• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include <float.h>
12 #include <limits.h>
13 #include <math.h>
14 #include <stdio.h>
15 
16 #include "./vp9_rtcd.h"
17 #include "./vpx_dsp_rtcd.h"
18 #include "./vpx_config.h"
19 
20 #include "vpx_dsp/vpx_dsp_common.h"
21 #include "vpx_ports/mem.h"
22 #include "vpx_ports/vpx_timer.h"
23 #include "vpx_ports/system_state.h"
24 
25 #if CONFIG_MISMATCH_DEBUG
26 #include "vpx_util/vpx_debug_util.h"
27 #endif  // CONFIG_MISMATCH_DEBUG
28 
29 #include "vp9/common/vp9_common.h"
30 #include "vp9/common/vp9_entropy.h"
31 #include "vp9/common/vp9_entropymode.h"
32 #include "vp9/common/vp9_idct.h"
33 #include "vp9/common/vp9_mvref_common.h"
34 #include "vp9/common/vp9_pred_common.h"
35 #include "vp9/common/vp9_quant_common.h"
36 #include "vp9/common/vp9_reconintra.h"
37 #include "vp9/common/vp9_reconinter.h"
38 #include "vp9/common/vp9_seg_common.h"
39 #include "vp9/common/vp9_tile_common.h"
40 #if !CONFIG_REALTIME_ONLY
41 #include "vp9/encoder/vp9_aq_360.h"
42 #include "vp9/encoder/vp9_aq_complexity.h"
43 #endif
44 #include "vp9/encoder/vp9_aq_cyclicrefresh.h"
45 #if !CONFIG_REALTIME_ONLY
46 #include "vp9/encoder/vp9_aq_variance.h"
47 #endif
48 #include "vp9/encoder/vp9_encodeframe.h"
49 #include "vp9/encoder/vp9_encodemb.h"
50 #include "vp9/encoder/vp9_encodemv.h"
51 #include "vp9/encoder/vp9_ethread.h"
52 #include "vp9/encoder/vp9_extend.h"
53 #include "vp9/encoder/vp9_multi_thread.h"
54 #include "vp9/encoder/vp9_partition_models.h"
55 #include "vp9/encoder/vp9_pickmode.h"
56 #include "vp9/encoder/vp9_rd.h"
57 #include "vp9/encoder/vp9_rdopt.h"
58 #include "vp9/encoder/vp9_segmentation.h"
59 #include "vp9/encoder/vp9_tokenize.h"
60 
61 static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
62                               int output_enabled, int mi_row, int mi_col,
63                               BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx);
64 
65 // This is used as a reference when computing the source variance for the
66 //  purpose of activity masking.
67 // Eventually this should be replaced by custom no-reference routines,
68 //  which will be faster.
69 static const uint8_t VP9_VAR_OFFS[64] = {
70   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
71   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
72   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
73   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
74   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
75 };
76 
77 #if CONFIG_VP9_HIGHBITDEPTH
78 static const uint16_t VP9_HIGH_VAR_OFFS_8[64] = {
79   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
80   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
81   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
82   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
83   128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
84 };
85 
86 static const uint16_t VP9_HIGH_VAR_OFFS_10[64] = {
87   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
88   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
89   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
90   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
91   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
92   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
93   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
94   128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
95 };
96 
97 static const uint16_t VP9_HIGH_VAR_OFFS_12[64] = {
98   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
99   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
100   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
101   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
102   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
103   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
104   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
105   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
106   128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
107   128 * 16
108 };
109 #endif  // CONFIG_VP9_HIGHBITDEPTH
110 
vp9_get_sby_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)111 unsigned int vp9_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
112                                   BLOCK_SIZE bs) {
113   unsigned int sse;
114   const unsigned int var =
115       cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse);
116   return var;
117 }
118 
119 #if CONFIG_VP9_HIGHBITDEPTH
vp9_high_get_sby_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs,int bd)120 unsigned int vp9_high_get_sby_variance(VP9_COMP *cpi, const struct buf_2d *ref,
121                                        BLOCK_SIZE bs, int bd) {
122   unsigned int var, sse;
123   switch (bd) {
124     case 10:
125       var =
126           cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
127                              CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10), 0, &sse);
128       break;
129     case 12:
130       var =
131           cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
132                              CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12), 0, &sse);
133       break;
134     case 8:
135     default:
136       var =
137           cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
138                              CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8), 0, &sse);
139       break;
140   }
141   return var;
142 }
143 #endif  // CONFIG_VP9_HIGHBITDEPTH
144 
vp9_get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs)145 unsigned int vp9_get_sby_perpixel_variance(VP9_COMP *cpi,
146                                            const struct buf_2d *ref,
147                                            BLOCK_SIZE bs) {
148   return ROUND_POWER_OF_TWO(vp9_get_sby_variance(cpi, ref, bs),
149                             num_pels_log2_lookup[bs]);
150 }
151 
152 #if CONFIG_VP9_HIGHBITDEPTH
vp9_high_get_sby_perpixel_variance(VP9_COMP * cpi,const struct buf_2d * ref,BLOCK_SIZE bs,int bd)153 unsigned int vp9_high_get_sby_perpixel_variance(VP9_COMP *cpi,
154                                                 const struct buf_2d *ref,
155                                                 BLOCK_SIZE bs, int bd) {
156   return (unsigned int)ROUND64_POWER_OF_TWO(
157       (int64_t)vp9_high_get_sby_variance(cpi, ref, bs, bd),
158       num_pels_log2_lookup[bs]);
159 }
160 #endif  // CONFIG_VP9_HIGHBITDEPTH
161 
set_segment_index(VP9_COMP * cpi,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize,int segment_index)162 static void set_segment_index(VP9_COMP *cpi, MACROBLOCK *const x, int mi_row,
163                               int mi_col, BLOCK_SIZE bsize, int segment_index) {
164   VP9_COMMON *const cm = &cpi->common;
165   const struct segmentation *const seg = &cm->seg;
166   MACROBLOCKD *const xd = &x->e_mbd;
167   MODE_INFO *mi = xd->mi[0];
168 
169   const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
170   const uint8_t *const map =
171       seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
172 
173   // Initialize the segmentation index as 0.
174   mi->segment_id = 0;
175 
176   // Skip the rest if AQ mode is disabled.
