• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2019, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <float.h>
13 
14 #include "av1/encoder/encodeframe_utils.h"
15 #include "av1/encoder/thirdpass.h"
16 #include "config/aom_dsp_rtcd.h"
17 
18 #include "av1/common/enums.h"
19 #include "av1/common/reconinter.h"
20 
21 #if !CONFIG_REALTIME_ONLY
22 #include "av1/encoder/cnn.h"
23 #include "av1/encoder/partition_model_weights.h"
24 #include "av1/encoder/partition_cnn_weights.h"
25 #endif
26 #include "av1/encoder/encoder.h"
27 
28 #include "av1/encoder/motion_search_facade.h"
29 #include "av1/encoder/partition_strategy.h"
30 #include "av1/encoder/partition_search.h"
31 #include "av1/encoder/rdopt.h"
32 
33 #if !CONFIG_REALTIME_ONLY
34 static AOM_INLINE void simple_motion_search_prune_part_features(
35     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
36     int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
37     int features_to_get);
38 
39 static bool ext_ml_model_decision_before_none(
40     AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
41     int *partition_none_allowed, int *partition_horz_allowed,
42     int *partition_vert_allowed, int *do_rectangular_split,
43     int *do_square_split);
44 
45 static bool ext_ml_model_decision_before_none_part2(
46     AV1_COMP *cpi,
47     const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
48     int *prune_horz, int *prune_vert);
49 
50 static bool ext_ml_model_decision_after_none(
51     ExtPartController *const ext_part_controller, const int is_intra_frame,
52     const float *const features_after_none, int *do_square_split,
53     int *do_rectangular_split);
54 
55 static bool ext_ml_model_decision_after_none_part2(
56     AV1_COMP *const cpi, const float *const features_terminate,
57     int *terminate_partition_search);
58 
59 static bool ext_ml_model_decision_after_split(
60     AV1_COMP *const cpi, const float *const features_terminate,
61     int *terminate_partition_search);
62 
63 static bool ext_ml_model_decision_after_split_part2(
64     ExtPartController *const ext_part_controller, const int is_intra_frame,
65     const float *const features_prune, int *prune_rect_part_horz,
66     int *prune_rect_part_vert);
67 
68 static bool ext_ml_model_decision_after_rect(
69     ExtPartController *const ext_part_controller, const int is_intra_frame,
70     const float *const features_after_rect, int *horza_partition_allowed,
71     int *horzb_partition_allowed, int *verta_partition_allowed,
72     int *vertb_partition_allowed);
73 
74 static bool ext_ml_model_decision_after_part_ab(
75     AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
76     int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
77     int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
78     int *const partition_vert4_allowed, unsigned int pb_source_variance,
79     int mi_row, int mi_col);
80 
convert_bsize_to_idx(BLOCK_SIZE bsize)81 static INLINE int convert_bsize_to_idx(BLOCK_SIZE bsize) {
82   switch (bsize) {
83     case BLOCK_128X128: return 0;
84     case BLOCK_64X64: return 1;
85     case BLOCK_32X32: return 2;
86     case BLOCK_16X16: return 3;
87     case BLOCK_8X8: return 4;
88     default: assert(0 && "Invalid bsize"); return -1;
89   }
90 }
91 
get_feature_file_name(int id)92 static char *get_feature_file_name(int id) {
93   static char *feature_file_names[] = {
94     "feature_before_partition_none",
95     "feature_before_partition_none_prune_rect",
96     "feature_after_partition_none_prune",
97     "feature_after_partition_none_terminate",
98     "feature_after_partition_split_terminate",
99     "feature_after_partition_split_prune_rect",
100     "feature_after_partition_rect",
101     "feature_after_partition_ab",
102   };
103 
104   return feature_file_names[id];
105 }
106 
write_features_to_file(const char * const path,const bool is_test_mode,const float * features,const int feature_size,const int id,const int bsize,const int mi_row,const int mi_col)107 static void write_features_to_file(const char *const path,
108                                    const bool is_test_mode,
109                                    const float *features,
110                                    const int feature_size, const int id,
111                                    const int bsize, const int mi_row,
112                                    const int mi_col) {
113   if (!WRITE_FEATURE_TO_FILE && !is_test_mode) return;
114 
115   char filename[256];
116   snprintf(filename, sizeof(filename), "%s/%s", path,
117            get_feature_file_name(id));
118   FILE *pfile = fopen(filename, "a");
119   if (pfile == NULL) return;
120   if (!is_test_mode) {
121     fprintf(pfile, "%d,%d,%d,%d,%d\n", id, bsize, mi_row, mi_col, feature_size);
122   }
123   for (int i = 0; i < feature_size; ++i) {
124     fprintf(pfile, "%.6f", features[i]);
125     if (i < feature_size - 1) fprintf(pfile, ",");
126   }
127   fprintf(pfile, "\n");
128   fclose(pfile);
129 }
130 
131 // TODO(chiyotsai@google.com): This is very much a work in progress. We still
132 // need to the following:
133 //   -- add support for hdres
134 //   -- add support for pruning rectangular partitions
135 //   -- use reconstructed pixels instead of source pixels for padding
136 //   -- use chroma pixels in addition to luma pixels
av1_intra_mode_cnn_partition(const AV1_COMMON * const cm,MACROBLOCK * x,int quad_tree_idx,int intra_cnn_based_part_prune_level,PartitionSearchState * part_state)137 void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x,
138                                   int quad_tree_idx,
139                                   int intra_cnn_based_part_prune_level,
140                                   PartitionSearchState *part_state) {
141   assert(cm->seq_params->sb_size >= BLOCK_64X64 &&
142          "Invalid sb_size for intra_cnn!");
143   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
144   const BLOCK_SIZE bsize = blk_params->bsize;
145 
146   const int bsize_idx = convert_bsize_to_idx(bsize);
147 
148   if (bsize == BLOCK_128X128) {
149     return;
150   }
151 
152   PartitionSearchInfo *part_info = &x->part_search_info;
153 
154   // Precompute the CNN part and cache the result in MACROBLOCK
155   if (bsize == BLOCK_64X64 && !part_info->cnn_output_valid) {
156     const CNN_CONFIG *cnn_config = &av1_intra_mode_cnn_partition_cnn_config;
157 
158     // Prepare the output
159     const CNN_THREAD_DATA thread_data = { .num_workers = 1, .workers = NULL };
160     const int num_outputs = 4;
161     const int output_dims[4] = { 1, 2, 4, 8 };
162     const int out_chs[4] = { CNN_BRANCH_0_OUT_CH, CNN_BRANCH_1_OUT_CH,
163                              CNN_BRANCH_2_OUT_CH, CNN_BRANCH_3_OUT_CH };
164     float *output_buffer[CNN_TOT_OUT_CH];
165 
166     float **cur_output_buf = output_buffer;
167     float *curr_buf_ptr = part_info->cnn_buffer;
168     for (int output_idx = 0; output_idx < num_outputs; output_idx++) {
169       const int num_chs = out_chs[output_idx];
170       const int ch_size = output_dims[output_idx] * output_dims[output_idx];
171       for (int ch = 0; ch < num_chs; ch++) {
172         cur_output_buf[ch] = curr_buf_ptr;
173         curr_buf_ptr += ch_size;
174       }
175       cur_output_buf += num_chs;
176     }
177 
178     CNN_MULTI_OUT output = {
179       .num_outputs = 4,
180       .output_channels = out_chs,
181       .output_strides = output_dims,
182       .output_buffer = output_buffer,
183     };
184 
185     // Prepare the input
186     const MACROBLOCKD *xd = &x->e_mbd;
187     const int bit_depth = xd->bd;
188     const int dc_q =
189         av1_dc_quant_QTX(x->qindex, 0, bit_depth) >> (bit_depth - 8);
190     part_info->log_q = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
191     part_info->log_q =
192         (part_info->log_q - av1_intra_mode_cnn_partition_mean[0]) /
193         av1_intra_mode_cnn_partition_std[0];
194 
195     const int width = 65, height = 65,
196               stride = x->plane[AOM_PLANE_Y].src.stride;
197 
198     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
199       uint16_t *image[1] = {
200         CONVERT_TO_SHORTPTR(x->plane[AOM_PLANE_Y].src.buf) - stride - 1
201       };
202 
203       if (!av1_cnn_predict_img_multi_out_highbd(image, width, height, stride,
204                                                 cnn_config, &thread_data,
205                                                 bit_depth, &output)) {
206         aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
207                            "Error allocating CNN data");
208         return;
209       }
210     } else {
211       uint8_t *image[1] = { x->plane[AOM_PLANE_Y].src.buf - stride - 1 };
212 
213       if (!av1_cnn_predict_img_multi_out(image, width, height, stride,
214                                          cnn_config, &thread_data, &output)) {
215         aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
216                            "Error allocating CNN data");
217         return;
218       }
219     }
220 
221     part_info->cnn_output_valid = 1;
222   }
223 
224   if (!part_info->cnn_output_valid) {
225     return;
226   }
227 
228   const NN_CONFIG *dnn_configs[5] = {
229     NULL,
230     &av1_intra_mode_cnn_partition_branch_0_dnn_config,
231     &av1_intra_mode_cnn_partition_branch_1_dnn_config,
232     &av1_intra_mode_cnn_partition_branch_2_dnn_config,
233     &av1_intra_mode_cnn_partition_branch_3_dnn_config,
234   };
235 
236   const NN_CONFIG *dnn_config = dnn_configs[bsize_idx];
237 
238   float dnn_features[100];
239   float logits[4] = { 0.0f };
240 
241   const float *branch_0 = part_info->cnn_buffer;
242   const float *branch_1 = branch_0 + CNN_BRANCH_0_OUT_SIZE;
243   const float *branch_2 = branch_1 + CNN_BRANCH_1_OUT_SIZE;
244   const float *branch_3 = branch_2 + CNN_BRANCH_2_OUT_SIZE;
245 
246   if (bsize == BLOCK_64X64) {
247     int f_idx = 0;
248     for (int ch_idx = 0; ch_idx < CNN_BRANCH_0_OUT_CH; ch_idx++) {
249       dnn_features[f_idx++] = branch_0[ch_idx];
250     }
251 
252     const int spa_stride = 2 * 2;
253     for (int lin_idx = 0; lin_idx < spa_stride; lin_idx++) {
254       for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
255         dnn_features[f_idx++] = branch_1[lin_idx + ch_idx * spa_stride];
256       }
257     }
258     dnn_features[f_idx++] = part_info->log_q;
259   } else if (bsize == BLOCK_32X32) {
260     int f_idx = 0;
261     for (int idx = 0; idx < CNN_BRANCH_0_OUT_CH; idx++) {
262       dnn_features[f_idx++] = branch_0[idx];
263     }
264 
265     const int curr_lin_idx = quad_to_linear_1[quad_tree_idx - 1];
266     const int spa_stride = 2 * 2;
267     for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
268       dnn_features[f_idx++] = branch_1[curr_lin_idx + ch_idx * spa_stride];
269     }
270     dnn_features[f_idx++] = part_info->log_q;
271   } else if (bsize == BLOCK_16X16) {
272     int f_idx = 0;
273     const int prev_quad_idx = (quad_tree_idx - 1) / 4;
274     const int prev_lin_idx = quad_to_linear_1[prev_quad_idx - 1];
275     const int prev_spa_stride = 2 * 2;
276     for (int ch_idx = 0; ch_idx < CNN_BRANCH_1_OUT_CH; ch_idx++) {
277       dnn_features[f_idx++] = branch_1[prev_lin_idx + ch_idx * prev_spa_stride];
278     }
279 
280     const int curr_lin_idx = quad_to_linear_2[quad_tree_idx - 5];
281     const int spa_stride = 4 * 4;
282     for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
283       dnn_features[f_idx++] = branch_2[curr_lin_idx + ch_idx * spa_stride];
284     }
285     dnn_features[f_idx++] = part_info->log_q;
286   } else if (bsize == BLOCK_8X8) {
287     int f_idx = 0;
288     const int prev_quad_idx = (quad_tree_idx - 1) / 4;
289     const int prev_lin_idx = quad_to_linear_2[prev_quad_idx - 5];
290     const int prev_spa_stride = 4 * 4;
291     for (int ch_idx = 0; ch_idx < CNN_BRANCH_2_OUT_CH; ch_idx++) {
292       dnn_features[f_idx++] = branch_2[prev_lin_idx + ch_idx * prev_spa_stride];
293     }
294 
295     const int curr_lin_idx = quad_to_linear_3[quad_tree_idx - 21];
296     const int spa_stride = 8 * 8;
297     for (int ch_idx = 0; ch_idx < CNN_BRANCH_3_OUT_CH; ch_idx++) {
298       dnn_features[f_idx++] = branch_3[curr_lin_idx + ch_idx * spa_stride];
299     }
300     dnn_features[f_idx++] = part_info->log_q;
301   } else {
302     assert(0 && "Invalid bsize in intra_cnn partition");
303   }
304 
305   // Make decision
306   av1_nn_predict(dnn_features, dnn_config, 1, logits);
307 
308   const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
309   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
310   float split_only_thresh = 100.0f, no_split_thresh = -100.0f;
311   if (is_720p_or_larger) {
312     split_only_thresh =
313         av1_intra_mode_cnn_partition_split_thresh_hdres[bsize_idx];
314     no_split_thresh =
315         av1_intra_mode_cnn_partition_no_split_thresh_hdres[bsize_idx];
316   } else if (is_480p_or_larger) {
317     split_only_thresh =
318         av1_intra_mode_cnn_partition_split_thresh_midres[bsize_idx];
319     no_split_thresh =
320         av1_intra_mode_cnn_partition_no_split_thresh_midres[bsize_idx];
321   } else {
322     split_only_thresh =
323         av1_intra_mode_cnn_partition_split_thresh_lowres[bsize_idx];
324     no_split_thresh =
325         av1_intra_mode_cnn_partition_no_split_thresh_lowres[bsize_idx];
326   }
327 
328   if (logits[0] > split_only_thresh) {
329     // As screen contents tend to choose larger partitions, do not prune
330     // PARTITION_NONE when intra_cnn_based_part_prune_level=1.
331     if (intra_cnn_based_part_prune_level != 1) {
332       part_state->partition_none_allowed = 0;
333     }
334     part_state->do_square_split = 1;
335     av1_disable_rect_partitions(part_state);
336   }
337 
338   if (logits[0] < no_split_thresh) {
339     av1_disable_square_split_partition(part_state);
340   }
341 }
342 
get_simple_motion_search_prune_agg(int qindex,int prune_level,int is_rect_part)343 static INLINE int get_simple_motion_search_prune_agg(int qindex,
344                                                      int prune_level,
345                                                      int is_rect_part) {
346   assert(prune_level < TOTAL_AGG_LVLS);
347   if (prune_level == NO_PRUNING) {
348     return -1;
349   }
350 
351   // Aggressiveness value for SIMPLE_MOTION_SEARCH_PRUNE_LEVEL except
352   // QIDX_BASED_AGG_LVL
353   const int sms_prune_agg_levels[TOTAL_SIMPLE_AGG_LVLS] = { 0, 1, 2, 3 };
354   if (prune_level < TOTAL_SIMPLE_AGG_LVLS) {
355     return sms_prune_agg_levels[prune_level];
356   }
357 
358   // Map the QIDX_BASED_AGG_LVL to corresponding aggressiveness value.
