TYPE_HNI, 30, SA_AUX_CTRL_REG_OFFSET, val);
172 
173 #if POLICY_PERF_WRIOP
174 	uint16_t wriop_rni = 0U;
175 
176 	if (POLICY_PERF_WRIOP == 1) {
177 		wriop_rni = 7U;
178 	} else if (POLICY_PERF_WRIOP == 2) {
179 		wriop_rni = 23U;
180 	} else {
181 		ERROR("Incorrect WRIOP selected.\n");
182 		panic();
183 	}
184 
185 	val = ccn_read_node_reg(NODE_TYPE_RNI, wriop_rni,
186 				SA_AUX_CTRL_REG_OFFSET);
187 	val |= ENABLE_WUO;
188 	ccn_write_node_reg(NODE_TYPE_HNI, wriop_rni, SA_AUX_CTRL_REG_OFFSET,
189 			   val);
190 #else
191 	val = ccn_read_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET);
192 	val |= ENABLE_WUO;
193 	ccn_write_node_reg(NODE_TYPE_RNI, 17, SA_AUX_CTRL_REG_OFFSET, val);
194 #endif
195 }
196 
197 
soc_preload_setup(void)198 void soc_preload_setup(void)
199 {
200 	dram_regions_info_t *info_dram_regions = get_dram_regions_info();
201 #if defined(NXP_WARM_BOOT)
202 	bool warm_reset = is_warm_boot();
203 #endif
204 	info_dram_regions->total_dram_size =
205 #if defined(NXP_WARM_BOOT)
206 						init_ddr(warm_reset);
207 #else
208 						init_ddr();
209 #endif
210 }
211 
212 /*******************************************************************************
213  * This function implements soc specific erratas
214  * This is called before DDR is initialized or MMU is enabled
215  ******************************************************************************/
soc_early_init(void)216 void soc_early_init(void)
217 {
218 	dcfg_init(&dcfg_init_data);
219 #ifdef POLICY_FUSE_PROVISION
220 	gpio_init(&gpio_init_data);
221 	sec_init(NXP_CAAM_ADDR);
222 #endif
223 #if LOG_LEVEL > 0
224 	/* Initialize the console to provide early debug support */
225 	plat_console_init(NXP_CONSOLE_ADDR,
226 				NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
227 #endif
228 
229 	enable_timer_base_to_cluster(NXP_PMU_ADDR);
230 	soc_interconnect_config();
231 
232 	enum  boot_device dev = get_boot_dev();
233 	/* Mark the buffer for SD in OCRAM as non secure.
234 	 * The buffer is assumed to be at end of OCRAM for
235 	 * the logic below to calculate TZPC programming
236 	 */
237 	if (dev == BOOT_DEVICE_EMMC || dev == BOOT_DEVICE_SDHC2_EMMC) {
238 		/* Calculate the region in OCRAM which is secure
239 		 * The buffer for SD needs to be marked non-secure
240 		 * to allow SD to do DMA operations on it
241 		 */
242 		uint32_t secure_region = (NXP_OCRAM_SIZE
243 						- NXP_SD_BLOCK_BUF_SIZE);
244 		uint32_t mask = secure_region/TZPC_BLOCK_SIZE;
245 
246 		mmio_write_32(NXP_OCRAM_TZPC_ADDR, mask);
247 
248 		/* Add the entry for buffer in MMU Table */
249 		mmap_add_region(NXP_SD_BLOCK_BUF_ADDR, NXP_SD_BLOCK_BUF_ADDR,
250 				NXP_SD_BLOCK_BUF_SIZE,
251 				MT_DEVICE | MT_RW | MT_NS);
252 	}
253 
254 	soc_errata();
255 
256 #if (TRUSTED_BOARD_BOOT) || defined(POLICY_FUSE_PROVISION)
257 	sfp_init(NXP_SFP_ADDR);
258 #endif
259 
260 #if TRUSTED_BOARD_BOOT
261 	uint32_t mode;
262 
263 	/* For secure boot disable SMMU.
264 	 * Later when platform security policy comes in picture,
265 	 * this might get modified based on the policy
266 	 */
267 	if (check_boot_mode_secure(&mode) == true) {
268 		bypass_smmu(NXP_SMMU_ADDR);
269 	}
270 
271 	/* For Mbedtls currently crypto is not supported via CAAM
272 	 * enable it when that support is there. In tbbr.mk
273 	 * the CAAM_INTEG is set as 0.