177   if (!seg->enabled) return;
178 
179   switch (aq_mode) {
180     case CYCLIC_REFRESH_AQ:
181       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
182       break;
183 #if !CONFIG_REALTIME_ONLY
184     case VARIANCE_AQ:
185       if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
186           cpi->force_update_segmentation ||
187           (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) {
188         int min_energy;
189         int max_energy;
190         // Get sub block energy range
191         if (bsize >= BLOCK_32X32) {
192           vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
193                                    &max_energy);
194         } else {
195           min_energy = bsize <= BLOCK_16X16 ? x->mb_energy
196                                             : vp9_block_energy(cpi, x, bsize);
197         }
198         mi->segment_id = vp9_vaq_segment_id(min_energy);
199       } else {
200         mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
201       }
202       break;
203     case EQUATOR360_AQ:
204       if (cm->frame_type == KEY_FRAME || cpi->force_update_segmentation)
205         mi->segment_id = vp9_360aq_segment_id(mi_row, cm->mi_rows);
206       else
207         mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
208       break;
209 #endif
210     case LOOKAHEAD_AQ:
211       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
212       break;
213     case PSNR_AQ: mi->segment_id = segment_index; break;
214     case PERCEPTUAL_AQ: mi->segment_id = x->segment_id; break;
215     default:
216       // NO_AQ or PSNR_AQ
217       break;
218   }
219 
220   // Set segment index if ROI map or active_map is enabled.
221   if (cpi->roi.enabled || cpi->active_map.enabled)
222     mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
223 
224   vp9_init_plane_quantizers(cpi, x);
225 }
226 
227 // Lighter version of set_offsets that only sets the mode info
228 // pointers.
set_mode_info_offsets(VP9_COMMON * const cm,MACROBLOCK * const x,MACROBLOCKD * const xd,int mi_row,int mi_col)229 static INLINE void set_mode_info_offsets(VP9_COMMON *const cm,
230                                          MACROBLOCK *const x,
231                                          MACROBLOCKD *const xd, int mi_row,
232                                          int mi_col) {
233   const int idx_str = xd->mi_stride * mi_row + mi_col;
234   xd->mi = cm->mi_grid_visible + idx_str;
235   xd->mi[0] = cm->mi + idx_str;
236   x->mbmi_ext = x->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
237 }
238 
set_ssim_rdmult(VP9_COMP * const cpi,MACROBLOCK * const x,const BLOCK_SIZE bsize,const int mi_row,const int mi_col,int * const rdmult)239 static void set_ssim_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
240                             const BLOCK_SIZE bsize, const int mi_row,
241                             const int mi_col, int *const rdmult) {
242   const VP9_COMMON *const cm = &cpi->common;
243 
244   const int bsize_base = BLOCK_16X16;
245   const int num_8x8_w = num_8x8_blocks_wide_lookup[bsize_base];
246   const int num_8x8_h = num_8x8_blocks_high_lookup[bsize_base];
247   const int num_cols = (cm->mi_cols + num_8x8_w - 1) / num_8x8_w;
248   const int num_rows = (cm->mi_rows + num_8x8_h - 1) / num_8x8_h;
249   const int num_bcols =
250       (num_8x8_blocks_wide_lookup[bsize] + num_8x8_w - 1) / num_8x8_w;
251   const int num_brows =
252       (num_8x8_blocks_high_lookup[bsize] + num_8x8_h - 1) / num_8x8_h;
253   int row, col;
254   double num_of_mi = 0.0;
255   double geom_mean_of_scale = 0.0;
256 
257   assert(cpi->oxcf.tuning == VP8_TUNE_SSIM);
258 
259   for (row = mi_row / num_8x8_w;
260        row < num_rows && row < mi_row / num_8x8_w + num_brows; ++row) {
261     for (col = mi_col / num_8x8_h;
262          col < num_cols && col < mi_col / num_8x8_h + num_bcols; ++col) {
263       const int index = row * num_cols + col;
264       geom_mean_of_scale += log(cpi->mi_ssim_rdmult_scaling_factors[index]);
265       num_of_mi += 1.0;
266     }
267   }
268   geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi);
269 
270   *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale);
271   *rdmult = VPXMAX(*rdmult, 0);
272   set_error_per_bit(x, *rdmult);
273   vpx_clear_system_state();
274 }
275 
set_offsets(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize)276 static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile,
277                         MACROBLOCK *const x, int mi_row, int mi_col,
278                         BLOCK_SIZE bsize) {
279   VP9_COMMON *const cm = &cpi->common;
280   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
281   MACROBLOCKD *const xd = &x->e_mbd;
282   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
283   const int mi_height = num_8x8_blocks_high_lookup[bsize];
284   MvLimits *const mv_limits = &x->mv_limits;
285 
286   set_skip_context(xd, mi_row, mi_col);
287 
288   set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
289 
290   // Set up destination pointers.
291   vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
292 
293   // Set up limit values for MV components.
294   // Mv beyond the range do not produce new/different prediction block.
295   mv_limits->row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND);
296   mv_limits->col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND);
297   mv_limits->row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND;
298   mv_limits->col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND;
299 
300   // Set up distance of MB to edge of frame in 1/8th pel units.
301   assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
302   set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
303                  cm->mi_cols);
304 
305   // Set up source buffers.
306   vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
307 
308   // R/D setup.
309   x->rddiv = cpi->rd.RDDIV;
310   x->rdmult = cpi->rd.RDMULT;
311   if (oxcf->tuning == VP8_TUNE_SSIM) {
312     set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
313   }
314 
315   // required by vp9_append_sub8x8_mvs_for_idx() and vp9_find_best_ref_mvs()
316   xd->tile = *tile;
317 }
318 
duplicate_mode_info_in_sb(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)319 static void duplicate_mode_info_in_sb(VP9_COMMON *cm, MACROBLOCKD *xd,
320                                       int mi_row, int mi_col,
321                                       BLOCK_SIZE bsize) {
322   const int block_width =
323       VPXMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
324   const int block_height =
325       VPXMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
326   const int mi_stride = xd->mi_stride;
327   MODE_INFO *const src_mi = xd->mi[0];
328   int i, j;
329 
330   for (j = 0; j < block_height; ++j)
331     for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi;
332 }
333 
set_block_size(VP9_COMP * const cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE bsize)334 static void set_block_size(VP9_COMP *const cpi, MACROBLOCK *const x,
335                            MACROBLOCKD *const xd, int mi_row, int mi_col,
336                            BLOCK_SIZE bsize) {
337   if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
338     set_mode_info_offsets(&cpi->common, x, xd, mi_row, mi_col);
339     xd->mi[0]->sb_type = bsize;
340   }
341 }
342 
343 typedef struct {
344   // This struct is used for computing variance in choose_partitioning(), where
345   // the max number of samples within a superblock is 16x16 (with 4x4 avg). Even
346   // in high bitdepth, uint32_t is enough for sum_square_error (2^12 * 2^12 * 16
347   // * 16 = 2^32).