359   // Aggressive pruning for lower quantizers in non-boosted frames to prune
360   // rectangular partitions.
361   const int qband = is_rect_part ? (qindex <= 90 ? 1 : 0) : 0;
362   const int sms_prune_agg_qindex_based[2] = { 1, 2 };
363   return sms_prune_agg_qindex_based[qband];
364 }
365 
av1_simple_motion_search_based_split(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,PartitionSearchState * part_state)366 void av1_simple_motion_search_based_split(AV1_COMP *const cpi, MACROBLOCK *x,
367                                           SIMPLE_MOTION_DATA_TREE *sms_tree,
368                                           PartitionSearchState *part_state) {
369   const AV1_COMMON *const cm = &cpi->common;
370   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
371   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
372   const BLOCK_SIZE bsize = blk_params->bsize;
373 
374   const int bsize_idx = convert_bsize_to_idx(bsize);
375   const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
376   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
377   // res_idx is 0 for res < 480p, 1 for 480p, 2 for 720p+
378   const int res_idx = is_480p_or_larger + is_720p_or_larger;
379 
380   assert(bsize_idx >= 0 && bsize_idx <= 4 &&
381          "Invalid bsize in simple_motion_search_based_split");
382 
383   const float *ml_mean = av1_simple_motion_search_split_mean[bsize_idx];
384   const float *ml_std = av1_simple_motion_search_split_std[bsize_idx];
385   const NN_CONFIG *nn_config =
386       av1_simple_motion_search_split_nn_config[bsize_idx];
387 
388   const int agg = get_simple_motion_search_prune_agg(
389       x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 0);
390   if (agg < 0) {
391     return;
392   }
393 
394   const float split_only_thresh =
395       av1_simple_motion_search_split_thresh[agg][res_idx][bsize_idx];
396   const float no_split_thresh =
397       av1_simple_motion_search_no_split_thresh[agg][res_idx][bsize_idx];
398 
399   float features[FEATURE_SIZE_SMS_SPLIT] = { 0.0f };
400   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
401                                            bsize, features,
402                                            FEATURE_SMS_SPLIT_MODEL_FLAG);
403 
404   // Write features to file
405   write_features_to_file(cpi->oxcf.partition_info_path,
406                          cpi->ext_part_controller.test_mode, features,
407                          FEATURE_SIZE_SMS_SPLIT, 0, bsize, mi_row, mi_col);
408 
409   // Note: it is intended to not normalize the features here, to keep it
410   // consistent for all features collected and passed to the external model.
411   if (ext_ml_model_decision_before_none(
412           cpi, features, &part_state->partition_none_allowed,
413           &part_state->partition_rect_allowed[HORZ],
414           &part_state->partition_rect_allowed[VERT],
415           &part_state->do_rectangular_split, &part_state->do_square_split)) {
416     return;
417   }
418 
419   for (int idx = 0; idx < FEATURE_SIZE_SMS_SPLIT; idx++) {
420     features[idx] = (features[idx] - ml_mean[idx]) / ml_std[idx];
421   }
422 
423   float score = 0.0f;
424 
425   av1_nn_predict(features, nn_config, 1, &score);
426 
427   if (score > split_only_thresh) {
428     av1_set_square_split_only(part_state);
429   }
430 
431   if (cpi->sf.part_sf.simple_motion_search_split >= 2 &&
432       score < no_split_thresh) {
433     av1_disable_square_split_partition(part_state);
434   }
435 
436   // If the score is very low, prune rectangular split since it is unlikely to
437   // occur.
438   if (cpi->sf.part_sf.simple_motion_search_rect_split) {
439     const float scale = res_idx >= 2 ? 3.0f : 2.0f;
440     const float rect_split_thresh =
441         scale * av1_simple_motion_search_no_split_thresh
442                     [cpi->sf.part_sf.simple_motion_search_rect_split][res_idx]
443                     [bsize_idx];
444     if (score < rect_split_thresh) {
445       part_state->do_rectangular_split = 0;
446     }
447   }
448 }
449 
450 // Given a list of ref frames in refs, performs simple_motion_search on each of
451 // the refs and returns the ref with the smallest sse. Returns -1 if none of the
452 // ref in the list is available. Also stores the best sse and var in best_sse,
453 // best_var, respectively. If save_mv is 0, don't update mv_ref_fulls in
454 // sms_tree. If save_mv is 1, update mv_ref_fulls under sms_tree and the
455 // subtrees.
simple_motion_search_get_best_ref(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,int mi_row,int mi_col,BLOCK_SIZE bsize,const int * const refs,int num_refs,int use_subpixel,int save_mv,unsigned int * best_sse,unsigned int * best_var)456 static int simple_motion_search_get_best_ref(
457     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
458     int mi_row, int mi_col, BLOCK_SIZE bsize, const int *const refs,
459     int num_refs, int use_subpixel, int save_mv, unsigned int *best_sse,
460     unsigned int *best_var) {
461   const AV1_COMMON *const cm = &cpi->common;
462   int best_ref = -1;
463 
464   if (mi_col >= cm->mi_params.mi_cols || mi_row >= cm->mi_params.mi_rows) {
465     // If the whole block is outside of the image, set the var and sse to 0.
466     *best_var = 0;
467     *best_sse = 0;
468 
469     return best_ref;
470   }
471 
472   // Otherwise do loop through the reference frames and find the one with the
473   // minimum SSE
474   const MACROBLOCKD *xd = &x->e_mbd;
475 
476   const int num_planes = 1;
477 
478   *best_sse = INT_MAX;
479 
480   for (int ref_idx = 0; ref_idx < num_refs; ref_idx++) {
481     const int ref = refs[ref_idx];
482 
483     if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref]) {
484       const FULLPEL_MV *start_mvs = sms_tree->start_mvs;
485       unsigned int curr_sse = 0, curr_var = 0;
486       int_mv best_mv =
487           av1_simple_motion_search(cpi, x, mi_row, mi_col, bsize, ref,
488                                    start_mvs[ref], num_planes, use_subpixel);
489       curr_var = cpi->ppi->fn_ptr[bsize].vf(
490           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].dst.buf,
491           xd->plane[0].dst.stride, &curr_sse);
492       if (curr_sse < *best_sse) {
493         *best_sse = curr_sse;
494         *best_var = curr_var;
495         best_ref = ref;
496       }
497 
498       if (save_mv) {
499         sms_tree->start_mvs[ref].row = best_mv.as_mv.row / 8;
500         sms_tree->start_mvs[ref].col = best_mv.as_mv.col / 8;
501 
502         if (bsize >= BLOCK_8X8) {
503           for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
504             // Propagate the new motion vectors to a lower level
505             SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
506             sub_tree->start_mvs[ref] = sms_tree->start_mvs[ref];
507           }
508         }
509       }
510     }
511   }
512 
513   return best_ref;
514 }
515 
516 // Collects features using simple_motion_search and store them in features. The
517 // features are also cached in SIMPLE_MOTION_DATA_TREE. By default, the features
518 // collected are the sse and var from the subblocks flagged by features_to_get.
519 // Furthermore, if features is not NULL, then 7 more features are appended to
520 // the end of features:
521 //  - log(1.0 + dc_q ** 2)
522 //  - whether an above macroblock exists
523 //  - width of above macroblock
524 //  - height of above macroblock
525 //  - whether a left marcoblock exists
526 //  - width of left macroblock
527 //  - height of left macroblock
simple_motion_search_prune_part_features(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,int mi_row,int mi_col,BLOCK_SIZE bsize,float * features,int features_to_get)528 static AOM_INLINE void simple_motion_search_prune_part_features(
529     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
530     int mi_row, int mi_col, BLOCK_SIZE bsize, float *features,
531     int features_to_get) {
532   const int w_mi = mi_size_wide[bsize];
533   const int h_mi = mi_size_high[bsize];
534   assert(mi_size_wide[bsize] == mi_size_high[bsize]);
535   assert(bsize >= BLOCK_8X8);
536   assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[LAST_FRAME] ||
537          cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]);
538 
539   // Setting up motion search
540   const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
541                                                         : LAST_FRAME };
542   const int num_refs = 1;
543   const int use_subpixel = 1;
544 
545   // Doing whole block first to update the mv
546   if (!sms_tree->sms_none_valid && features_to_get & FEATURE_SMS_NONE_FLAG) {
547     simple_motion_search_get_best_ref(cpi, x, sms_tree, mi_row, mi_col, bsize,
548                                       ref_list, num_refs, use_subpixel, 1,
549                                       &sms_tree->sms_none_feat[0],
550                                       &sms_tree->sms_none_feat[1]);
551     sms_tree->sms_none_valid = 1;
552   }
553 
554   // Split subblocks
555   if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
556     const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
557     for (int r_idx = 0; r_idx < SUB_PARTITIONS_SPLIT; r_idx++) {
558       const int sub_mi_col = mi_col + (r_idx & 1) * w_mi / 2;
559       const int sub_mi_row = mi_row + (r_idx >> 1) * h_mi / 2;
560       SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[r_idx];
561 
562       if (!sub_tree->sms_none_valid) {
563         simple_motion_search_get_best_ref(
564             cpi, x, sub_tree, sub_mi_row, sub_mi_col, subsize, ref_list,
565             num_refs, use_subpixel, 1, &sub_tree->sms_none_feat[0],
566             &sub_tree->sms_none_feat[1]);
567         sub_tree->sms_none_valid = 1;
568       }
569     }
570   }
571 
572   // Rectangular subblocks
573   if (!sms_tree->sms_rect_valid && features_to_get & FEATURE_SMS_RECT_FLAG) {
574     // Horz subblock
575     BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
576     for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
577       const int sub_mi_col = mi_col + 0;
578       const int sub_mi_row = mi_row + r_idx * h_mi / 2;
579 
580       simple_motion_search_get_best_ref(
581           cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
582           use_subpixel, 0, &sms_tree->sms_rect_feat[2 * r_idx],
583           &sms_tree->sms_rect_feat[2 * r_idx + 1]);
584     }
585 
586     // Vert subblock
587     subsize = get_partition_subsize(bsize, PARTITION_VERT);
588     for (int r_idx = 0; r_idx < SUB_PARTITIONS_RECT; r_idx++) {
589       const int sub_mi_col = mi_col + r_idx * w_mi / 2;
590       const int sub_mi_row = mi_row + 0;
591 
592       simple_motion_search_get_best_ref(
593           cpi, x, sms_tree, sub_mi_row, sub_mi_col, subsize, ref_list, num_refs,
594           use_subpixel, 0, &sms_tree->sms_rect_feat[4 + 2 * r_idx],
595           &sms_tree->sms_rect_feat[4 + 2 * r_idx + 1]);
596     }
597     sms_tree->sms_rect_valid = 1;
598   }
599 
600   if (!features) return;
601 
602   int f_idx = 0;
603   if (features_to_get & FEATURE_SMS_NONE_FLAG) {
604     for (int sub_idx = 0; sub_idx < 2; sub_idx++) {
605       features[f_idx++] = logf(1.0f + sms_tree->sms_none_feat[sub_idx]);
606     }
607   }
608 
609   if (features_to_get & FEATURE_SMS_SPLIT_FLAG) {
610     for (int sub_idx = 0; sub_idx < SUB_PARTITIONS_SPLIT; sub_idx++) {
611       SIMPLE_MOTION_DATA_TREE *sub_tree = sms_tree->split[sub_idx];
612       features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[0]);
613       features[f_idx++] = logf(1.0f + sub_tree->sms_none_feat[1]);
614     }
615   }
616 
617   if (features_to_get & FEATURE_SMS_RECT_FLAG) {
618     for (int sub_idx = 0; sub_idx < 8; sub_idx++) {
619       features[f_idx++] = logf(1.0f + sms_tree->sms_rect_feat[sub_idx]);
620     }
621   }
622 
623   const MACROBLOCKD *xd = &x->e_mbd;
624   set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize);
625 
626   // Q_INDEX
627   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
628   features[f_idx++] = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
629 
630   // Neighbor stuff
631   const int has_above = !!xd->above_mbmi;
632   const int has_left = !!xd->left_mbmi;
633   const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->bsize : bsize;
634   const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->bsize : bsize;
635   features[f_idx++] = (float)has_above;
636   features[f_idx++] = (float)mi_size_wide_log2[above_bsize];
637   features[f_idx++] = (float)mi_size_high_log2[above_bsize];
638   features[f_idx++] = (float)has_left;
639   features[f_idx++] = (float)mi_size_wide_log2[left_bsize];
640   features[f_idx++] = (float)mi_size_high_log2[left_bsize];
641 }
642 
av1_simple_motion_search_prune_rect(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,PartitionSearchState * part_state)643 void av1_simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x,
644                                          SIMPLE_MOTION_DATA_TREE *sms_tree,
645                                          PartitionSearchState *part_state) {
646   const AV1_COMMON *const cm = &cpi->common;
647   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
648   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
649   const BLOCK_SIZE bsize = blk_params->bsize;
650 
651   const int bsize_idx = convert_bsize_to_idx(bsize);
652   const int is_720p_or_larger = AOMMIN(cm->width, cm->height) >= 720;
653   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
654   // res_idx is 0 for lowres, 1 for 48p, 2 for 720p+
655   const int res_idx = is_480p_or_larger + is_720p_or_larger;
656 
657   // Get model parameters
658   const NN_CONFIG *nn_config =
659       av1_simple_motion_search_prune_rect_nn_config[bsize_idx];
660   const float *ml_mean = av1_simple_motion_search_prune_rect_mean[bsize_idx],
661               *ml_std = av1_simple_motion_search_prune_rect_std[bsize_idx];
662 
663   const int agg = get_simple_motion_search_prune_agg(
664       x->qindex, cpi->sf.part_sf.simple_motion_search_prune_agg, 1);
665   if (agg < 0) {
666     return;
667   }
668 
669   const float prune_thresh =
670       av1_simple_motion_search_prune_rect_thresh[agg][res_idx][bsize_idx];
671 
672   // If there is no valid threshold, return immediately.