274 	 */
275 
276 #ifndef MBEDTLS_X509
277 	/* Initialize the crypto accelerator if enabled */
278 	if (is_sec_enabled() == false)
279 		INFO("SEC is disabled.\n");
280 	else
281 		sec_init(NXP_CAAM_ADDR);
282 #endif
283 #endif
284 
285 	/*
286 	 * Initialize system level generic timer for Layerscape Socs.
287 	 */
288 	delay_timer_init(NXP_TIMER_ADDR);
289 	i2c_init(NXP_I2C_ADDR);
290 }
291 
soc_bl2_prepare_exit(void)292 void soc_bl2_prepare_exit(void)
293 {
294 #if defined(NXP_SFP_ENABLED) && defined(DISABLE_FUSE_WRITE)
295 	set_sfp_wr_disable();
296 #endif
297 }
298 
299 /*****************************************************************************
300  * This function returns the boot device based on RCW_SRC
301  ****************************************************************************/
get_boot_dev(void)302 enum boot_device get_boot_dev(void)
303 {
304 	enum boot_device src = BOOT_DEVICE_NONE;
305 	uint32_t porsr1;
306 	uint32_t rcw_src;
307 
308 	porsr1 = read_reg_porsr1();
309 
310 	rcw_src = (porsr1 & PORSR1_RCW_MASK) >> PORSR1_RCW_SHIFT;
311 
312 	switch (rcw_src) {
313 	case FLEXSPI_NOR:
314 		src = BOOT_DEVICE_FLEXSPI_NOR;
315 		INFO("RCW BOOT SRC is FLEXSPI NOR\n");
316 		break;
317 	case FLEXSPI_NAND2K_VAL:
318 	case FLEXSPI_NAND4K_VAL:
319 		INFO("RCW BOOT SRC is FLEXSPI NAND\n");
320 		src = BOOT_DEVICE_FLEXSPI_NAND;
321 		break;
322 	case SDHC1_VAL:
323 		src = BOOT_DEVICE_EMMC;
324 		INFO("RCW BOOT SRC is SD\n");
325 		break;
326 	case SDHC2_VAL:
327 		src = BOOT_DEVICE_SDHC2_EMMC;
328 		INFO("RCW BOOT SRC is EMMC\n");
329 		break;
330 	default:
331 		break;
332 	}
333 
334 	return src;
335 }
336 
337 
soc_mem_access(void)338 void soc_mem_access(void)
339 {
340 	const devdisr5_info_t *devdisr5_info = get_devdisr5_info();
341 	dram_regions_info_t *info_dram_regions = get_dram_regions_info();
342 	struct tzc400_reg tzc400_reg_list[MAX_NUM_TZC_REGION];
343 	int dram_idx, index = 0U;
344 
345 	for (dram_idx = 0U; dram_idx < info_dram_regions->num_dram_regions;
346 	     dram_idx++) {
347 		if (info_dram_regions->region[dram_idx].size == 0) {
348 			ERROR("DDR init failure, or");
349 			ERROR("DRAM regions not populated correctly.\n");
350 			break;
351 		}
352 
353 		index = populate_tzc400_reg_list(tzc400_reg_list,
354 				dram_idx, index,
355 				info_dram_regions->region[dram_idx].addr,
356 				info_dram_regions->region[dram_idx].size,
357 				NXP_SECURE_DRAM_SIZE, NXP_SP_SHRD_DRAM_SIZE);
358 	}
359 
360 	if (devdisr5_info->ddrc1_present != 0) {
361 		INFO("DDR Controller 1.\n");
362 		mem_access_setup(NXP_TZC_ADDR, index,
363 				tzc400_reg_list);
364 		mem_access_setup(NXP_TZC3_ADDR, index,
365 				tzc400_reg_list);
366 	}
367 	if (devdisr5_info->ddrc2_present != 0) {
368 		INFO("DDR Controller 2.\n");
369 		mem_access_setup(NXP_TZC2_ADDR, index,
370 				tzc400_reg_list);
371 		mem_access_setup(NXP_TZC4_ADDR, index,
372 				tzc400_reg_list);
373 	}
374 }
375 
376 #else
377 const unsigned char _power_domain_tree_desc[] = {1, 8, 2, 2, 2, 2, 2, 2, 2, 2};
378 
379 CASSERT(NUMBER_OF_CLUSTERS && NUMBER_OF_CLUSTERS <= 256,
380 		assert_invalid_lx2160a_cluster_count);
381 
382 /******************************************************************************
383  * This function returns the SoC topology
384  ****************************************************************************/
385 
plat_get_power_domain_tree_desc(void)386 const unsigned char *plat_get_power_domain_tree_desc(void)
387 {
388 
389 	return _power_domain_tree_desc;
390 }
391 
392 /*******************************************************************************
393  * This function returns the core count within the cluster corresponding to
394  * `mpidr`.