348   uint32_t sum_square_error;
349   int32_t sum_error;
350   int log2_count;
351   int variance;
352 } var;
353 
354 typedef struct {
355   var none;
356   var horz[2];
357   var vert[2];
358 } partition_variance;
359 
360 typedef struct {
361   partition_variance part_variances;
362   var split[4];
363 } v4x4;
364 
365 typedef struct {
366   partition_variance part_variances;
367   v4x4 split[4];
368 } v8x8;
369 
370 typedef struct {
371   partition_variance part_variances;
372   v8x8 split[4];
373 } v16x16;
374 
375 typedef struct {
376   partition_variance part_variances;
377   v16x16 split[4];
378 } v32x32;
379 
380 typedef struct {
381   partition_variance part_variances;
382   v32x32 split[4];
383 } v64x64;
384 
385 typedef struct {
386   partition_variance *part_variances;
387   var *split[4];
388 } variance_node;
389 
390 typedef enum {
391   V16X16,
392   V32X32,
393   V64X64,
394 } TREE_LEVEL;
395 
tree_to_node(void * data,BLOCK_SIZE bsize,variance_node * node)396 static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) {
397   int i;
398   node->part_variances = NULL;
399   switch (bsize) {
400     case BLOCK_64X64: {
401       v64x64 *vt = (v64x64 *)data;
402       node->part_variances = &vt->part_variances;
403       for (i = 0; i < 4; i++)
404         node->split[i] = &vt->split[i].part_variances.none;
405       break;
406     }
407     case BLOCK_32X32: {
408       v32x32 *vt = (v32x32 *)data;
409       node->part_variances = &vt->part_variances;
410       for (i = 0; i < 4; i++)
411         node->split[i] = &vt->split[i].part_variances.none;
412       break;
413     }
414     case BLOCK_16X16: {
415       v16x16 *vt = (v16x16 *)data;
416       node->part_variances = &vt->part_variances;
417       for (i = 0; i < 4; i++)
418         node->split[i] = &vt->split[i].part_variances.none;
419       break;
420     }
421     case BLOCK_8X8: {
422       v8x8 *vt = (v8x8 *)data;
423       node->part_variances = &vt->part_variances;
424       for (i = 0; i < 4; i++)
425         node->split[i] = &vt->split[i].part_variances.none;
426       break;
427     }
428     default: {
429       v4x4 *vt = (v4x4 *)data;
430       assert(bsize == BLOCK_4X4);
431       node->part_variances = &vt->part_variances;
432       for (i = 0; i < 4; i++) node->split[i] = &vt->split[i];
433       break;
434     }
435   }
436 }
437 
438 // Set variance values given sum square error, sum error, count.
fill_variance(uint32_t s2,int32_t s,int c,var * v)439 static void fill_variance(uint32_t s2, int32_t s, int c, var *v) {
440   v->sum_square_error = s2;
441   v->sum_error = s;
442   v->log2_count = c;
443 }
444 
get_variance(var * v)445 static void get_variance(var *v) {
446   v->variance =
447       (int)(256 * (v->sum_square_error -
448                    (uint32_t)(((int64_t)v->sum_error * v->sum_error) >>
449                               v->log2_count)) >>
450             v->log2_count);
451 }
452 
sum_2_variances(const var * a,const var * b,var * r)453 static void sum_2_variances(const var *a, const var *b, var *r) {
454   assert(a->log2_count == b->log2_count);
455   fill_variance(a->sum_square_error + b->sum_square_error,
456                 a->sum_error + b->sum_error, a->log2_count + 1, r);
457 }
458 
fill_variance_tree(void * data,BLOCK_SIZE bsize)459 static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
460   variance_node node;
461   memset(&node, 0, sizeof(node));
462   tree_to_node(data, bsize, &node);
463   sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]);
464   sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]);
465   sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]);
466   sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]);
467   sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1],
468                   &node.part_variances->none);
469 }
470 
set_vt_partitioning(VP9_COMP * cpi,MACROBLOCK * const x,MACROBLOCKD * const xd,void * data,BLOCK_SIZE bsize,int mi_row,int mi_col,int64_t threshold,BLOCK_SIZE bsize_min,int force_split)471 static int set_vt_partitioning(VP9_COMP *cpi, MACROBLOCK *const x,
472                                MACROBLOCKD *const xd, void *data,
473                                BLOCK_SIZE bsize, int mi_row, int mi_col,
474                                int64_t threshold, BLOCK_SIZE bsize_min,
475                                int force_split) {
476   VP9_COMMON *const cm = &cpi->common;
477   variance_node vt;
478   const int block_width = num_8x8_blocks_wide_lookup[bsize];
479   const int block_height = num_8x8_blocks_high_lookup[bsize];
480 
481   assert(block_height == block_width);
482   tree_to_node(data, bsize, &vt);
483 
484   if (force_split == 1) return 0;
485 
486   // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
487   // variance is below threshold, otherwise split will be selected.
488   // No check for vert/horiz split as too few samples for variance.
489   if (bsize == bsize_min) {
490     // Variance already computed to set the force_split.
491     if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
492     if (mi_col + block_width / 2 < cm->mi_cols &&
493         mi_row + block_height / 2 < cm->mi_rows &&
494         vt.part_variances->none.variance < threshold) {
495       set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
496       return 1;
497     }
498     return 0;
499   } else if (bsize > bsize_min) {
500     // Variance already computed to set the force_split.
501     if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none);
502     // For key frame: take split for bsize above 32X32 or very high variance.
503     if (frame_is_intra_only(cm) &&
504         (bsize > BLOCK_32X32 ||
505          vt.part_variances->none.variance > (threshold << 4))) {
506       return 0;
507     }
508     // If variance is low, take the bsize (no split).