673   if (!nn_config || prune_thresh == 0.0f) {
674     return;
675   }
676 
677   // Get features
678   float features[FEATURE_SIZE_SMS_PRUNE_PART] = { 0.0f };
679   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
680                                            bsize, features,
681                                            FEATURE_SMS_PRUNE_PART_FLAG);
682 
683   // Note: it is intended to not normalize the features here, to keep it
684   // consistent for all features collected and passed to the external model.
685   if (cpi->sf.part_sf.simple_motion_search_prune_rect &&
686       !frame_is_intra_only(cm) &&
687       (part_state->partition_rect_allowed[HORZ] ||
688        part_state->partition_rect_allowed[VERT]) &&
689       bsize >= BLOCK_8X8 && !av1_superres_scaled(cm)) {
690     // Write features to file
691     write_features_to_file(
692         cpi->oxcf.partition_info_path, cpi->ext_part_controller.test_mode,
693         features, FEATURE_SIZE_SMS_PRUNE_PART, 1, bsize, mi_row, mi_col);
694 
695     if (ext_ml_model_decision_before_none_part2(
696             cpi, features, &part_state->prune_rect_part[HORZ],
697             &part_state->prune_rect_part[VERT])) {
698       return;
699     }
700   }
701 
702   for (int f_idx = 0; f_idx < FEATURE_SIZE_SMS_PRUNE_PART; f_idx++) {
703     features[f_idx] = (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
704   }
705 
706   // Get probabilities
707   float scores[EXT_PARTITION_TYPES] = { 0.0f },
708         probs[EXT_PARTITION_TYPES] = { 0.0f };
709   const int num_classes = (bsize == BLOCK_128X128 || bsize == BLOCK_8X8)
710                               ? PARTITION_TYPES
711                               : EXT_PARTITION_TYPES;
712 
713   av1_nn_predict(features, nn_config, 1, scores);
714 
715   av1_nn_softmax(scores, probs, num_classes);
716 
717   // Determine if we should prune rectangular partitions.
718   if (probs[PARTITION_HORZ] <= prune_thresh) {
719     part_state->prune_rect_part[HORZ] = 1;
720   }
721   if (probs[PARTITION_VERT] <= prune_thresh) {
722     part_state->prune_rect_part[VERT] = 1;
723   }
724 }
725 
726 // Early terminates PARTITION_NONE using simple_motion_search features and the
727 // rate, distortion, and rdcost of PARTITION_NONE. This is only called when:
728 //  - The frame is a show frame
729 //  - The frame is not intra only
730 //  - The current bsize is > BLOCK_8X8
731 //  - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols
av1_simple_motion_search_early_term_none(AV1_COMP * const cpi,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_tree,const RD_STATS * none_rdc,PartitionSearchState * part_state)732 void av1_simple_motion_search_early_term_none(
733     AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree,
734     const RD_STATS *none_rdc, PartitionSearchState *part_state) {
735   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
736   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
737   const BLOCK_SIZE bsize = blk_params->bsize;
738 
739   float features[FEATURE_SIZE_SMS_TERM_NONE] = { 0.0f };
740   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
741                                            bsize, features,
742                                            FEATURE_SMS_PRUNE_PART_FLAG);
743   int f_idx = FEATURE_SIZE_SMS_PRUNE_PART;
744 
745   features[f_idx++] = logf(1.0f + (float)none_rdc->rate);
746   features[f_idx++] = logf(1.0f + (float)none_rdc->dist);
747   features[f_idx++] = logf(1.0f + (float)none_rdc->rdcost);
748 
749   assert(f_idx == FEATURE_SIZE_SMS_TERM_NONE);
750 
751   const float *ml_mean = NULL;
752   const float *ml_std = NULL;
753   const float *ml_model = NULL;
754 
755   if (bsize == BLOCK_128X128) {
756     ml_mean = av1_simple_motion_search_term_none_mean_128;
757     ml_std = av1_simple_motion_search_term_none_std_128;
758     ml_model = av1_simple_motion_search_term_none_model_128;
759   } else if (bsize == BLOCK_64X64) {
760     ml_mean = av1_simple_motion_search_term_none_mean_64;
761     ml_std = av1_simple_motion_search_term_none_std_64;
762     ml_model = av1_simple_motion_search_term_none_model_64;
763   } else if (bsize == BLOCK_32X32) {
764     ml_mean = av1_simple_motion_search_term_none_mean_32;
765     ml_std = av1_simple_motion_search_term_none_std_32;
766     ml_model = av1_simple_motion_search_term_none_model_32;
767   } else if (bsize == BLOCK_16X16) {
768     ml_mean = av1_simple_motion_search_term_none_mean_16;
769     ml_std = av1_simple_motion_search_term_none_std_16;
770     ml_model = av1_simple_motion_search_term_none_model_16;
771   } else {
772     assert(0 && "Unexpected block size in simple_motion_term_none");
773   }
774 
775   // Write features to file
776   write_features_to_file(cpi->oxcf.partition_info_path,
777                          cpi->ext_part_controller.test_mode, features,
778                          FEATURE_SIZE_SMS_TERM_NONE, 3, bsize, mi_row, mi_col);
779 
780   if (ext_ml_model_decision_after_none_part2(
781           cpi, features, &part_state->terminate_partition_search)) {
782     return;
783   }
784 
785   if (ml_model) {
786     float score = 0.0f;
787     for (f_idx = 0; f_idx < FEATURE_SIZE_SMS_TERM_NONE; f_idx++) {
788       score +=
789           ml_model[f_idx] * (features[f_idx] - ml_mean[f_idx]) / ml_std[f_idx];
790     }
791     score += ml_model[FEATURE_SIZE_SMS_TERM_NONE];
792 
793     if (score >= 0.0f) {
794       part_state->terminate_partition_search = 1;
795     }
796   }
797 }
798 
av1_get_max_min_partition_features(AV1_COMP * const cpi,MACROBLOCK * x,int mi_row,int mi_col,float * features)799 void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x,
800                                         int mi_row, int mi_col,
801                                         float *features) {
802   AV1_COMMON *const cm = &cpi->common;
803   MACROBLOCKD *xd = &x->e_mbd;
804   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
805 
806   // Currently this only allows 128X128 SB size. May extend it to 64X64 SB size.
807   assert(sb_size == BLOCK_128X128);
808 
809   int f_idx = 0;
810 
811   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
812   const float log_q_sq = logf(1.0f + (float)(dc_q * dc_q) / 256.0f);
813 
814   // Perform full-pixel single motion search in Y plane of 16x16 mbs in the sb
815   float sum_mv_row_sq = 0;
816   float sum_mv_row = 0;
817   float min_abs_mv_row = FLT_MAX;
818   float max_abs_mv_row = 0;
819 
820   float sum_mv_col_sq = 0;
821   float sum_mv_col = 0;
822   float min_abs_mv_col = FLT_MAX;
823   float max_abs_mv_col = 0;
824 
825   float sum_log_sse_sq = 0;
826   float sum_log_sse = 0;
827   float min_log_sse = FLT_MAX;
828   float max_log_sse = 0;
829 
830   const BLOCK_SIZE mb_size = BLOCK_16X16;
831   const int mb_rows = block_size_high[sb_size] / block_size_high[mb_size];
832   const int mb_cols = block_size_wide[sb_size] / block_size_wide[mb_size];
833   const int mb_in_mi_size_high_log2 = mi_size_high_log2[mb_size];
834   const int mb_in_mi_size_wide_log2 = mi_size_wide_log2[mb_size];
835 
836   for (int mb_row = 0; mb_row < mb_rows; mb_row++)
837     for (int mb_col = 0; mb_col < mb_cols; mb_col++) {
838       const int this_mi_row = mi_row + (mb_row << mb_in_mi_size_high_log2);
839       const int this_mi_col = mi_col + (mb_col << mb_in_mi_size_wide_log2);
840       unsigned int sse = 0;
841       unsigned int var = 0;
842       const FULLPEL_MV start_mv = kZeroFullMv;
843       int_mv best_mv = av1_simple_motion_sse_var(
844           cpi, x, this_mi_row, this_mi_col, mb_size, start_mv, 0, &sse, &var);
845 
846       const float mv_row = (float)(best_mv.as_mv.row / 8);
847       const float mv_col = (float)(best_mv.as_mv.col / 8);
848       const float log_sse = logf(1.0f + (float)sse);
849       const float abs_mv_row = fabsf(mv_row);
850       const float abs_mv_col = fabsf(mv_col);
851 
852       sum_mv_row_sq += mv_row * mv_row;
853       sum_mv_row += mv_row;
854       sum_mv_col_sq += mv_col * mv_col;
855       sum_mv_col += mv_col;
856 
857       if (abs_mv_row < min_abs_mv_row) min_abs_mv_row = abs_mv_row;
858       if (abs_mv_row > max_abs_mv_row) max_abs_mv_row = abs_mv_row;
859       if (abs_mv_col < min_abs_mv_col) min_abs_mv_col = abs_mv_col;
860       if (abs_mv_col > max_abs_mv_col) max_abs_mv_col = abs_mv_col;
861 
862       sum_log_sse_sq += log_sse * log_sse;
863       sum_log_sse += log_sse;
864       if (log_sse < min_log_sse) min_log_sse = log_sse;
865       if (log_sse > max_log_sse) max_log_sse = log_sse;
866     }
867   const int blks = mb_rows * mb_cols;
868   const float avg_mv_row = sum_mv_row / (float)blks;
869   const float var_mv_row =
870       sum_mv_row_sq / (float)blks - avg_mv_row * avg_mv_row;
871 
872   const float avg_mv_col = sum_mv_col / (float)blks;
873   const float var_mv_col =
874       sum_mv_col_sq / (float)blks - avg_mv_col * avg_mv_col;
875 
876   const float avg_log_sse = sum_log_sse / (float)blks;
877   const float var_log_sse =
878       sum_log_sse_sq / (float)blks - avg_log_sse * avg_log_sse;
879 
880   features[f_idx++] = avg_log_sse;
881   features[f_idx++] = avg_mv_col;
882   features[f_idx++] = avg_mv_row;
883   features[f_idx++] = log_q_sq;
884   features[f_idx++] = max_abs_mv_col;
885   features[f_idx++] = max_abs_mv_row;
886   features[f_idx++] = max_log_sse;
887   features[f_idx++] = min_abs_mv_col;
888   features[f_idx++] = min_abs_mv_row;
889   features[f_idx++] = min_log_sse;
890   features[f_idx++] = var_log_sse;
891   features[f_idx++] = var_mv_col;
892   features[f_idx++] = var_mv_row;
893 
894   assert(f_idx == FEATURE_SIZE_MAX_MIN_PART_PRED);
895 }
896 
897 // Convert result index to block size.
898 // result idx     block size
899 //     0          BLOCK_16X16
900 //     1          BLOCK_32X32
901 //     2          BLOCK_64X64
902 //     3          BLOCK_128X128
get_block_size(int idx)903 static BLOCK_SIZE get_block_size(int idx) {
904   return (BLOCK_SIZE)((idx + 2) * 3);
905 }
906 
av1_predict_max_partition(const AV1_COMP * const cpi,const MACROBLOCK * const x,const float * features)907 BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi,
908                                      const MACROBLOCK *const x,
909                                      const float *features) {
910   float scores[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
911   const NN_CONFIG *nn_config = &av1_max_part_pred_nn_config;
912 
913   assert(cpi->sf.part_sf.auto_max_partition_based_on_simple_motion !=
914          NOT_IN_USE);
915 
916   av1_nn_predict(features, nn_config, 1, scores);
917 
918   int result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1;
919   if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
920       DIRECT_PRED) {
921     result = 0;
922     float max_score = scores[0];
923     for (int i = 1; i < MAX_NUM_CLASSES_MAX_MIN_PART_PRED; ++i) {
924       if (scores[i] > max_score) {
925         max_score = scores[i];
926         result = i;
927       }
928     }
929     return get_block_size(result);
930   }
931 
932   float probs[MAX_NUM_CLASSES_MAX_MIN_PART_PRED] = { 0.0f };
933   av1_nn_softmax(scores, probs, MAX_NUM_CLASSES_MAX_MIN_PART_PRED);
934 
935   if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
936       RELAXED_PRED) {
937     for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
938          --result) {
939       if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
940         probs[result] += probs[result + 1];
941       }
942       if (probs[result] > 0.2) break;
943     }
944   } else if (cpi->sf.part_sf.auto_max_partition_based_on_simple_motion ==
945              ADAPT_PRED) {
946     const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size;
947     // TODO(debargha): x->source_variance is unavailable at this point,
948     // so compute. The redundant recomputation later can be removed.
949     const unsigned int source_variance = av1_get_perpixel_variance_facade(
950         cpi, &x->e_mbd, &x->plane[0].src, sb_size, AOM_PLANE_Y);
951     if (source_variance > 16) {
952       const double thresh = source_variance < 128 ? 0.05 : 0.1;
953       for (result = MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1; result >= 0;
954            --result) {
955         if (result < MAX_NUM_CLASSES_MAX_MIN_PART_PRED - 1) {
956           probs[result] += probs[result + 1];
957         }
958         if (probs[result] > thresh) break;
959       }
960     }
961   }
962 
963   return get_block_size(result);
964 }
965 
966 // Get the minimum partition block width and height(in log scale) under a
967 // SIMPLE_MOTION_DATA_TREE.