395  ******************************************************************************/
plat_ls_get_cluster_core_count(u_register_t mpidr)396 unsigned int plat_ls_get_cluster_core_count(u_register_t mpidr)
397 {
398 	return CORES_PER_CLUSTER;
399 }
400 
401 
soc_early_platform_setup2(void)402 void soc_early_platform_setup2(void)
403 {
404 	dcfg_init(&dcfg_init_data);
405 	/*
406 	 * Initialize system level generic timer for Socs
407 	 */
408 	delay_timer_init(NXP_TIMER_ADDR);
409 
410 #if LOG_LEVEL > 0
411 	/* Initialize the console to provide early debug support */
412 	plat_console_init(NXP_CONSOLE_ADDR,
413 			  NXP_UART_CLK_DIVIDER, NXP_CONSOLE_BAUDRATE);
414 #endif
415 }
416 
soc_platform_setup(void)417 void soc_platform_setup(void)
418 {
419 	/* Initialize the GIC driver, cpu and distributor interfaces */
420 	static uintptr_t target_mask_array[PLATFORM_CORE_COUNT];
421 	static interrupt_prop_t ls_interrupt_props[] = {
422 		PLAT_LS_G1S_IRQ_PROPS(INTR_GROUP1S),
423 		PLAT_LS_G0_IRQ_PROPS(INTR_GROUP0)
424 	};
425 
426 	plat_ls_gic_driver_init(NXP_GICD_ADDR, NXP_GICR_ADDR,
427 				PLATFORM_CORE_COUNT,
428 				ls_interrupt_props,
429 				ARRAY_SIZE(ls_interrupt_props),
430 				target_mask_array,
431 				plat_core_pos);
432 
433 	plat_ls_gic_init();
434 	enable_init_timer();
435 #ifdef LS_SYS_TIMCTL_BASE
436 	ls_configure_sys_timer(LS_SYS_TIMCTL_BASE,
437 			       LS_CONFIG_CNTACR,
438 			       PLAT_LS_NSTIMER_FRAME_ID);
439 #endif
440 }
441 
442 /*******************************************************************************
443  * This function initializes the soc from the BL31 module
444  ******************************************************************************/
soc_init(void)445 void soc_init(void)
446 {
447 	uint8_t num_clusters, cores_per_cluster;
448 
449 	get_cluster_info(soc_list, ARRAY_SIZE(soc_list),
450 			&num_clusters, &cores_per_cluster);
451 
452 	/* low-level init of the soc */
453 	soc_init_start();
454 	soc_init_percpu();
455 	_init_global_data();
456 	_initialize_psci();
457 
458 	if (ccn_get_part0_id(NXP_CCN_ADDR) != CCN_508_PART0_ID) {
459 		ERROR("Unrecognized CCN variant detected.");
460 		ERROR("Only CCN-508 is supported\n");
461 		panic();
462 	}
463 
464 	if (num_clusters == 6U) {
465 		ccn_init(&plat_six_cluster_ccn_desc);
466 	} else {
467 		ccn_init(&plat_ccn_desc);
468 	}
469 
470 	plat_ls_interconnect_enter_coherency(num_clusters);
471 
472 	/* Set platform security policies */
473 	_set_platform_security();
474 
475 	 /* make sure any parallel init tasks are finished */
476 	soc_init_finish();
477 
478 	/* Initialize the crypto accelerator if enabled */
479 	if (is_sec_enabled() == false) {
480 		INFO("SEC is disabled.\n");
481 	} else {
482 		sec_init(NXP_CAAM_ADDR);
483 	}
484 
485 }
486 
487 #ifdef NXP_WDOG_RESTART
wdog_interrupt_handler(uint32_t id,uint32_t flags,void * handle,void * cookie)488 static uint64_t wdog_interrupt_handler(uint32_t id, uint32_t flags,
489 					  void *handle, void *cookie)
490 {
491 	uint8_t data = WDOG_RESET_FLAG;
492 
493 	wr_nv_app_data(WDT_RESET_FLAG_OFFSET,
494 		       (uint8_t *)&data, sizeof(data));
495 
496 	mmio_write_32(NXP_RST_ADDR + RSTCNTL_OFFSET, SW_RST_REQ_INIT);
497 
498 	return 0;
499 }
500 #endif
501 
soc_runtime_setup(void)502 void soc_runtime_setup(void)
503 {
504 
505 #ifdef NXP_WDOG_RESTART
506 	request_intr_type_el3(BL31_NS_WDOG_WS1, wdog_interrupt_handler);
507 #endif
508 }
509 #endif
510