509     if (mi_col + block_width / 2 < cm->mi_cols &&
510         mi_row + block_height / 2 < cm->mi_rows &&
511         vt.part_variances->none.variance < threshold) {
512       set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
513       return 1;
514     }
515 
516     // Check vertical split.
517     if (mi_row + block_height / 2 < cm->mi_rows) {
518       BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT);
519       get_variance(&vt.part_variances->vert[0]);
520       get_variance(&vt.part_variances->vert[1]);
521       if (vt.part_variances->vert[0].variance < threshold &&
522           vt.part_variances->vert[1].variance < threshold &&
523           get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
524         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
525         set_block_size(cpi, x, xd, mi_row, mi_col + block_width / 2, subsize);
526         return 1;
527       }
528     }
529     // Check horizontal split.
530     if (mi_col + block_width / 2 < cm->mi_cols) {
531       BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ);
532       get_variance(&vt.part_variances->horz[0]);
533       get_variance(&vt.part_variances->horz[1]);
534       if (vt.part_variances->horz[0].variance < threshold &&
535           vt.part_variances->horz[1].variance < threshold &&
536           get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
537         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
538         set_block_size(cpi, x, xd, mi_row + block_height / 2, mi_col, subsize);
539         return 1;
540       }
541     }
542 
543     return 0;
544   }
545   return 0;
546 }
547 
scale_part_thresh_sumdiff(int64_t threshold_base,int speed,int width,int height,int content_state)548 static int64_t scale_part_thresh_sumdiff(int64_t threshold_base, int speed,
549                                          int width, int height,
550                                          int content_state) {
551   if (speed >= 8) {
552     if (width <= 640 && height <= 480)
553       return (5 * threshold_base) >> 2;
554     else if ((content_state == kLowSadLowSumdiff) ||
555              (content_state == kHighSadLowSumdiff) ||
556              (content_state == kLowVarHighSumdiff))
557       return (5 * threshold_base) >> 2;
558   } else if (speed == 7) {
559     if ((content_state == kLowSadLowSumdiff) ||
560         (content_state == kHighSadLowSumdiff) ||
561         (content_state == kLowVarHighSumdiff)) {
562       return (5 * threshold_base) >> 2;
563     }
564   }
565   return threshold_base;
566 }
567 
568 // Set the variance split thresholds for following the block sizes:
569 // 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
570 // 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
571 // currently only used on key frame.
set_vbp_thresholds(VP9_COMP * cpi,int64_t thresholds[],int q,int content_state)572 static void set_vbp_thresholds(VP9_COMP *cpi, int64_t thresholds[], int q,
573                                int content_state) {
574   VP9_COMMON *const cm = &cpi->common;
575   const int is_key_frame = frame_is_intra_only(cm);
576   const int threshold_multiplier =
577       is_key_frame ? 20 : cpi->sf.variance_part_thresh_mult;
578   int64_t threshold_base =
579       (int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
580 
581   if (is_key_frame) {
582     thresholds[0] = threshold_base;
583     thresholds[1] = threshold_base >> 2;
584     thresholds[2] = threshold_base >> 2;
585     thresholds[3] = threshold_base << 2;
586   } else {
587     // Increase base variance threshold based on estimated noise level.
588     if (cpi->noise_estimate.enabled && cm->width >= 640 && cm->height >= 480) {
589       NOISE_LEVEL noise_level =
590           vp9_noise_estimate_extract_level(&cpi->noise_estimate);
591       if (noise_level == kHigh)
592         threshold_base = 3 * threshold_base;
593       else if (noise_level == kMedium)
594         threshold_base = threshold_base << 1;
595       else if (noise_level < kLow)
596         threshold_base = (7 * threshold_base) >> 3;
597     }
598 #if CONFIG_VP9_TEMPORAL_DENOISING
599     if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) &&
600         cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow)
601       threshold_base =
602           vp9_scale_part_thresh(threshold_base, cpi->denoiser.denoising_level,
603                                 content_state, cpi->svc.temporal_layer_id);
604     else
605       threshold_base =
606           scale_part_thresh_sumdiff(threshold_base, cpi->oxcf.speed, cm->width,
607                                     cm->height, content_state);
608 #else
609     // Increase base variance threshold based on content_state/sum_diff level.
610     threshold_base = scale_part_thresh_sumdiff(
611         threshold_base, cpi->oxcf.speed, cm->width, cm->height, content_state);
612 #endif
613     thresholds[0] = threshold_base;
614     thresholds[2] = threshold_base << cpi->oxcf.speed;
615     if (cm->width >= 1280 && cm->height >= 720 && cpi->oxcf.speed < 7)
616       thresholds[2] = thresholds[2] << 1;
617     if (cm->width <= 352 && cm->height <= 288) {
618       thresholds[0] = threshold_base >> 3;
619       thresholds[1] = threshold_base >> 1;
620       thresholds[2] = threshold_base << 3;
621       if (cpi->rc.avg_frame_qindex[INTER_FRAME] > 220)
622         thresholds[2] = thresholds[2] << 2;
623       else if (cpi->rc.avg_frame_qindex[INTER_FRAME] > 200)
624         thresholds[2] = thresholds[2] << 1;
625     } else if (cm->width < 1280 && cm->height < 720) {
626       thresholds[1] = (5 * threshold_base) >> 2;
627     } else if (cm->width < 1920 && cm->height < 1080) {
628       thresholds[1] = threshold_base << 1;
629     } else {
630       thresholds[1] = (5 * threshold_base) >> 1;
631     }
632     if (cpi->sf.disable_16x16part_nonkey) thresholds[2] = INT64_MAX;
633   }
634 }
635 
vp9_set_variance_partition_thresholds(VP9_COMP * cpi,int q,int content_state)636 void vp9_set_variance_partition_thresholds(VP9_COMP *cpi, int q,
637                                            int content_state) {
638   VP9_COMMON *const cm = &cpi->common;
639   SPEED_FEATURES *const sf = &cpi->sf;
640   const int is_key_frame = frame_is_intra_only(cm);
641   if (sf->partition_search_type != VAR_BASED_PARTITION &&
642       sf->partition_search_type != REFERENCE_PARTITION) {
643     return;
644   } else {
645     set_vbp_thresholds(cpi, cpi->vbp_thresholds, q, content_state);
646     // The thresholds below are not changed locally.