get_min_bsize(const SIMPLE_MOTION_DATA_TREE * sms_tree,int * min_bw,int * min_bh)968 static AOM_INLINE void get_min_bsize(const SIMPLE_MOTION_DATA_TREE *sms_tree,
969                                      int *min_bw, int *min_bh) {
970   if (!sms_tree) return;
971 
972   const BLOCK_SIZE bsize = sms_tree->block_size;
973   if (bsize == BLOCK_4X4) {
974     *min_bw = 0;
975     *min_bh = 0;
976     return;
977   }
978 
979   PARTITION_TYPE part_type = sms_tree->partitioning;
980   if (part_type == PARTITION_INVALID) return;
981 
982   if (part_type == PARTITION_SPLIT) {
983     for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
984       get_min_bsize(sms_tree->split[i], min_bw, min_bh);
985     }
986   } else {
987     if (part_type == PARTITION_HORZ_A || part_type == PARTITION_HORZ_B ||
988         part_type == PARTITION_VERT_A || part_type == PARTITION_VERT_B)
989       part_type = PARTITION_SPLIT;
990     const BLOCK_SIZE subsize = get_partition_subsize(bsize, part_type);
991     if (subsize != BLOCK_INVALID) {
992       *min_bw = AOMMIN(*min_bw, mi_size_wide_log2[subsize]);
993       *min_bh = AOMMIN(*min_bh, mi_size_high_log2[subsize]);
994     }
995   }
996 }
997 
add_rd_feature(int64_t rd,int64_t best_rd,float * features,int * feature_idx)998 static INLINE void add_rd_feature(int64_t rd, int64_t best_rd, float *features,
999                                   int *feature_idx) {
1000   const int rd_valid = rd > 0 && rd < INT64_MAX;
1001   const float rd_ratio = rd_valid ? (float)rd / best_rd : 1.0f;
1002   features[(*feature_idx)++] = (float)rd_valid;
1003   features[(*feature_idx)++] = rd_ratio;
1004 }
1005 
1006 #define FEATURES 31
av1_ml_early_term_after_split(AV1_COMP * const cpi,MACROBLOCK * const x,SIMPLE_MOTION_DATA_TREE * const sms_tree,int64_t best_rd,int64_t part_none_rd,int64_t part_split_rd,int64_t * split_block_rd,PartitionSearchState * part_state)1007 void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x,
1008                                    SIMPLE_MOTION_DATA_TREE *const sms_tree,
1009                                    int64_t best_rd, int64_t part_none_rd,
1010                                    int64_t part_split_rd,
1011                                    int64_t *split_block_rd,
1012                                    PartitionSearchState *part_state) {
1013   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1014   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1015   const BLOCK_SIZE bsize = blk_params->bsize;
1016 
1017   if (best_rd <= 0 || best_rd == INT64_MAX ||
1018       part_state->terminate_partition_search)
1019     return;
1020 
1021   const AV1_COMMON *const cm = &cpi->common;
1022   const int is_480p_or_larger = AOMMIN(cm->width, cm->height) >= 480;
1023   const NN_CONFIG *nn_config = NULL;
1024   float thresh = -1e6;
1025   switch (bsize) {
1026     case BLOCK_128X128: break;
1027     case BLOCK_64X64:
1028       nn_config = &av1_early_term_after_split_nnconfig_64;
1029       thresh = is_480p_or_larger ? -2.0f : -1.2f;
1030       break;
1031     case BLOCK_32X32:
1032       nn_config = &av1_early_term_after_split_nnconfig_32;
1033       thresh = is_480p_or_larger ? -2.6f : -2.3f;
1034       break;
1035     case BLOCK_16X16:
1036       nn_config = &av1_early_term_after_split_nnconfig_16;
1037       thresh = is_480p_or_larger ? -2.0f : -2.4f;
1038       break;
1039     case BLOCK_8X8:
1040       nn_config = &av1_early_term_after_split_nnconfig_8;
1041       thresh = is_480p_or_larger ? -1.0f : -1.4f;
1042       break;
1043     case BLOCK_4X4: break;
1044     default:
1045       assert(0 && "Invalid block size in av1_ml_early_term_after_split().");
1046       break;
1047   }
1048   if (!nn_config) return;
1049 
1050   // Use more conservative threshold for level 1.
1051   if (cpi->sf.part_sf.ml_early_term_after_part_split_level < 2) thresh -= 0.3f;
1052 
1053   const MACROBLOCKD *const xd = &x->e_mbd;
1054   const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8);
1055   const int bs = block_size_wide[bsize];
1056   int f_idx = 0;
1057   float features[FEATURES] = { 0.0f };
1058 
1059   features[f_idx++] = logf(1.0f + (float)dc_q / 4.0f);
1060   features[f_idx++] = logf(1.0f + (float)best_rd / bs / bs / 1024.0f);
1061 
1062   add_rd_feature(part_none_rd, best_rd, features, &f_idx);
1063   add_rd_feature(part_split_rd, best_rd, features, &f_idx);
1064 
1065   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1066     add_rd_feature(split_block_rd[i], best_rd, features, &f_idx);
1067     int min_bw = MAX_SB_SIZE_LOG2;
1068     int min_bh = MAX_SB_SIZE_LOG2;
1069     get_min_bsize(sms_tree->split[i], &min_bw, &min_bh);
1070     features[f_idx++] = (float)min_bw;
1071     features[f_idx++] = (float)min_bh;
1072   }
1073 
1074   simple_motion_search_prune_part_features(cpi, x, sms_tree, mi_row, mi_col,
1075                                            bsize, NULL,
1076                                            FEATURE_SMS_PRUNE_PART_FLAG);
1077 
1078   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_none_feat[1]);
1079 
1080   features[f_idx++] = logf(1.0f + (float)sms_tree->split[0]->sms_none_feat[1]);
1081   features[f_idx++] = logf(1.0f + (float)sms_tree->split[1]->sms_none_feat[1]);
1082   features[f_idx++] = logf(1.0f + (float)sms_tree->split[2]->sms_none_feat[1]);
1083   features[f_idx++] = logf(1.0f + (float)sms_tree->split[3]->sms_none_feat[1]);
1084 
1085   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[1]);
1086   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[3]);
1087   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[5]);
1088   features[f_idx++] = logf(1.0f + (float)sms_tree->sms_rect_feat[7]);
1089 
1090   assert(f_idx == FEATURES);
1091 
1092   // Write features to file
1093   write_features_to_file(cpi->oxcf.partition_info_path,
1094                          cpi->ext_part_controller.test_mode, features, FEATURES,
1095                          4, bsize, mi_row, mi_col);
1096 
1097   if (ext_ml_model_decision_after_split(
1098           cpi, features, &part_state->terminate_partition_search)) {
1099     return;
1100   }
1101 
1102   float score = 0.0f;
1103   av1_nn_predict(features, nn_config, 1, &score);
1104   // Score is indicator of confidence that we should NOT terminate.
1105   if (score < thresh) {
1106     part_state->terminate_partition_search = 1;
1107   }
1108 }
1109 #undef FEATURES
1110 
av1_ml_prune_rect_partition(AV1_COMP * const cpi,const MACROBLOCK * const x,int64_t best_rd,int64_t none_rd,const int64_t * split_rd,PartitionSearchState * part_state)1111 void av1_ml_prune_rect_partition(AV1_COMP *const cpi, const MACROBLOCK *const x,
1112                                  int64_t best_rd, int64_t none_rd,
1113                                  const int64_t *split_rd,
1114                                  PartitionSearchState *part_state) {
1115   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1116   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1117   const BLOCK_SIZE bsize = blk_params->bsize;
1118 
1119   if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1120   best_rd = AOMMAX(best_rd, 1);
1121   const NN_CONFIG *nn_config = NULL;
1122   const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f };
1123   float cur_thresh = 0.0f;
1124   switch (bsize) {
1125     case BLOCK_8X8:
1126       nn_config = &av1_rect_partition_nnconfig_8;
1127       cur_thresh = prob_thresholds[0];
1128       break;
1129     case BLOCK_16X16:
1130       nn_config = &av1_rect_partition_nnconfig_16;
1131       cur_thresh = prob_thresholds[1];
1132       break;
1133     case BLOCK_32X32:
1134       nn_config = &av1_rect_partition_nnconfig_32;
1135       cur_thresh = prob_thresholds[2];
1136       break;
1137     case BLOCK_64X64:
1138       nn_config = &av1_rect_partition_nnconfig_64;
1139       cur_thresh = prob_thresholds[3];
1140       break;
1141     case BLOCK_128X128:
1142       nn_config = &av1_rect_partition_nnconfig_128;
1143       cur_thresh = prob_thresholds[4];
1144       break;
1145     default: assert(0 && "Unexpected bsize.");
1146   }
1147   if (!nn_config) return;
1148 
1149   // 1. Compute input features
1150   float features[9];
1151 
1152   // RD cost ratios
1153   for (int i = 0; i < 5; i++) features[i] = 1.0f;
1154   if (none_rd > 0 && none_rd < 1000000000)
1155     features[0] = (float)none_rd / (float)best_rd;
1156   for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) {
1157     if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1158       features[1 + i] = (float)split_rd[i] / (float)best_rd;
1159   }
1160 
1161   // Variance ratios
1162   const MACROBLOCKD *const xd = &x->e_mbd;
1163   int whole_block_variance;
1164   whole_block_variance = av1_get_perpixel_variance_facade(
1165       cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y);
1166   whole_block_variance = AOMMAX(whole_block_variance, 1);
1167 
1168   int split_variance[SUB_PARTITIONS_SPLIT];
1169   const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
1170   struct buf_2d buf;
1171   buf.stride = x->plane[0].src.stride;
1172   const int bw = block_size_wide[bsize];
1173   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1174     const int x_idx = (i & 1) * bw / 2;
1175     const int y_idx = (i >> 1) * bw / 2;
1176     buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
1177     split_variance[i] =
1178         av1_get_perpixel_variance_facade(cpi, xd, &buf, subsize, AOM_PLANE_Y);
1179   }
1180 
1181   for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++)
1182     features[5 + i] = (float)split_variance[i] / (float)whole_block_variance;
1183 
1184   // Write features to file
1185   write_features_to_file(cpi->oxcf.partition_info_path,
1186                          cpi->ext_part_controller.test_mode, features,
1187                          /*feature_size=*/9, 5, bsize, mi_row, mi_col);
1188 
1189   if (ext_ml_model_decision_after_split_part2(
1190           &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1191           features, &part_state->prune_rect_part[HORZ],
1192           &part_state->prune_rect_part[VERT])) {
1193     return;
1194   }
1195 
1196   // 2. Do the prediction and prune 0-2 partitions based on their probabilities
1197   float raw_scores[3] = { 0.0f };
1198   av1_nn_predict(features, nn_config, 1, raw_scores);
1199   float probs[3] = { 0.0f };
1200   av1_nn_softmax(raw_scores, probs, 3);
1201 
1202   // probs[0] is the probability of the fact that both rectangular partitions
1203   // are worse than current best_rd
1204   if (probs[1] <= cur_thresh) part_state->prune_rect_part[HORZ] = 1;
1205   if (probs[2] <= cur_thresh) part_state->prune_rect_part[VERT] = 1;
1206 }
1207 
1208 // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be
1209 // considered.
av1_ml_prune_ab_partition(AV1_COMP * const cpi,int part_ctx,int var_ctx,int64_t best_rd,PartitionSearchState * part_state,int * ab_partitions_allowed)1210 void av1_ml_prune_ab_partition(AV1_COMP *const cpi, int part_ctx, int var_ctx,
1211                                int64_t best_rd,
1212                                PartitionSearchState *part_state,
1213                                int *ab_partitions_allowed) {
1214   const PartitionBlkParams blk_params = part_state->part_blk_params;
1215   const int mi_row = blk_params.mi_row;
1216   const int mi_col = blk_params.mi_col;
1217   const int bsize = blk_params.bsize;
1218 
1219   if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
1220   const NN_CONFIG *nn_config = NULL;
1221   switch (bsize) {
1222     case BLOCK_8X8: nn_config = NULL; break;
1223     case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break;
1224     case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break;
1225     case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break;
1226     case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break;
1227     default: assert(0 && "Unexpected bsize.");
1228   }
1229   if (!nn_config) return;
1230 
1231   // Generate features.
1232   float features[10];
1233   int feature_index = 0;
1234   features[feature_index++] = (float)part_ctx;
1235   features[feature_index++] = (float)var_ctx;
1236   const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1237   int sub_block_rdcost[8] = { 0 };
1238   int rd_index = 0;
1239   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1240     const int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1241     if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1242       sub_block_rdcost[rd_index] = (int)horz_rd[i];
1243     ++rd_index;
1244   }
1245   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1246     const int64_t *vert_rd = part_state->rect_part_rd[VERT];
1247     if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1248       sub_block_rdcost[rd_index] = (int)vert_rd[i];
1249     ++rd_index;
1250   }
1251   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1252     const int64_t *split_rd = part_state->split_rd;
1253     if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1254       sub_block_rdcost[rd_index] = (int)split_rd[i];
1255     ++rd_index;
1256   }
1257   for (int i = 0; i < 8; ++i) {
1258     // Ratio between the sub-block RD and the whole-block RD.
1259     float rd_ratio = 1.0f;
1260     if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1261       rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1262     features[feature_index++] = rd_ratio;
1263   }
1264   assert(feature_index == 10);
1265 
1266   // Write features to file
1267   if (!frame_is_intra_only(&cpi->common)) {
1268     write_features_to_file(cpi->oxcf.partition_info_path,
1269                            cpi->ext_part_controller.test_mode, features,
1270                            /*feature_size=*/10, 6, bsize, mi_row, mi_col);
1271   }
1272 
1273   if (ext_ml_model_decision_after_rect(
1274           &cpi->ext_part_controller, frame_is_intra_only(&cpi->common),
1275           features, &ab_partitions_allowed[HORZ_A],
1276           &ab_partitions_allowed[HORZ_B], &ab_partitions_allowed[VERT_A],
1277           &ab_partitions_allowed[VERT_B])) {
1278     return;
1279   }
1280 
1281   // Calculate scores using the NN model.
1282   float score[16] = { 0.0f };
1283   av1_nn_predict(features, nn_config, 1, score);
1284   int int_score[16];
1285   int max_score = -1000;
1286   for (int i = 0; i < 16; ++i) {
1287     int_score[i] = (int)(100 * score[i]);
1288     max_score = AOMMAX(int_score[i], max_score);
1289   }
1290 
1291   // Make decisions based on the model scores.
1292   int thresh = max_score;
1293   switch (bsize) {
1294     case BLOCK_16X16: thresh -= 150; break;
1295     case BLOCK_32X32: thresh -= 100; break;
1296     default: break;
1297   }
1298   av1_zero_array(ab_partitions_allowed, NUM_AB_PARTS);
1299   for (int i = 0; i < 16; ++i) {
1300     if (int_score[i] >= thresh) {
1301       if ((i >> 0) & 1) ab_partitions_allowed[HORZ_A] = 1;
1302       if ((i >> 1) & 1) ab_partitions_allowed[HORZ_B] = 1;
1303       if ((i >> 2) & 1) ab_partitions_allowed[VERT_A] = 1;
1304       if ((i >> 3) & 1) ab_partitions_allowed[VERT_B] = 1;
1305     }
1306   }
1307 }
1308 
1309 #define FEATURES 18
1310 #define LABELS 4
1311 // Use a ML model to predict if horz4 and vert4 should be considered.
av1_ml_prune_4_partition(AV1_COMP * const cpi,MACROBLOCK * const x,int part_ctx,int64_t best_rd,PartitionSearchState * part_state,int * part4_allowed,unsigned int pb_source_variance)1312 void av1_ml_prune_4_partition(AV1_COMP *const cpi, MACROBLOCK *const x,
1313                               int part_ctx, int64_t best_rd,
1314                               PartitionSearchState *part_state,
1315                               int *part4_allowed,
1316                               unsigned int pb_source_variance) {
1317   const PartitionBlkParams blk_params = part_state->part_blk_params;
1318   const int mi_row = blk_params.mi_row;
1319   const int mi_col = blk_params.mi_col;
1320   const int bsize = blk_params.bsize;
1321 
1322   int64_t(*rect_part_rd)[SUB_PARTITIONS_RECT] = part_state->rect_part_rd;
1323   int64_t *split_rd = part_state->split_rd;
1324   if (ext_ml_model_decision_after_part_ab(
1325           cpi, x, bsize, part_ctx, best_rd, rect_part_rd, split_rd,
1326           &part4_allowed[HORZ4], &part4_allowed[VERT4], pb_source_variance,
1327           mi_row, mi_col))
1328     return;
1329 
1330   if (best_rd >= 1000000000) return;
1331   int64_t *horz_rd = rect_part_rd[HORZ4];
1332   int64_t *vert_rd = rect_part_rd[VERT4];
1333   const NN_CONFIG *nn_config = NULL;
1334   switch (bsize) {
1335     case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break;
1336     case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break;
1337     case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break;
1338     default: assert(0 && "Unexpected bsize.");
1339   }
1340   if (!nn_config) return;
1341 
1342   // Generate features.
1343   float features[FEATURES];
1344   int feature_index = 0;
1345   features[feature_index++] = (float)part_ctx;
1346   features[feature_index++] = (float)get_unsigned_bits(pb_source_variance);
1347 
1348   const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1349   int sub_block_rdcost[8] = { 0 };
1350   int rd_index = 0;
1351   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1352     if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1353       sub_block_rdcost[rd_index] = (int)horz_rd[i];
1354     ++rd_index;
1355   }
1356   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1357     if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1358       sub_block_rdcost[rd_index] = (int)vert_rd[i];
1359     ++rd_index;
1360   }
1361   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1362     if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1363       sub_block_rdcost[rd_index] = (int)split_rd[i];
1364     ++rd_index;
1365   }
1366   for (int i = 0; i < 8; ++i) {
1367     // Ratio between the sub-block RD and the whole-block RD.
1368     float rd_ratio = 1.0f;
1369     if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1370       rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1371     features[feature_index++] = rd_ratio;
1372   }
1373 
1374   // Get variance of the 1:4 and 4:1 sub-blocks.
1375   unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1376   unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1377   {
1378     BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
1379     BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
1380     av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
1381                          av1_num_planes(&cpi->common), bsize);
1382     const int src_stride = x->plane[0].src.stride;
1383     uint8_t *src = x->plane[0].src.buf;
1384     const MACROBLOCKD *const xd = &x->e_mbd;
1385 
1386     struct buf_2d horz_4_src, vert_4_src;
1387     horz_4_src.stride = src_stride;
1388     vert_4_src.stride = src_stride;
1389 
1390     for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1391       horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
1392       vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
1393 
1394       horz_4_source_var[i] = av1_get_perpixel_variance_facade(
1395           cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
1396       vert_4_source_var[i] = av1_get_perpixel_variance_facade(
1397           cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
1398     }
1399   }
1400 
1401   const float denom = (float)(pb_source_variance + 1);
1402   const float low_b = 0.1f;
1403   const float high_b = 10.0f;
1404   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1405     // Ratio between the 4:1 sub-block variance and the whole-block variance.
1406     float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
1407     if (var_ratio < low_b) var_ratio = low_b;
1408     if (var_ratio > high_b) var_ratio = high_b;
1409     features[feature_index++] = var_ratio;
1410   }
1411   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1412     // Ratio between the 1:4 sub-block RD and the whole-block RD.
1413     float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
1414     if (var_ratio < low_b) var_ratio = low_b;
1415     if (var_ratio > high_b) var_ratio = high_b;
1416     features[feature_index++] = var_ratio;
1417   }
1418   assert(feature_index == FEATURES);
1419 
1420   // Write features to file
1421   if (!frame_is_intra_only(&cpi->common)) {
1422     write_features_to_file(cpi->oxcf.partition_info_path,
1423                            cpi->ext_part_controller.test_mode, features,
1424                            FEATURES, 7, bsize, mi_row, mi_col);
1425   }
1426 
1427   // Calculate scores using the NN model.
1428   float score[LABELS] = { 0.0f };
1429   av1_nn_predict(features, nn_config, 1, score);
1430   int int_score[LABELS];
1431   int max_score = -1000;
1432   for (int i = 0; i < LABELS; ++i) {
1433     int_score[i] = (int)(100 * score[i]);
1434     max_score = AOMMAX(int_score[i], max_score);
1435   }
1436 
1437   // Make decisions based on the model scores.
1438   int thresh = max_score;
1439   switch (bsize) {
1440     case BLOCK_16X16: thresh -= 500; break;
1441     case BLOCK_32X32: thresh -= 500; break;
1442     case BLOCK_64X64: thresh -= 200; break;
1443     default: break;
1444   }
1445   av1_zero_array(part4_allowed, NUM_PART4_TYPES);
1446   for (int i = 0; i < LABELS; ++i) {
1447     if (int_score[i] >= thresh) {
1448       if ((i >> 0) & 1) part4_allowed[HORZ4] = 1;
1449       if ((i >> 1) & 1) part4_allowed[VERT4] = 1;
1450     }
1451   }
1452 }
1453 #undef FEATURES
1454 #undef LABELS
1455 
1456 #define FEATURES 4
av1_ml_predict_breakout(AV1_COMP * const cpi,const MACROBLOCK * const x,const RD_STATS * const rd_stats,unsigned int pb_source_variance,int bit_depth,PartitionSearchState * part_state)1457 void av1_ml_predict_breakout(AV1_COMP *const cpi, const MACROBLOCK *const x,
1458                              const RD_STATS *const rd_stats,
1459                              unsigned int pb_source_variance, int bit_depth,
1460                              PartitionSearchState *part_state) {
1461   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1462   const int mi_row = blk_params->mi_row, mi_col = blk_params->mi_col;
1463   const BLOCK_SIZE bsize = blk_params->bsize;
1464 
1465   const NN_CONFIG *nn_config = NULL;
1466   int thresh = 0;
1467   switch (bsize) {
1468     case BLOCK_8X8:
1469       nn_config = &av1_partition_breakout_nnconfig_8;
1470       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[0];
1471       break;
1472     case BLOCK_16X16:
1473       nn_config = &av1_partition_breakout_nnconfig_16;
1474       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[1];
1475       break;
1476     case BLOCK_32X32:
1477       nn_config = &av1_partition_breakout_nnconfig_32;
1478       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[2];
1479       break;
1480     case BLOCK_64X64:
1481       nn_config = &av1_partition_breakout_nnconfig_64;
1482       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[3];
1483       break;
1484     case BLOCK_128X128:
1485       nn_config = &av1_partition_breakout_nnconfig_128;
1486       thresh = cpi->sf.part_sf.ml_partition_search_breakout_thresh[4];
1487       break;
1488     default: assert(0 && "Unexpected bsize.");
1489   }
1490   if (!nn_config || thresh < 0) return;
1491 
1492   const float ml_predict_breakout_thresh_scale[3] = { 1.15f, 1.05f, 1.0f };
1493   thresh = (int)((float)thresh *
1494                  ml_predict_breakout_thresh_scale
1495                      [cpi->sf.part_sf.ml_predict_breakout_level - 1]);
1496 
1497   // Generate feature values.
1498   float features[FEATURES];
1499   int feature_index = 0;
1500 
1501   const int num_pels_log2 = num_pels_log2_lookup[bsize];
1502   float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX);
1503   rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
1504            rate_f;
1505   features[feature_index++] = rate_f;
1506 
1507   const float dist_f =
1508       (float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2);
1509   features[feature_index++] = dist_f;
1510 
1511   features[feature_index++] = (float)pb_source_variance;
1512 
1513   const int dc_q = (int)x->plane[0].dequant_QTX[0] >> (bit_depth - 8);
1514   features[feature_index++] = (float)(dc_q * dc_q) / 256.0f;
1515   assert(feature_index == FEATURES);
1516 
1517   // Write features to file
1518   write_features_to_file(cpi->oxcf.partition_info_path,
1519                          cpi->ext_part_controller.test_mode, features, FEATURES,
1520                          2, bsize, mi_row, mi_col);
1521 
1522   if (ext_ml_model_decision_after_none(&cpi->ext_part_controller,
1523                                        frame_is_intra_only(&cpi->common),
1524                                        features, &part_state->do_square_split,
1525                                        &part_state->do_rectangular_split)) {
1526     return;
1527   }
1528 
1529   // Calculate score using the NN model.
1530   float score = 0.0f;
1531   av1_nn_predict(features, nn_config, 1, &score);
1532 
1533   // Make decision.
1534   if ((int)(score * 100) >= thresh) {
1535     part_state->do_square_split = 0;
1536     part_state->do_rectangular_split = 0;
1537   }
1538 }
1539 #undef FEATURES
1540 
av1_prune_partitions_before_search(AV1_COMP * const cpi,MACROBLOCK * const x,SIMPLE_MOTION_DATA_TREE * const sms_tree,PartitionSearchState * part_state)1541 void av1_prune_partitions_before_search(AV1_COMP *const cpi,
1542                                         MACROBLOCK *const x,
1543                                         SIMPLE_MOTION_DATA_TREE *const sms_tree,
1544                                         PartitionSearchState *part_state) {
1545   const AV1_COMMON *const cm = &cpi->common;
1546   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1547 
1548   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1549   const BLOCK_SIZE bsize = blk_params->bsize;
1550 
1551   if (cpi->third_pass_ctx) {
1552     int mi_row = blk_params->mi_row;
1553     int mi_col = blk_params->mi_col;
1554     double ratio_h, ratio_w;
1555     av1_get_third_pass_ratio(cpi->third_pass_ctx, 0, cm->height, cm->width,
1556                              &ratio_h, &ratio_w);
1557     THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi(
1558         cpi->third_pass_ctx, 0, mi_row, mi_col, ratio_h, ratio_w);
1559     BLOCK_SIZE third_pass_bsize =
1560         av1_get_third_pass_adjusted_blk_size(this_mi, ratio_h, ratio_w);
1561     // check the actual partition of this block in the second pass
1562     PARTITION_TYPE third_pass_part =
1563         av1_third_pass_get_sb_part_type(cpi->third_pass_ctx, this_mi);
1564 
1565     int is_edge = (mi_row + mi_size_high[bsize] >= cm->mi_params.mi_rows) ||
1566                   (mi_col + mi_size_wide[bsize] >= cm->mi_params.mi_cols);
1567 
1568     if (!is_edge && block_size_wide[bsize] >= 16) {
1569       // If in second pass we used rectangular partition, then do not search for
1570       // rectangular partition in the different direction.
1571       if (third_pass_part != PARTITION_NONE) {
1572         if (third_pass_part == PARTITION_HORZ ||
1573             third_pass_part == PARTITION_HORZ_4 ||
1574             third_pass_part == PARTITION_HORZ_A ||
1575             third_pass_part == PARTITION_HORZ_B) {
1576           part_state->partition_rect_allowed[VERT] = 0;
1577         } else if (third_pass_part == PARTITION_VERT ||
1578                    third_pass_part == PARTITION_VERT_4 ||
1579                    third_pass_part == PARTITION_VERT_A ||
1580                    third_pass_part == PARTITION_VERT_B) {
1581           part_state->partition_rect_allowed[HORZ] = 0;
1582         }
1583       }
1584 
1585       int minSize = AOMMIN(block_size_wide[third_pass_bsize],
1586                            block_size_high[third_pass_bsize]);
1587       int maxSize = AOMMAX(block_size_wide[third_pass_bsize],
1588                            block_size_high[third_pass_bsize]);
1589       if (block_size_wide[bsize] < minSize / 4) {
1590         // Current partition is too small, just terminate
1591         part_state->terminate_partition_search = 1;
1592         return;
1593       } else if (block_size_wide[bsize] < minSize / 2) {
1594         if (third_pass_part != PARTITION_NONE) {
1595           // Current partition is very small, and in second pass we used
1596           // rectangular partition. Terminate the search here then.
1597           part_state->terminate_partition_search = 1;
1598           return;
1599         } else {
1600           // Partition is small, but we still check this partition, only disable
1601           // further splits.
1602           // TODO(any): check why this is not covered by the termination for <
1603           // minSize/4.
1604           av1_disable_square_split_partition(part_state);
1605           av1_disable_rect_partitions(part_state);
1606           return;
1607         }
1608       } else if (block_size_wide[bsize] > maxSize) {
1609         // Partition is larger than in the second pass. Only allow split.
1610         av1_set_square_split_only(part_state);
1611         return;
1612       } else if (block_size_wide[bsize] >= minSize &&
1613                  block_size_wide[bsize] <= maxSize) {
1614         // Partition is within a range where it is very likely to find a good
1615         // choice, so do not prune anything.
1616         return;
1617       }
1618     }
1619   }
1620 
1621   // Prune rectangular partitions for larger blocks.
1622   if (bsize > cpi->sf.part_sf.rect_partition_eval_thresh) {
1623     part_state->do_rectangular_split = 0;
1624     part_state->partition_rect_allowed[HORZ] = 0;
1625     part_state->partition_rect_allowed[VERT] = 0;
1626   }
1627 
1628   // Prune rectangular, AB and 4-way partition based on q index and block size
1629   if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 1) {
1630     if (bsize == BLOCK_8X8 && x->qindex < 35)
1631       av1_disable_rect_partitions(part_state);
1632 
1633   } else if (cpi->sf.part_sf.prune_rectangular_split_based_on_qidx == 2) {
1634     // Enumeration difference between two square partitions
1635     const int sqr_bsize_step = BLOCK_32X32 - BLOCK_16X16;
1636     int max_bsize =
1637         BLOCK_32X32 - (x->qindex * 3 / QINDEX_RANGE) * sqr_bsize_step;
1638     max_bsize = AOMMAX(max_bsize, BLOCK_4X4);
1639     const BLOCK_SIZE max_prune_bsize =
1640         (BLOCK_SIZE)AOMMIN(max_bsize, BLOCK_32X32);
1641 
1642     // Prune partition
1643     // qidx 0 to 85: prune bsize below BLOCK_32X32
1644     // qidx 86 to 170: prune bsize below BLOCK_16X16
1645     // qidx 171 to 255: prune bsize below BLOCK_8X8
1646     if (bsize < max_prune_bsize) {
1647       av1_disable_rect_partitions(part_state);
1648     }
1649   }
1650 
1651   if (cpi->sf.part_sf.prune_sub_8x8_partition_level && (bsize == BLOCK_8X8)) {
1652     const MACROBLOCKD *const xd = &x->e_mbd;
1653     int prune_sub_8x8 = 1;
1654     if (cpi->sf.part_sf.prune_sub_8x8_partition_level == 1) {
1655       int num_neighbors_lt_8x8 = 0;
1656       if (xd->left_available)
1657         num_neighbors_lt_8x8 += (xd->left_mbmi->bsize <= BLOCK_8X8);
1658       if (xd->up_available)
1659         num_neighbors_lt_8x8 += (xd->above_mbmi->bsize <= BLOCK_8X8);
1660       // Evaluate only if both left and above blocks are of size <= BLOCK_8X8.