647     if (is_key_frame) {
648       cpi->vbp_threshold_sad = 0;
649       cpi->vbp_threshold_copy = 0;
650       cpi->vbp_bsize_min = BLOCK_8X8;
651     } else {
652       if (cm->width <= 352 && cm->height <= 288)
653         cpi->vbp_threshold_sad = 10;
654       else
655         cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
656                                      ? (cpi->y_dequant[q][1] << 1)
657                                      : 1000;
658       cpi->vbp_bsize_min = BLOCK_16X16;
659       if (cm->width <= 352 && cm->height <= 288)
660         cpi->vbp_threshold_copy = 4000;
661       else if (cm->width <= 640 && cm->height <= 360)
662         cpi->vbp_threshold_copy = 8000;
663       else
664         cpi->vbp_threshold_copy = (cpi->y_dequant[q][1] << 3) > 8000
665                                       ? (cpi->y_dequant[q][1] << 3)
666                                       : 8000;
667       if (cpi->rc.high_source_sad ||
668           (cpi->use_svc && cpi->svc.high_source_sad_superframe)) {
669         cpi->vbp_threshold_sad = 0;
670         cpi->vbp_threshold_copy = 0;
671       }
672     }
673     cpi->vbp_threshold_minmax = 15 + (q >> 3);
674   }
675 }
676 
677 // Compute the minmax over the 8x8 subblocks.
compute_minmax_8x8(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,int highbd_flag,int pixels_wide,int pixels_high)678 static int compute_minmax_8x8(const uint8_t *s, int sp, const uint8_t *d,
679                               int dp, int x16_idx, int y16_idx,
680 #if CONFIG_VP9_HIGHBITDEPTH
681                               int highbd_flag,
682 #endif
683                               int pixels_wide, int pixels_high) {
684   int k;
685   int minmax_max = 0;
686   int minmax_min = 255;
687   // Loop over the 4 8x8 subblocks.
688   for (k = 0; k < 4; k++) {
689     int x8_idx = x16_idx + ((k & 1) << 3);
690     int y8_idx = y16_idx + ((k >> 1) << 3);
691     int min = 0;
692     int max = 0;
693     if (x8_idx < pixels_wide && y8_idx < pixels_high) {
694 #if CONFIG_VP9_HIGHBITDEPTH
695       if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
696         vpx_highbd_minmax_8x8(s + y8_idx * sp + x8_idx, sp,
697                               d + y8_idx * dp + x8_idx, dp, &min, &max);
698       } else {
699         vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx,
700                        dp, &min, &max);
701       }
702 #else
703       vpx_minmax_8x8(s + y8_idx * sp + x8_idx, sp, d + y8_idx * dp + x8_idx, dp,
704                      &min, &max);
705 #endif
706       if ((max - min) > minmax_max) minmax_max = (max - min);
707       if ((max - min) < minmax_min) minmax_min = (max - min);
708     }
709   }
710   return (minmax_max - minmax_min);
711 }
712 
fill_variance_4x4avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x8_idx,int y8_idx,v8x8 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)713 static void fill_variance_4x4avg(const uint8_t *s, int sp, const uint8_t *d,
714                                  int dp, int x8_idx, int y8_idx, v8x8 *vst,
715 #if CONFIG_VP9_HIGHBITDEPTH
716                                  int highbd_flag,
717 #endif
718                                  int pixels_wide, int pixels_high,
719                                  int is_key_frame) {
720   int k;
721   for (k = 0; k < 4; k++) {
722     int x4_idx = x8_idx + ((k & 1) << 2);
723     int y4_idx = y8_idx + ((k >> 1) << 2);
724     unsigned int sse = 0;
725     int sum = 0;
726     if (x4_idx < pixels_wide && y4_idx < pixels_high) {
727       int s_avg;
728       int d_avg = 128;
729 #if CONFIG_VP9_HIGHBITDEPTH
730       if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
731         s_avg = vpx_highbd_avg_4x4(s + y4_idx * sp + x4_idx, sp);
732         if (!is_key_frame)
733           d_avg = vpx_highbd_avg_4x4(d + y4_idx * dp + x4_idx, dp);
734       } else {
735         s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
736         if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
737       }
738 #else
739       s_avg = vpx_avg_4x4(s + y4_idx * sp + x4_idx, sp);
740       if (!is_key_frame) d_avg = vpx_avg_4x4(d + y4_idx * dp + x4_idx, dp);
741 #endif
742       sum = s_avg - d_avg;
743       sse = sum * sum;
744     }
745     fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
746   }
747 }
748 
fill_variance_8x8avg(const uint8_t * s,int sp,const uint8_t * d,int dp,int x16_idx,int y16_idx,v16x16 * vst,int highbd_flag,int pixels_wide,int pixels_high,int is_key_frame)749 static void fill_variance_8x8avg(const uint8_t *s, int sp, const uint8_t *d,
750                                  int dp, int x16_idx, int y16_idx, v16x16 *vst,
751 #if CONFIG_VP9_HIGHBITDEPTH
752                                  int highbd_flag,
753 #endif
754                                  int pixels_wide, int pixels_high,
755                                  int is_key_frame) {
756   int k;
757   for (k = 0; k < 4; k++) {
758     int x8_idx = x16_idx + ((k & 1) << 3);
759     int y8_idx = y16_idx + ((k >> 1) << 3);
760     unsigned int sse = 0;
761     int sum = 0;
762     if (x8_idx < pixels_wide && y8_idx < pixels_high) {
763       int s_avg;
764       int d_avg = 128;
765 #if CONFIG_VP9_HIGHBITDEPTH
766       if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) {
767         s_avg = vpx_highbd_avg_8x8(s + y8_idx * sp + x8_idx, sp);
768         if (!is_key_frame)
769           d_avg = vpx_highbd_avg_8x8(d + y8_idx * dp + x8_idx, dp);
770       } else {
771         s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
772         if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
773       }
774 #else
775       s_avg = vpx_avg_8x8(s + y8_idx * sp + x8_idx, sp);
776       if (!is_key_frame) d_avg = vpx_avg_8x8(d + y8_idx * dp + x8_idx, dp);
777 #endif
778       sum = s_avg - d_avg;
779       sse = sum * sum;
780     }
781     fill_variance(sse, sum, 0, &vst->split[k].part_variances.none);
782   }
783 }
784 
785 // Check if most of the superblock is skin content, and if so, force split to
786 // 32x32, and set x->sb_is_skin for use in mode selection.
skin_sb_split(VP9_COMP * cpi,const int low_res,int mi_row,int mi_col,int * force_split)787 static int skin_sb_split(VP9_COMP *cpi, const int low_res, int mi_row,
788                          int mi_col, int *force_split) {
789   VP9_COMMON *const cm = &cpi->common;
790 #if CONFIG_VP9_HIGHBITDEPTH
791   if (cm->use_highbitdepth) return 0;
792 #endif
793   // Avoid checking superblocks on/near boundary and avoid low resolutions.