1661       if (num_neighbors_lt_8x8 == 2) {
1662         prune_sub_8x8 = 0;
1663       }
1664     }
1665     if (prune_sub_8x8) {
1666       av1_disable_all_splits(part_state);
1667     }
1668   }
1669 
1670   // A CNN-based speed feature pruning out either split or all non-split
1671   // partition in INTRA frame coding.
1672   const int try_intra_cnn_based_part_prune =
1673       frame_is_intra_only(cm) &&
1674       cpi->sf.part_sf.intra_cnn_based_part_prune_level &&
1675       cm->seq_params->sb_size >= BLOCK_64X64 && bsize <= BLOCK_64X64 &&
1676       blk_params->bsize_at_least_8x8 &&
1677       av1_is_whole_blk_in_frame(blk_params, mi_params);
1678 
1679   if (try_intra_cnn_based_part_prune) {
1680     av1_intra_mode_cnn_partition(
1681         &cpi->common, x, x->part_search_info.quad_tree_idx,
1682         cpi->sf.part_sf.intra_cnn_based_part_prune_level, part_state);
1683   }
1684 
1685   // Use simple motion search to prune out split or non-split partitions. This
1686   // must be done prior to PARTITION_SPLIT to propagate the initial mvs to a
1687   // smaller blocksize.
1688   const int try_split_only =
1689       cpi->sf.part_sf.simple_motion_search_split &&
1690       part_state->do_square_split && blk_params->bsize_at_least_8x8 &&
1691       av1_is_whole_blk_in_frame(blk_params, mi_params) &&
1692       !frame_is_intra_only(cm) && !av1_superres_scaled(cm);
1693 
1694   if (try_split_only) {
1695     av1_simple_motion_search_based_split(cpi, x, sms_tree, part_state);
1696   }
1697 
1698   // Use simple motion search to prune out rectangular partition in some
1699   // direction. The results are stored in prune_horz and prune_vert in order to
1700   // bypass future related pruning checks if a pruning decision has been made.
1701 
1702   // We want to search at least one partition mode, so don't prune if NONE and
1703   // SPLIT are disabled.
1704   const int non_rect_part_allowed =
1705       part_state->do_square_split || part_state->partition_none_allowed;
1706   // Only run the model if the partitions are not already pruned.
1707   const int rect_part_allowed = part_state->do_rectangular_split &&
1708                                 ((part_state->partition_rect_allowed[HORZ] &&
1709                                   !part_state->prune_rect_part[HORZ]) ||
1710                                  (part_state->partition_rect_allowed[VERT] &&
1711                                   !part_state->prune_rect_part[VERT]));
1712 
1713   const int try_prune_rect = cpi->sf.part_sf.simple_motion_search_prune_rect &&
1714                              !frame_is_intra_only(cm) &&
1715                              non_rect_part_allowed && rect_part_allowed &&
1716                              !av1_superres_scaled(cm);
1717 
1718   if (try_prune_rect) {
1719     av1_simple_motion_search_prune_rect(cpi, x, sms_tree, part_state);
1720   }
1721 }
1722 
1723 #ifndef NDEBUG
is_bsize_square(BLOCK_SIZE bsize)1724 static AOM_INLINE int is_bsize_square(BLOCK_SIZE bsize) {
1725   return block_size_wide[bsize] == block_size_high[bsize];
1726 }
1727 #endif  // NDEBUG
1728 
av1_prune_partitions_by_max_min_bsize(SuperBlockEnc * sb_enc,PartitionSearchState * part_state)1729 void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc,
1730                                            PartitionSearchState *part_state) {
1731   assert(is_bsize_square(sb_enc->max_partition_size));
1732   assert(is_bsize_square(sb_enc->min_partition_size));
1733   assert(sb_enc->min_partition_size <= sb_enc->max_partition_size);
1734   const PartitionBlkParams *blk_params = &part_state->part_blk_params;
1735   const BLOCK_SIZE bsize = blk_params->bsize;
1736   assert(is_bsize_square(bsize));
1737   const int max_partition_size_1d = block_size_wide[sb_enc->max_partition_size];
1738   const int min_partition_size_1d = block_size_wide[sb_enc->min_partition_size];
1739   const int bsize_1d = block_size_wide[bsize];
1740   assert(min_partition_size_1d <= max_partition_size_1d);
1741   const int is_le_min_sq_part = bsize_1d <= min_partition_size_1d;
1742   const int is_gt_max_sq_part = bsize_1d > max_partition_size_1d;
1743   if (is_gt_max_sq_part) {
1744     // If current block size is larger than max, only allow split.
1745     av1_set_square_split_only(part_state);
1746   } else if (is_le_min_sq_part) {
1747     // If current block size is less or equal to min, only allow none if valid
1748     // block large enough; only allow split otherwise.
1749     av1_disable_rect_partitions(part_state);
1750 
1751     // only disable square split when current block is not at the picture
1752     // boundary. otherwise, inherit the square split flag from previous logic
1753     if (av1_blk_has_rows_and_cols(blk_params)) {
1754       part_state->do_square_split = 0;
1755     }
1756     part_state->partition_none_allowed = !(part_state->do_square_split);
1757   }
1758 }
1759 
1760 // Decide whether to evaluate the AB partition specified by part_type based on
1761 // split and HORZ/VERT info
evaluate_ab_partition_based_on_split(const PC_TREE * pc_tree,PARTITION_TYPE rect_part,const RD_RECT_PART_WIN_INFO * rect_part_win_info,int qindex,int split_idx1,int split_idx2)1762 int evaluate_ab_partition_based_on_split(
1763     const PC_TREE *pc_tree, PARTITION_TYPE rect_part,
1764     const RD_RECT_PART_WIN_INFO *rect_part_win_info, int qindex, int split_idx1,
1765     int split_idx2) {
1766   int num_win = 0;
1767   // Threshold for number of winners
1768   // Conservative pruning for high quantizers
1769   const int num_win_thresh = AOMMIN(3 * (2 * (MAXQ - qindex) / MAXQ), 3);
1770   int sub_part_win =
1771       (rect_part_win_info == NULL)    ? (pc_tree->partitioning == rect_part)
1772       : (rect_part == PARTITION_HORZ) ? rect_part_win_info->rect_part_win[HORZ]
1773                                       : rect_part_win_info->rect_part_win[VERT];
1774   num_win += (sub_part_win) ? 1 : 0;
1775   if (pc_tree->split[split_idx1]) {
1776     num_win +=
1777         (pc_tree->split[split_idx1]->partitioning == PARTITION_NONE) ? 1 : 0;
1778   } else {
1779     num_win += 1;
1780   }
1781   if (pc_tree->split[split_idx2]) {
1782     num_win +=
1783         (pc_tree->split[split_idx2]->partitioning == PARTITION_NONE) ? 1 : 0;
1784   } else {
1785     num_win += 1;
1786   }
1787   if (num_win < num_win_thresh) {
1788     return 0;
1789   }
1790   return 1;
1791 }
1792 
av1_prune_ab_partitions(AV1_COMP * cpi,const MACROBLOCK * x,const PC_TREE * pc_tree,int pb_source_variance,int64_t best_rdcost,const RD_RECT_PART_WIN_INFO * rect_part_win_info,bool ext_partition_allowed,PartitionSearchState * part_state,int * ab_partitions_allowed)1793 void av1_prune_ab_partitions(AV1_COMP *cpi, const MACROBLOCK *x,
1794                              const PC_TREE *pc_tree, int pb_source_variance,
1795                              int64_t best_rdcost,
1796                              const RD_RECT_PART_WIN_INFO *rect_part_win_info,
1797                              bool ext_partition_allowed,
1798                              PartitionSearchState *part_state,
1799                              int *ab_partitions_allowed) {
1800   int64_t *horz_rd = part_state->rect_part_rd[HORZ];
1801   int64_t *vert_rd = part_state->rect_part_rd[VERT];
1802   int64_t *split_rd = part_state->split_rd;
1803   const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg;
1804   // The standard AB partitions are allowed initially if ext-partition-types are
1805   // allowed.
1806   int horzab_partition_allowed = ext_partition_allowed &&
1807                                  part_cfg->enable_ab_partitions &&
1808                                  part_state->partition_rect_allowed[HORZ];
1809   int vertab_partition_allowed = ext_partition_allowed &&
1810                                  part_cfg->enable_ab_partitions &&
1811                                  part_state->partition_rect_allowed[VERT];
1812 
1813   // Pruning: pruning out AB partitions on one main direction based on the
1814   // current best partition and source variance.
1815   if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1816     if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 1) {
1817       // TODO(debargha,huisu@google.com): may need to tune the threshold for
1818       // pb_source_variance.
1819       horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1820                                    (pc_tree->partitioning == PARTITION_NONE &&
1821                                     pb_source_variance < 32) ||
1822                                    pc_tree->partitioning == PARTITION_SPLIT);
1823       vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1824                                    (pc_tree->partitioning == PARTITION_NONE &&
1825                                     pb_source_variance < 32) ||
1826                                    pc_tree->partitioning == PARTITION_SPLIT);
1827     } else {
1828       horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
1829                                    pc_tree->partitioning == PARTITION_SPLIT);
1830       vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
1831                                    pc_tree->partitioning == PARTITION_SPLIT);
1832     }
1833     horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
1834     horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
1835     vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
1836     vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
1837     split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
1838     split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
1839     split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
1840     split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
1841   }
1842 
1843   // Pruning: pruning out horz_a or horz_b if the combined rdcost of its
1844   // subblocks estimated from previous partitions is much higher than the best
1845   // rd so far.
1846   ab_partitions_allowed[HORZ_A] = horzab_partition_allowed;
1847   ab_partitions_allowed[HORZ_B] = horzab_partition_allowed;
1848   if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1849     const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
1850     const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
1851     switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1852       case 1:
1853         ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 14 < best_rdcost);
1854         ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 14 < best_rdcost);
1855         break;
1856       case 2:
1857       default:
1858         ab_partitions_allowed[HORZ_A] &= (horz_a_rd / 16 * 15 < best_rdcost);
1859         ab_partitions_allowed[HORZ_B] &= (horz_b_rd / 16 * 15 < best_rdcost);
1860         break;
1861     }
1862   }
1863 
1864   // Pruning: pruning out vert_a or vert_b if the combined rdcost of its
1865   // subblocks estimated from previous partitions is much higher than the best
1866   // rd so far.
1867   ab_partitions_allowed[VERT_A] = vertab_partition_allowed;
1868   ab_partitions_allowed[VERT_B] = vertab_partition_allowed;
1869   if (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1870     const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
1871     const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
1872     switch (cpi->sf.part_sf.prune_ext_partition_types_search_level) {
1873       case 1:
1874         ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 14 < best_rdcost);
1875         ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 14 < best_rdcost);
1876         break;
1877       case 2:
1878       default:
1879         ab_partitions_allowed[VERT_A] &= (vert_a_rd / 16 * 15 < best_rdcost);
1880         ab_partitions_allowed[VERT_B] &= (vert_b_rd / 16 * 15 < best_rdcost);
1881         break;
1882     }
1883   }
1884 
1885   // Pruning: pruning out some ab partitions using a DNN taking rd costs of
1886   // sub-blocks from previous basic partition types.
1887   if (cpi->sf.part_sf.ml_prune_partition && ext_partition_allowed &&
1888       part_state->partition_rect_allowed[HORZ] &&
1889       part_state->partition_rect_allowed[VERT]) {
1890     // TODO(huisu@google.com): x->source_variance may not be the current
1891     // block's variance. The correct one to use is pb_source_variance. Need to
1892     // re-train the model to fix it.
1893     av1_ml_prune_ab_partition(cpi, pc_tree->partitioning,
1894                               get_unsigned_bits(x->source_variance),
1895                               best_rdcost, part_state, ab_partitions_allowed);
1896   }
1897 
1898   // Pruning: pruning AB partitions based on the number of horz/vert wins
1899   // in the current block and sub-blocks in PARTITION_SPLIT.
1900   if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1901       ab_partitions_allowed[HORZ_A]) {
1902     ab_partitions_allowed[HORZ_A] &= evaluate_ab_partition_based_on_split(
1903         pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 0, 1);
1904   }
1905   if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1906       ab_partitions_allowed[HORZ_B]) {
1907     ab_partitions_allowed[HORZ_B] &= evaluate_ab_partition_based_on_split(
1908         pc_tree, PARTITION_HORZ, rect_part_win_info, x->qindex, 2, 3);
1909   }
1910   if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1911       ab_partitions_allowed[VERT_A]) {
1912     ab_partitions_allowed[VERT_A] &= evaluate_ab_partition_based_on_split(
1913         pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 0, 2);
1914   }
1915   if (cpi->sf.part_sf.prune_ext_part_using_split_info >= 2 &&
1916       ab_partitions_allowed[VERT_B]) {
1917     ab_partitions_allowed[VERT_B] &= evaluate_ab_partition_based_on_split(
1918         pc_tree, PARTITION_VERT, rect_part_win_info, x->qindex, 1, 3);
1919   }
1920 }
1921 
1922 // Prepare features for the external model. Specifically, features after
1923 // ab partition is searched.
prepare_features_after_part_ab(const AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int part_ctx,int64_t best_rd,int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],int64_t split_rd[SUB_PARTITIONS_SPLIT],unsigned int pb_source_variance,int mi_row,int mi_col,aom_partition_features_t * const features)1924 static void prepare_features_after_part_ab(
1925     const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
1926     int part_ctx, int64_t best_rd,
1927     int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
1928     int64_t split_rd[SUB_PARTITIONS_SPLIT], unsigned int pb_source_variance,
1929     int mi_row, int mi_col, aom_partition_features_t *const features) {
1930   int64_t *horz_rd = rect_part_rd[HORZ];
1931   int64_t *vert_rd = rect_part_rd[VERT];
1932 
1933   // Generate features.
1934   int feature_index = 0;
1935   features->after_part_ab.f[feature_index++] = (float)part_ctx;
1936   features->after_part_ab.f[feature_index++] =
1937       (float)get_unsigned_bits(pb_source_variance);
1938 
1939   const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
1940   int sub_block_rdcost[8] = { 0 };
1941   int rd_index = 0;
1942   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1943     if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
1944       sub_block_rdcost[rd_index] = (int)horz_rd[i];
1945     ++rd_index;
1946   }
1947   for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) {
1948     if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
1949       sub_block_rdcost[rd_index] = (int)vert_rd[i];
1950     ++rd_index;
1951   }
1952   for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) {
1953     if (split_rd[i] > 0 && split_rd[i] < 1000000000)
1954       sub_block_rdcost[rd_index] = (int)split_rd[i];
1955     ++rd_index;
1956   }
1957   for (int i = 0; i < 8; ++i) {
1958     // Ratio between the sub-block RD and the whole-block RD.