794   // Note superblock may still pick 64X64 if y_sad is very small
795   // (i.e., y_sad < cpi->vbp_threshold_sad) below. For now leave this as is.
796   if (!low_res && (mi_col >= 8 && mi_col + 8 < cm->mi_cols && mi_row >= 8 &&
797                    mi_row + 8 < cm->mi_rows)) {
798     int num_16x16_skin = 0;
799     int num_16x16_nonskin = 0;
800     const int block_index = mi_row * cm->mi_cols + mi_col;
801     const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
802     const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
803     const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
804     const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
805     // Loop through the 16x16 sub-blocks.
806     int i, j;
807     for (i = 0; i < ymis; i += 2) {
808       for (j = 0; j < xmis; j += 2) {
809         int bl_index = block_index + i * cm->mi_cols + j;
810         int is_skin = cpi->skin_map[bl_index];
811         num_16x16_skin += is_skin;
812         num_16x16_nonskin += (1 - is_skin);
813         if (num_16x16_nonskin > 3) {
814           // Exit loop if at least 4 of the 16x16 blocks are not skin.
815           i = ymis;
816           break;
817         }
818       }
819     }
820     if (num_16x16_skin > 12) {
821       *force_split = 1;
822       return 1;
823     }
824   }
825   return 0;
826 }
827 
set_low_temp_var_flag(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,v64x64 * vt,int64_t thresholds[],MV_REFERENCE_FRAME ref_frame_partition,int mi_col,int mi_row)828 static void set_low_temp_var_flag(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
829                                   v64x64 *vt, int64_t thresholds[],
830                                   MV_REFERENCE_FRAME ref_frame_partition,
831                                   int mi_col, int mi_row) {
832   int i, j;
833   VP9_COMMON *const cm = &cpi->common;
834   const int mv_thr = cm->width > 640 ? 8 : 4;
835   // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected and
836   // int_pro mv is small. If the temporal variance is small set the flag
837   // variance_low for the block. The variance threshold can be adjusted, the
838   // higher the more aggressive.
839   if (ref_frame_partition == LAST_FRAME &&
840       (cpi->sf.short_circuit_low_temp_var == 1 ||
841        (xd->mi[0]->mv[0].as_mv.col < mv_thr &&
842         xd->mi[0]->mv[0].as_mv.col > -mv_thr &&
843         xd->mi[0]->mv[0].as_mv.row < mv_thr &&
844         xd->mi[0]->mv[0].as_mv.row > -mv_thr))) {
845     if (xd->mi[0]->sb_type == BLOCK_64X64) {
846       if ((vt->part_variances).none.variance < (thresholds[0] >> 1))
847         x->variance_low[0] = 1;
848     } else if (xd->mi[0]->sb_type == BLOCK_64X32) {
849       for (i = 0; i < 2; i++) {
850         if (vt->part_variances.horz[i].variance < (thresholds[0] >> 2))
851           x->variance_low[i + 1] = 1;
852       }
853     } else if (xd->mi[0]->sb_type == BLOCK_32X64) {
854       for (i = 0; i < 2; i++) {
855         if (vt->part_variances.vert[i].variance < (thresholds[0] >> 2))
856           x->variance_low[i + 3] = 1;
857       }
858     } else {
859       for (i = 0; i < 4; i++) {
860         const int idx[4][2] = { { 0, 0 }, { 0, 4 }, { 4, 0 }, { 4, 4 } };
861         const int idx_str =
862             cm->mi_stride * (mi_row + idx[i][0]) + mi_col + idx[i][1];
863         MODE_INFO **this_mi = cm->mi_grid_visible + idx_str;
864 
865         if (cm->mi_cols <= mi_col + idx[i][1] ||
866             cm->mi_rows <= mi_row + idx[i][0])
867           continue;
868 
869         if ((*this_mi)->sb_type == BLOCK_32X32) {
870           int64_t threshold_32x32 = (cpi->sf.short_circuit_low_temp_var == 1 ||
871                                      cpi->sf.short_circuit_low_temp_var == 3)
872                                         ? ((5 * thresholds[1]) >> 3)
873                                         : (thresholds[1] >> 1);
874           if (vt->split[i].part_variances.none.variance < threshold_32x32)
875             x->variance_low[i + 5] = 1;
876         } else if (cpi->sf.short_circuit_low_temp_var >= 2) {
877           // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block
878           // inside.