1959     float rd_ratio = 1.0f;
1960     if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
1961       rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
1962     features->after_part_ab.f[feature_index++] = rd_ratio;
1963   }
1964 
1965   // Get variance of the 1:4 and 4:1 sub-blocks.
1966   unsigned int horz_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1967   unsigned int vert_4_source_var[SUB_PARTITIONS_PART4] = { 0 };
1968   {
1969     BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
1970     BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
1971     av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
1972                          av1_num_planes(&cpi->common), bsize);
1973     const int src_stride = x->plane[0].src.stride;
1974     uint8_t *src = x->plane[0].src.buf;
1975     const MACROBLOCKD *const xd = &x->e_mbd;
1976 
1977     struct buf_2d horz_4_src, vert_4_src;
1978     horz_4_src.stride = src_stride;
1979     vert_4_src.stride = src_stride;
1980 
1981     for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1982       horz_4_src.buf = src + i * block_size_high[horz_4_bs] * src_stride;
1983       vert_4_src.buf = src + i * block_size_wide[vert_4_bs];
1984 
1985       horz_4_source_var[i] = av1_get_perpixel_variance_facade(
1986           cpi, xd, &horz_4_src, horz_4_bs, AOM_PLANE_Y);
1987       vert_4_source_var[i] = av1_get_perpixel_variance_facade(
1988           cpi, xd, &vert_4_src, vert_4_bs, AOM_PLANE_Y);
1989     }
1990   }
1991 
1992   const float denom = (float)(pb_source_variance + 1);
1993   const float low_b = 0.1f;
1994   const float high_b = 10.0f;
1995   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
1996     // Ratio between the 4:1 sub-block variance and the whole-block variance.
1997     float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
1998     if (var_ratio < low_b) var_ratio = low_b;
1999     if (var_ratio > high_b) var_ratio = high_b;
2000     features->after_part_ab.f[feature_index++] = var_ratio;
2001   }
2002   for (int i = 0; i < SUB_PARTITIONS_PART4; ++i) {
2003     // Ratio between the 1:4 sub-block RD and the whole-block RD.
2004     float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
2005     if (var_ratio < low_b) var_ratio = low_b;
2006     if (var_ratio > high_b) var_ratio = high_b;
2007     features->after_part_ab.f[feature_index++] = var_ratio;
2008   }
2009   assert(feature_index == 18);
2010 }
2011 
2012 // If the external partition model is used, we let it determine partition
2013 // decisions before partition none. Specifically, these parameters:
2014 // partition_none_allowed
2015 // partition_horz_allowed
2016 // partition_vert_allowed
2017 // do_rectangular_split
2018 // do_square_split
ext_ml_model_decision_before_none(AV1_COMP * cpi,const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],int * partition_none_allowed,int * partition_horz_allowed,int * partition_vert_allowed,int * do_rectangular_split,int * do_square_split)2019 static bool ext_ml_model_decision_before_none(
2020     AV1_COMP *cpi, const float features_from_motion[FEATURE_SIZE_SMS_SPLIT],
2021     int *partition_none_allowed, int *partition_horz_allowed,
2022     int *partition_vert_allowed, int *do_rectangular_split,
2023     int *do_square_split) {
2024   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2025   if (!ext_part_controller->ready) return false;
2026 
2027   // Setup features.
2028   aom_partition_features_t features;
2029   features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE;
2030   for (int i = 0; i < FEATURE_SIZE_SMS_SPLIT; ++i) {
2031     features.before_part_none.f[i] = features_from_motion[i];
2032   }
2033 
2034   // Send necessary features to the external model.
2035   av1_ext_part_send_features(ext_part_controller, &features);
2036 
2037   // Get partition decisions from the external model.
2038   aom_partition_decision_t decision;
2039   const bool valid_decision =
2040       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2041   if (!valid_decision) return false;
2042 
2043   // Populate decisions
2044   *partition_none_allowed = decision.partition_none_allowed;
2045   *partition_horz_allowed = decision.partition_rect_allowed[HORZ];
2046   *partition_vert_allowed = decision.partition_rect_allowed[VERT];
2047   *do_rectangular_split = decision.do_rectangular_split;
2048   *do_square_split = decision.do_square_split;
2049 
2050   return true;
2051 }
2052 
2053 // If the external partition model is used, we let it determine partition
2054 // decisions before partition none. Specifically, these parameters:
2055 // prune_horz
2056 // prune_vert
ext_ml_model_decision_before_none_part2(AV1_COMP * cpi,const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],int * prune_horz,int * prune_vert)2057 static bool ext_ml_model_decision_before_none_part2(
2058     AV1_COMP *cpi,
2059     const float features_from_motion[FEATURE_SIZE_SMS_PRUNE_PART],
2060     int *prune_horz, int *prune_vert) {
2061   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2062   if (!ext_part_controller->ready) return false;
2063 
2064   // Setup features.
2065   aom_partition_features_t features;
2066   features.id = AOM_EXT_PART_FEATURE_BEFORE_NONE_PART2;
2067   for (int i = 0; i < FEATURE_SIZE_SMS_PRUNE_PART; ++i) {
2068     features.before_part_none.f_part2[i] = features_from_motion[i];
2069   }
2070 
2071   // Send necessary features to the external model.
2072   av1_ext_part_send_features(ext_part_controller, &features);
2073 
2074   // Get partition decisions from the external model.
2075   aom_partition_decision_t decision;
2076   const bool valid_decision =
2077       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2078   if (!valid_decision) return false;
2079 
2080   // Populate decisions
2081   *prune_horz = decision.prune_rect_part[HORZ];
2082   *prune_vert = decision.prune_rect_part[VERT];
2083 
2084   return true;
2085 }
2086 
2087 // If the external partition model is used, we let it determine partition
2088 // decisions after none partition. Specifically, these parameters:
2089 // do_square_split
2090 // do_rectangular_split
ext_ml_model_decision_after_none(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_after_none,int * do_square_split,int * do_rectangular_split)2091 bool ext_ml_model_decision_after_none(
2092     ExtPartController *const ext_part_controller, const int is_intra_frame,
2093     const float *const features_after_none, int *do_square_split,
2094     int *do_rectangular_split) {
2095   if (!ext_part_controller->ready || is_intra_frame) return false;
2096 
2097   // Setup features.
2098   aom_partition_features_t features;
2099   features.id = AOM_EXT_PART_FEATURE_AFTER_NONE;
2100   for (int i = 0; i < 4; ++i) {
2101     features.after_part_none.f[i] = features_after_none[i];
2102   }
2103 
2104   // Send necessary features to the external model.
2105   av1_ext_part_send_features(ext_part_controller, &features);
2106 
2107   // Get partition decisions from the external model.
2108   aom_partition_decision_t decision;
2109   const bool valid_decision =
2110       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2111   if (!valid_decision) return false;
2112 
2113   // Populate decisions
2114   *do_square_split = decision.do_square_split;
2115   *do_rectangular_split = decision.do_rectangular_split;
2116 
2117   return true;
2118 }
2119 
2120 // If the external partition model is used, we let it determine partition
2121 // decisions after none partition. Specifically, these parameters:
2122 // terminate_partition_search
ext_ml_model_decision_after_none_part2(AV1_COMP * const cpi,const float * const features_terminate,int * terminate_partition_search)2123 bool ext_ml_model_decision_after_none_part2(
2124     AV1_COMP *const cpi, const float *const features_terminate,
2125     int *terminate_partition_search) {
2126   AV1_COMMON *const cm = &cpi->common;
2127   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2128   if (!ext_part_controller->ready || frame_is_intra_only(cm)) return false;
2129 
2130   // Setup features.
2131   aom_partition_features_t features;
2132   features.id = AOM_EXT_PART_FEATURE_AFTER_NONE_PART2;
2133   for (int i = 0; i < FEATURE_SIZE_SMS_TERM_NONE; ++i) {
2134     features.after_part_none.f_terminate[i] = features_terminate[i];
2135   }
2136 
2137   // Send necessary features to the external model.
2138   av1_ext_part_send_features(ext_part_controller, &features);
2139 
2140   // Get partition decisions from the external model.
2141   aom_partition_decision_t decision;
2142   const bool valid_decision =
2143       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2144   if (!valid_decision) return false;
2145 
2146   // Populate decisions
2147   *terminate_partition_search = decision.terminate_partition_search;
2148 
2149   return true;
2150 }
2151 
2152 // If the external partition model is used, we let it determine partition
2153 // decisions after none partition. Specifically, these parameters:
2154 // terminate_partition_search
ext_ml_model_decision_after_split(AV1_COMP * const cpi,const float * const features_terminate,int * terminate_partition_search)2155 bool ext_ml_model_decision_after_split(AV1_COMP *const cpi,
2156                                        const float *const features_terminate,
2157                                        int *terminate_partition_search) {
2158   const AV1_COMMON *const cm = &cpi->common;
2159   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2160   if (frame_is_intra_only(cm) || !cpi->ext_part_controller.ready) {
2161     return false;
2162   }
2163 
2164   // Setup features.
2165   aom_partition_features_t features;
2166   features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT;
2167   for (int i = 0; i < 31; ++i) {
2168     features.after_part_split.f_terminate[i] = features_terminate[i];
2169   }
2170 
2171   // Send necessary features to the external model.
2172   av1_ext_part_send_features(ext_part_controller, &features);
2173 
2174   // Get partition decisions from the external model.
2175   aom_partition_decision_t decision;
2176   const bool valid_decision =
2177       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2178   if (!valid_decision) return false;
2179 
2180   // Populate decisions
2181   *terminate_partition_search = decision.terminate_partition_search;
2182 
2183   return true;
2184 }
2185 
2186 // If the external partition model is used, we let it determine partition
2187 // decisions after none partition. Specifically, these parameters:
2188 // prune_rect_part[HORZ]
2189 // prune_rect_part[VERT]
ext_ml_model_decision_after_split_part2(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_prune,int * prune_rect_part_horz,int * prune_rect_part_vert)2190 bool ext_ml_model_decision_after_split_part2(
2191     ExtPartController *const ext_part_controller, const int is_intra_frame,
2192     const float *const features_prune, int *prune_rect_part_horz,
2193     int *prune_rect_part_vert) {
2194   if (is_intra_frame || !ext_part_controller->ready) {
2195     return false;
2196   }
2197 
2198   // Setup features.
2199   aom_partition_features_t features;
2200   features.id = AOM_EXT_PART_FEATURE_AFTER_SPLIT_PART2;
2201   for (int i = 0; i < 9; ++i) {
2202     features.after_part_split.f_prune_rect[i] = features_prune[i];
2203   }
2204 
2205   // Send necessary features to the external model.
2206   av1_ext_part_send_features(ext_part_controller, &features);
2207 
2208   // Get partition decisions from the external model.
2209   aom_partition_decision_t decision;
2210   const bool valid_decision =
2211       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2212   if (!valid_decision) return false;
2213 
2214   // Populate decisions
2215   *prune_rect_part_horz = decision.prune_rect_part[0];
2216   *prune_rect_part_vert = decision.prune_rect_part[1];
2217 
2218   return true;
2219 }
2220 
2221 // If the external partition model is used, we let it determine partition
2222 // decisions after rectangular partition. Specifically, these parameters:
2223 // horza_partition_allowed
2224 // horzb_partition_allowed
2225 // verta_partition_allowed
2226 // vertb_partition_allowed
ext_ml_model_decision_after_rect(ExtPartController * const ext_part_controller,const int is_intra_frame,const float * const features_after_rect,int * horza_partition_allowed,int * horzb_partition_allowed,int * verta_partition_allowed,int * vertb_partition_allowed)2227 static bool ext_ml_model_decision_after_rect(
2228     ExtPartController *const ext_part_controller, const int is_intra_frame,
2229     const float *const features_after_rect, int *horza_partition_allowed,
2230     int *horzb_partition_allowed, int *verta_partition_allowed,
2231     int *vertb_partition_allowed) {
2232   if (is_intra_frame || !ext_part_controller->ready) return false;
2233 
2234   // Setup features.
2235   aom_partition_features_t features;
2236   features.id = AOM_EXT_PART_FEATURE_AFTER_RECT;
2237   for (int i = 0; i < 10; ++i) {
2238     features.after_part_rect.f[i] = features_after_rect[i];
2239   }
2240 
2241   // Send necessary features to the external model.
2242   av1_ext_part_send_features(ext_part_controller, &features);
2243 
2244   // Get partition decisions from the external model.
2245   aom_partition_decision_t decision;
2246   const bool valid_decision =
2247       av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2248   if (!valid_decision) return false;
2249 
2250   // Populate decisions
2251   *horza_partition_allowed = decision.horza_partition_allowed;
2252   *horzb_partition_allowed = decision.horzb_partition_allowed;
2253   *verta_partition_allowed = decision.verta_partition_allowed;
2254   *vertb_partition_allowed = decision.vertb_partition_allowed;
2255 
2256   return true;
2257 }
2258 
2259 // If the external partition model is used, we let it determine partition
2260 // decisions after AB partition. Specifically, these parameters:
2261 // partition_vert4_allowed
2262 // partition_horz4_allowed
ext_ml_model_decision_after_part_ab(AV1_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int part_ctx,int64_t best_rd,int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],int64_t split_rd[SUB_PARTITIONS_SPLIT],int * const partition_horz4_allowed,int * const partition_vert4_allowed,unsigned int pb_source_variance,int mi_row,int mi_col)2263 static bool ext_ml_model_decision_after_part_ab(
2264     AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, int part_ctx,
2265     int64_t best_rd, int64_t rect_part_rd[NUM_RECT_PARTS][SUB_PARTITIONS_RECT],
2266     int64_t split_rd[SUB_PARTITIONS_SPLIT], int *const partition_horz4_allowed,
2267     int *const partition_vert4_allowed, unsigned int pb_source_variance,
2268     int mi_row, int mi_col) {
2269   const AV1_COMMON *const cm = &cpi->common;
2270   ExtPartController *const ext_part_controller = &cpi->ext_part_controller;
2271 
2272   if (!frame_is_intra_only(cm) && ext_part_controller->ready) {
2273     // Setup features.
2274     aom_partition_features_t features;
2275     features.id = AOM_EXT_PART_FEATURE_AFTER_AB;
2276     prepare_features_after_part_ab(cpi, x, bsize, part_ctx, best_rd,
2277                                    rect_part_rd, split_rd, pb_source_variance,
2278                                    mi_row, mi_col, &features);
2279 
2280     // Send necessary features to the external model.
2281     av1_ext_part_send_features(ext_part_controller, &features);
2282 
2283     // Get partition decisions from the external model.