879           if ((*this_mi)->sb_type == BLOCK_16X16 ||
880               (*this_mi)->sb_type == BLOCK_32X16 ||
881               (*this_mi)->sb_type == BLOCK_16X32) {
882             for (j = 0; j < 4; j++) {
883               if (vt->split[i].split[j].part_variances.none.variance <
884                   (thresholds[2] >> 8))
885                 x->variance_low[(i << 2) + j + 9] = 1;
886             }
887           }
888         }
889       }
890     }
891   }
892 }
893 
copy_partitioning_helper(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col)894 static void copy_partitioning_helper(VP9_COMP *cpi, MACROBLOCK *x,
895                                      MACROBLOCKD *xd, BLOCK_SIZE bsize,
896                                      int mi_row, int mi_col) {
897   VP9_COMMON *const cm = &cpi->common;
898   BLOCK_SIZE *prev_part = cpi->prev_partition;
899   int start_pos = mi_row * cm->mi_stride + mi_col;
900 
901   const int bsl = b_width_log2_lookup[bsize];
902   const int bs = (1 << bsl) >> 2;
903   BLOCK_SIZE subsize;
904   PARTITION_TYPE partition;
905 
906   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
907 
908   partition = partition_lookup[bsl][prev_part[start_pos]];
909   subsize = get_subsize(bsize, partition);
910 
911   if (subsize < BLOCK_8X8) {
912     set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
913   } else {
914     switch (partition) {
915       case PARTITION_NONE:
916         set_block_size(cpi, x, xd, mi_row, mi_col, bsize);
917         break;
918       case PARTITION_HORZ:
919         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
920         set_block_size(cpi, x, xd, mi_row + bs, mi_col, subsize);
921         break;
922       case PARTITION_VERT:
923         set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
924         set_block_size(cpi, x, xd, mi_row, mi_col + bs, subsize);
925         break;
926       default:
927         assert(partition == PARTITION_SPLIT);
928         copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col);
929         copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col);
930         copy_partitioning_helper(cpi, x, xd, subsize, mi_row, mi_col + bs);
931         copy_partitioning_helper(cpi, x, xd, subsize, mi_row + bs, mi_col + bs);
932         break;
933     }
934   }
935 }
936 
copy_partitioning(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,int mi_row,int mi_col,int segment_id,int sb_offset)937 static int copy_partitioning(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
938                              int mi_row, int mi_col, int segment_id,
939                              int sb_offset) {
940   int svc_copy_allowed = 1;
941   int frames_since_key_thresh = 1;
942   if (cpi->use_svc) {
943     // For SVC, don't allow copy if base spatial layer is key frame, or if
944     // frame is not a temporal enhancement layer frame.
945     int layer = LAYER_IDS_TO_IDX(0, cpi->svc.temporal_layer_id,
946                                  cpi->svc.number_temporal_layers);
947     const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer];
948     if (lc->is_key_frame || !cpi->svc.non_reference_frame) svc_copy_allowed = 0;
949     frames_since_key_thresh = cpi->svc.number_spatial_layers << 1;
950   }
951   if (cpi->rc.frames_since_key > frames_since_key_thresh && svc_copy_allowed &&
952       !cpi->resize_pending && segment_id == CR_SEGMENT_ID_BASE &&
953       cpi->prev_segment_id[sb_offset] == CR_SEGMENT_ID_BASE &&
954       cpi->copied_frame_cnt[sb_offset] < cpi->max_copied_frame) {
955     if (cpi->prev_partition != NULL) {
956       copy_partitioning_helper(cpi, x, xd, BLOCK_64X64, mi_row, mi_col);
957       cpi->copied_frame_cnt[sb_offset] += 1;
958       memcpy(x->variance_low, &(cpi->prev_variance_low[sb_offset * 25]),
959              sizeof(x->variance_low));
960       return 1;
961     }
962   }
963 
964   return 0;
965 }
966 
scale_partitioning_svc(VP9_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,BLOCK_SIZE bsize,int mi_row,int mi_col,int mi_row_high,int mi_col_high)967 static int scale_partitioning_svc(VP9_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
968                                   BLOCK_SIZE bsize, int mi_row, int mi_col,
969                                   int mi_row_high, int mi_col_high) {
970   VP9_COMMON *const cm = &cpi->common;
971   SVC *const svc = &cpi->svc;
972   BLOCK_SIZE *prev_part = svc->prev_partition_svc;
973   // Variables with _high are for higher resolution.
974   int bsize_high = 0;
975   int subsize_high = 0;
976   const int bsl_high = b_width_log2_lookup[bsize];
977   const int bs_high = (1 << bsl_high) >> 2;
978   const int has_rows = (mi_row_high + bs_high) < cm->mi_rows;
979   const int has_cols = (mi_col_high + bs_high) < cm->mi_cols;
980 
981   const int row_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 1, 0,
982                                                              1,  1,  0,  1, 1,
983                                                              0,  1,  0 };
984   const int col_boundary_block_scale_factor[BLOCK_SIZES] = { 13, 13, 13, 2, 2,
985                                                              0,  2,  2,  0, 2,
986                                                              2,  0,  0 };
987   int start_pos;
988   BLOCK_SIZE bsize_low;
989   PARTITION_TYPE partition_high;
990 
991   if (mi_row_high >= cm->mi_rows || mi_col_high >= cm->mi_cols) return 0;
992   if (mi_row >= svc->mi_rows[svc->spatial_layer_id - 1] ||
993       mi_col >= svc->mi_cols[svc->spatial_layer_id - 1])
994     return 0;
995 
996   // Find corresponding (mi_col/mi_row) block down-scaled by 2x2.
997   start_pos = mi_row * (svc->mi_stride[svc->spatial_layer_id - 1]) + mi_col;
998   bsize_low = prev_part[start_pos];
999   // The block size is too big for boundaries. Do variance based partitioning.
1000   if ((!has_rows || !has_cols) && bsize_low > BLOCK_16X16) return 1;
1001 
1002   // For reference frames: return 1 (do variance-based partitioning) if the
1003   // superblock is not low source sad and lower-resoln bsize is below 32x32.
1004   if (!cpi->svc.non_reference_frame && !x->skip_low_source_sad &&
1005       bsize_low < BLOCK_32X32)
1006     return 1;
1007 
1008   // Scale up block size by 2x2. Force 64x64 for size larger than 32x32.
1009   if (bsize_low < BLOCK_32X32) {
1010     bsize_high = bsize_low + 3;
1011   } else if (bsize_low >= BLOCK_32X32) {
1012     bsize_high = BLOCK_64X64;
1013   }
1014   // Scale up blocks on boundary.