2284     aom_partition_decision_t decision;
2285     const bool valid_decision =
2286         av1_ext_part_get_partition_decision(ext_part_controller, &decision);
2287     if (!valid_decision) return false;
2288 
2289     // Populate decisions
2290     *partition_horz4_allowed = decision.partition_horz4_allowed;
2291     *partition_vert4_allowed = decision.partition_vert4_allowed;
2292 
2293     return true;
2294   }
2295 
2296   return false;
2297 }
2298 
2299 // This function resembles "av1_setup_sms_tree()" in context_tree.c
2300 // with function signature change.
setup_sms_tree(AV1_COMP * const cpi,SIMPLE_MOTION_DATA_TREE * sms_tree)2301 static SIMPLE_MOTION_DATA_TREE *setup_sms_tree(
2302     AV1_COMP *const cpi, SIMPLE_MOTION_DATA_TREE *sms_tree) {
2303   AV1_COMMON *const cm = &cpi->common;
2304   const int stat_generation_stage = is_stat_generation_stage(cpi);
2305   const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2306   const int tree_nodes =
2307       av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2308   int sms_tree_index = 0;
2309   SIMPLE_MOTION_DATA_TREE *this_sms;
2310   int square_index = 1;
2311   int nodes;
2312   this_sms = &sms_tree[0];
2313 
2314   if (!stat_generation_stage) {
2315     const int leaf_factor = is_sb_size_128 ? 4 : 1;
2316     const int leaf_nodes = 256 * leaf_factor;
2317 
2318     // Sets up all the leaf nodes in the tree.
2319     for (sms_tree_index = 0; sms_tree_index < leaf_nodes; ++sms_tree_index) {
2320       SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2321       tree->block_size = square[0];
2322     }
2323 
2324     // Each node has 4 leaf nodes, fill each block_size level of the tree
2325     // from leafs to the root.
2326     for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) {
2327       for (int i = 0; i < nodes; ++i) {
2328         SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2329         tree->block_size = square[square_index];
2330         for (int j = 0; j < 4; j++) tree->split[j] = this_sms++;
2331         ++sms_tree_index;
2332       }
2333       ++square_index;
2334     }
2335   } else {
2336     // Allocation for firstpass/LAP stage
2337     // TODO(Mufaddal): refactor square_index to use a common block_size macro
2338     // from firstpass.c
2339     SIMPLE_MOTION_DATA_TREE *const tree = &sms_tree[sms_tree_index];
2340     square_index = 2;
2341     tree->block_size = square[square_index];
2342   }
2343 
2344   // Set up the root node for the largest superblock size
2345   return &sms_tree[tree_nodes - 1];
2346 }
2347 
write_motion_feature_to_file(const char * const path,const int sb_counter,const unsigned int * block_sse,const unsigned int * block_var,const int num_blocks,const BLOCK_SIZE bsize,const BLOCK_SIZE fixed_block_size,const int mi_row,const int mi_col)2348 static void write_motion_feature_to_file(
2349     const char *const path, const int sb_counter, const unsigned int *block_sse,
2350     const unsigned int *block_var, const int num_blocks, const BLOCK_SIZE bsize,
2351     const BLOCK_SIZE fixed_block_size, const int mi_row, const int mi_col) {
2352   char filename[256];
2353   snprintf(filename, sizeof(filename), "%s/motion_search_feature_sb%d", path,
2354            sb_counter);
2355   FILE *pfile = fopen(filename, "w");
2356   fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize,
2357           block_size_wide[fixed_block_size], num_blocks);
2358   for (int i = 0; i < num_blocks; ++i) {
2359     fprintf(pfile, "%d", block_sse[i]);
2360     if (i < num_blocks - 1) fprintf(pfile, ",");
2361   }
2362   fprintf(pfile, "\n");
2363   for (int i = 0; i < num_blocks; ++i) {
2364     fprintf(pfile, "%d", block_var[i]);
2365     if (i < num_blocks - 1) fprintf(pfile, ",");
2366   }
2367   fprintf(pfile, "\n");
2368   fclose(pfile);
2369 }
2370 
av1_collect_motion_search_features_sb(AV1_COMP * const cpi,ThreadData * td,TileDataEnc * tile_data,const int mi_row,const int mi_col,const BLOCK_SIZE bsize,aom_partition_features_t * features)2371 void av1_collect_motion_search_features_sb(AV1_COMP *const cpi, ThreadData *td,
2372                                            TileDataEnc *tile_data,
2373                                            const int mi_row, const int mi_col,
2374                                            const BLOCK_SIZE bsize,
2375                                            aom_partition_features_t *features) {
2376   const AV1_COMMON *const cm = &cpi->common;
2377   if (frame_is_intra_only(cm)) return;
2378 
2379   MACROBLOCK *const x = &td->mb;
2380   const BLOCK_SIZE fixed_block_size = BLOCK_16X16;
2381   const int col_step = mi_size_wide[fixed_block_size];
2382   const int row_step = mi_size_high[fixed_block_size];
2383   SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
2384   const int stat_generation_stage = is_stat_generation_stage(cpi);
2385   const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2386   const int tree_nodes =
2387       av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2388   CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
2389   SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
2390   TileInfo *const tile_info = &tile_data->tile_info;
2391   av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
2392   av1_init_simple_motion_search_mvs_for_sb(cpi, NULL, x, sms_root, mi_row,
2393                                            mi_col);
2394   av1_reset_simple_motion_tree_partition(sms_root, bsize);
2395   const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
2396                                                         : LAST_FRAME };
2397   const int mi_width =
2398       AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col);
2399   const int mi_height =
2400       AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row);
2401   const int col_steps = (mi_width / col_step) + ((mi_width % col_step) > 0);
2402   const int row_steps = (mi_height / row_step) + ((mi_height % row_step) > 0);
2403   const int num_blocks = col_steps * row_steps;
2404   unsigned int *block_sse = aom_calloc(num_blocks, sizeof(*block_sse));
2405   unsigned int *block_var = aom_calloc(num_blocks, sizeof(*block_var));
2406   if (!(block_sse && block_var)) {
2407     aom_free(sms_tree);
2408     aom_free(block_sse);
2409     aom_free(block_var);
2410     aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
2411                        "Error allocating block_sse & block_var");
2412   }
2413   int idx = 0;
2414 
2415   for (int row = mi_row;
2416        row < AOMMIN(mi_row + mi_size_high[bsize], cm->mi_params.mi_rows);
2417        row += row_step) {
2418     for (int col = mi_col;
2419          col < AOMMIN(mi_col + mi_size_wide[bsize], cm->mi_params.mi_cols);
2420          col += col_step) {
2421       simple_motion_search_get_best_ref(
2422           cpi, x, sms_root, row, col, fixed_block_size, ref_list,
2423           /*num_refs=*/1, /*use_subpixel=*/1,
2424           /*save_mv=*/1, &block_sse[idx], &block_var[idx]);
2425       ++idx;
2426     }
2427   }
2428   if (features == NULL) {
2429     write_motion_feature_to_file(cpi->oxcf.partition_info_path, cpi->sb_counter,
2430                                  block_sse, block_var, idx, bsize,
2431                                  fixed_block_size, mi_row, mi_col);
2432   } else {
2433     features->sb_features.motion_features.unit_length =
2434         block_size_wide[fixed_block_size];
2435     features->sb_features.motion_features.num_units = idx;
2436     for (int i = 0; i < idx; ++i) {
2437       features->sb_features.motion_features.block_sse[i] = block_sse[i];
2438       features->sb_features.motion_features.block_var[i] = block_var[i];
2439     }
2440   }
2441 
2442   aom_free(block_sse);
2443   aom_free(block_var);
2444   aom_free(sms_tree);
2445 }
2446 
av1_prepare_motion_search_features_block(AV1_COMP * const cpi,ThreadData * td,TileDataEnc * tile_data,const int mi_row,const int mi_col,const BLOCK_SIZE bsize,const int valid_partition_types,unsigned int * block_sse,unsigned int * block_var,unsigned int sub_block_sse[4],unsigned int sub_block_var[4],unsigned int horz_block_sse[2],unsigned int horz_block_var[2],unsigned int vert_block_sse[2],unsigned int vert_block_var[2])2447 void av1_prepare_motion_search_features_block(
2448     AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
2449     const int mi_row, const int mi_col, const BLOCK_SIZE bsize,
2450     const int valid_partition_types, unsigned int *block_sse,
2451     unsigned int *block_var, unsigned int sub_block_sse[4],
2452     unsigned int sub_block_var[4], unsigned int horz_block_sse[2],
2453     unsigned int horz_block_var[2], unsigned int vert_block_sse[2],
2454     unsigned int vert_block_var[2]) {
2455   const AV1_COMMON *const cm = &cpi->common;
2456   if (frame_is_intra_only(cm)) return;
2457   MACROBLOCK *const x = &td->mb;
2458   SIMPLE_MOTION_DATA_TREE *sms_tree = NULL;
2459   const int stat_generation_stage = is_stat_generation_stage(cpi);
2460   const int is_sb_size_128 = cm->seq_params->sb_size == BLOCK_128X128;
2461   const int tree_nodes =
2462       av1_get_pc_tree_nodes(is_sb_size_128, stat_generation_stage);
2463   CHECK_MEM_ERROR(cm, sms_tree, aom_calloc(tree_nodes, sizeof(*sms_tree)));
2464   SIMPLE_MOTION_DATA_TREE *sms_root = setup_sms_tree(cpi, sms_tree);
2465   TileInfo *const tile_info = &tile_data->tile_info;
2466   av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col, bsize);
2467   av1_reset_simple_motion_tree_partition(sms_root, bsize);
2468   const int ref_list[] = { cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME
2469                                                         : LAST_FRAME };
2470   const int sub_mi_width = mi_size_wide[bsize] / 2;
2471   const int sub_mi_height = sub_mi_width;
2472   simple_motion_search_get_best_ref(
2473       cpi, x, sms_root, mi_row, mi_col, bsize, ref_list, /*num_refs=*/1,
2474       /*use_subpixel=*/1, /*save_mv=*/1, block_sse, block_var);
2475   // Split to 4 sub blocks.
2476   if (valid_partition_types & (1 << PARTITION_SPLIT)) {
2477     const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
2478     for (int i = 0; i < 4; ++i) {
2479       const int row = mi_row + (i >> 1) * sub_mi_height;
2480       const int col = mi_col + (i & 1) * sub_mi_width;
2481       simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2482                                         ref_list, /*num_refs=*/1,
2483                                         /*use_subpixel=*/1, /*save_mv=*/1,
2484                                         &sub_block_sse[i], &sub_block_var[i]);
2485     }
2486   }
2487   // Horizontal split
2488   if (valid_partition_types & (1 << PARTITION_HORZ)) {
2489     const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ);
2490     for (int i = 0; i < 2; ++i) {
2491       const int row = mi_row + (i & 1) * sub_mi_height;
2492       const int col = mi_col;
2493       simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2494                                         ref_list, /*num_refs=*/1,
2495                                         /*use_subpixel=*/1, /*save_mv=*/1,
2496                                         &horz_block_sse[i], &horz_block_var[i]);
2497     }
2498   }
2499   // Vertical split
2500   if (valid_partition_types & (1 << PARTITION_VERT)) {
2501     const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT);
2502     for (int i = 0; i < 2; ++i) {
2503       const int row = mi_row;
2504       const int col = mi_col + (i & 1) * sub_mi_width;
2505       simple_motion_search_get_best_ref(cpi, x, sms_root, row, col, subsize,
2506                                         ref_list, /*num_refs=*/1,
2507                                         /*use_subpixel=*/1, /*save_mv=*/1,
2508                                         &vert_block_sse[i], &vert_block_var[i]);
2509     }
2510   }
2511 
2512   aom_free(sms_tree);
2513 }
2514 #endif  // !CONFIG_REALTIME_ONLY
2515 
init_simple_motion_search_mvs(SIMPLE_MOTION_DATA_TREE * sms_tree,const FULLPEL_MV * start_mvs)2516 static INLINE void init_simple_motion_search_mvs(
2517     SIMPLE_MOTION_DATA_TREE *sms_tree, const FULLPEL_MV *start_mvs) {
2518   memcpy(sms_tree->start_mvs, start_mvs, sizeof(sms_tree->start_mvs));
2519   av1_zero(sms_tree->sms_none_feat);
2520   av1_zero(sms_tree->sms_rect_feat);
2521   av1_zero(sms_tree->sms_none_valid);
2522   av1_zero(sms_tree->sms_rect_valid);
2523 
2524   if (sms_tree->block_size >= BLOCK_8X8) {
2525     init_simple_motion_search_mvs(sms_tree->split[0], start_mvs);
2526     init_simple_motion_search_mvs(sms_tree->split[1], start_mvs);
2527     init_simple_motion_search_mvs(sms_tree->split[2], start_mvs);
2528     init_simple_motion_search_mvs(sms_tree->split[3], start_mvs);
2529   }
2530 }
2531 
av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP * cpi,const TileInfo * tile_info,MACROBLOCK * x,SIMPLE_MOTION_DATA_TREE * sms_root,int mi_row,int mi_col)2532 void av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP *cpi,
2533                                               const TileInfo *tile_info,
2534                                               MACROBLOCK *x,
2535                                               SIMPLE_MOTION_DATA_TREE *sms_root,
2536                                               int mi_row, int mi_col) {
2537   // Use the NEARESTMV of the sb as the start mv
2538   const AV1_COMMON *cm = &cpi->common;
2539   MACROBLOCKD *const xd = &x->e_mbd;
2540   FULLPEL_MV ref_mvs[REF_FRAMES];
2541   const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
2542   av1_zero(ref_mvs);
2543   // If tile_info is NULL, assume that the offsets have already been set.
2544   if (tile_info) {
2545     av1_set_offsets_without_segment_id(cpi, tile_info, x, mi_row, mi_col,
2546                                        sb_size);
2547   }
2548 
2549   MB_MODE_INFO_EXT mbmi_ext;
2550   const int ref_frame =
2551       cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
2552   av1_find_mv_refs(cm, xd, xd->mi[0], ref_frame, mbmi_ext.ref_mv_count,
2553                    xd->ref_mv_stack, xd->weight, NULL, mbmi_ext.global_mvs,
2554                    mbmi_ext.mode_context);
2555   if (mbmi_ext.ref_mv_count[ref_frame] > 0) {
2556     ref_mvs[ref_frame] =
2557         get_fullmv_from_mv(&xd->ref_mv_stack[ref_frame][0].this_mv.as_mv);
2558   } else {
2559     ref_mvs[ref_frame] =
2560         get_fullmv_from_mv(&mbmi_ext.global_mvs[ref_frame].as_mv);
2561   }
2562 
2563   init_simple_motion_search_mvs(sms_root, ref_mvs);
2564 }
2565