1015   if (!has_cols && has_rows) {
1016     bsize_high = bsize_low + row_boundary_block_scale_factor[bsize_low];
1017   } else if (has_cols && !has_rows) {
1018     bsize_high = bsize_low + col_boundary_block_scale_factor[bsize_low];
1019   } else if (!has_cols && !has_rows) {
1020     bsize_high = bsize_low;
1021   }
1022 
1023   partition_high = partition_lookup[bsl_high][bsize_high];
1024   subsize_high = get_subsize(bsize, partition_high);
1025 
1026   if (subsize_high < BLOCK_8X8) {
1027     set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
1028   } else {
1029     const int bsl = b_width_log2_lookup[bsize];
1030     const int bs = (1 << bsl) >> 2;
1031     switch (partition_high) {
1032       case PARTITION_NONE:
1033         set_block_size(cpi, x, xd, mi_row_high, mi_col_high, bsize_high);
1034         break;
1035       case PARTITION_HORZ:
1036         set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
1037         if (subsize_high < BLOCK_64X64)
1038           set_block_size(cpi, x, xd, mi_row_high + bs_high, mi_col_high,
1039                          subsize_high);
1040         break;
1041       case PARTITION_VERT:
1042         set_block_size(cpi, x, xd, mi_row_high, mi_col_high, subsize_high);
1043         if (subsize_high < BLOCK_64X64)
1044           set_block_size(cpi, x, xd, mi_row_high, mi_col_high + bs_high,
1045                          subsize_high);
1046         break;
1047       default:
1048         assert(partition_high == PARTITION_SPLIT);
1049         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row, mi_col,
1050                                    mi_row_high, mi_col_high))
1051           return 1;
1052         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
1053                                    mi_col, mi_row_high + bs_high, mi_col_high))
1054           return 1;
1055         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row,
1056                                    mi_col + (bs >> 1), mi_row_high,
1057                                    mi_col_high + bs_high))
1058           return 1;
1059         if (scale_partitioning_svc(cpi, x, xd, subsize_high, mi_row + (bs >> 1),
1060                                    mi_col + (bs >> 1), mi_row_high + bs_high,
1061                                    mi_col_high + bs_high))
1062           return 1;
1063         break;
1064     }
1065   }
1066 
1067   return 0;
1068 }
1069 
update_partition_svc(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)1070 static void update_partition_svc(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
1071                                  int mi_col) {
1072   VP9_COMMON *const cm = &cpi->common;
1073   BLOCK_SIZE *prev_part = cpi->svc.prev_partition_svc;
1074   int start_pos = mi_row * cm->mi_stride + mi_col;
1075   const int bsl = b_width_log2_lookup[bsize];
1076   const int bs = (1 << bsl) >> 2;
1077   BLOCK_SIZE subsize;
1078   PARTITION_TYPE partition;
1079   const MODE_INFO *mi = NULL;
1080   int xx, yy;
1081 
1082   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1083 
1084   mi = cm->mi_grid_visible[start_pos];
1085   partition = partition_lookup[bsl][mi->sb_type];
1086   subsize = get_subsize(bsize, partition);
1087   if (subsize < BLOCK_8X8) {
1088     prev_part[start_pos] = bsize;
1089   } else {
1090     switch (partition) {
1091       case PARTITION_NONE:
1092         prev_part[start_pos] = bsize;
1093         if (bsize == BLOCK_64X64) {
1094           for (xx = 0; xx < 8; xx += 4)
1095             for (yy = 0; yy < 8; yy += 4) {
1096               if ((mi_row + xx < cm->mi_rows) && (mi_col + yy < cm->mi_cols))
1097                 prev_part[start_pos + xx * cm->mi_stride + yy] = bsize;
1098             }
1099         }
1100         break;
1101       case PARTITION_HORZ:
1102         prev_part[start_pos] = subsize;
1103         if (mi_row + bs < cm->mi_rows)
1104           prev_part[start_pos + bs * cm->mi_stride] = subsize;
1105         break;
1106       case PARTITION_VERT:
1107         prev_part[start_pos] = subsize;
1108         if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
1109         break;
1110       default:
1111         assert(partition == PARTITION_SPLIT);
1112         update_partition_svc(cpi, subsize, mi_row, mi_col);
1113         update_partition_svc(cpi, subsize, mi_row + bs, mi_col);
1114         update_partition_svc(cpi, subsize, mi_row, mi_col + bs);
1115         update_partition_svc(cpi, subsize, mi_row + bs, mi_col + bs);
1116         break;
1117     }
1118   }
1119 }
1120 
update_prev_partition_helper(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)1121 static void update_prev_partition_helper(VP9_COMP *cpi, BLOCK_SIZE bsize,
1122                                          int mi_row, int mi_col) {
1123   VP9_COMMON *const cm = &cpi->common;
1124   BLOCK_SIZE *prev_part = cpi->prev_partition;
1125   int start_pos = mi_row * cm->mi_stride + mi_col;
1126   const int bsl = b_width_log2_lookup[bsize];
1127   const int bs = (1 << bsl) >> 2;
1128   BLOCK_SIZE subsize;
1129   PARTITION_TYPE partition;
1130   const MODE_INFO *mi = NULL;
1131 
1132   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
1133 
1134   mi = cm->mi_grid_visible[start_pos];
1135   partition = partition_lookup[bsl][mi->sb_type];
1136   subsize = get_subsize(bsize, partition);
1137   if (subsize < BLOCK_8X8) {
1138     prev_part[start_pos] = bsize;
1139   } else {
1140     switch (partition) {
1141       case PARTITION_NONE: prev_part[start_pos] = bsize; break;
1142       case PARTITION_HORZ:
1143         prev_part[start_pos] = subsize;
1144         if (mi_row + bs < cm->mi_rows)
1145           prev_part[start_pos + bs * cm->mi_stride] = subsize;
1146         break;
1147       case PARTITION_VERT:
1148         prev_part[start_pos] = subsize;
1149         if (mi_col + bs < cm->mi_cols) prev_part[start_pos + bs] = subsize;
1150         break;
1151       default:
1152         assert(partition == PARTITION_SPLIT);
1153         update_prev_partition_helper(cpi, subsize, mi_row, mi_col);
1154         update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col);
1155         update_prev_partition_helper(cpi, subsize, mi_row, mi_col + bs);
1156         update_prev_partition_helper(cpi, subsize, mi_row + bs, mi_col + bs);
1157         break;
1158     }
1159   }
1160 }
1161 
update_prev_partition(VP9_COMP * cpi,MACROBLOCK * x,int segment_id,int mi_row,int mi_col,int sb_offset)1162 static void update_prev_partition(VP9_COMP *cpi, MACROBLOCK *x, int segment_id,
1163                                   int mi_row, int mi_col, int sb_offset) {
1164   update_prev_partition_helper(cpi, BLOCK_64X64, mi_row, mi_col);
1165   cpi->prev_segment_id[sb_offset] = segment_id;
1166   memcpy(&(cpi->prev_variance_low[sb_offset * 25]), x->variance_low,
1167          sizeof(x->variance_low));
1168   // Reset the counter for copy partitioning
1169   cpi->copied_frame_cnt[sb_offset] = 0;
1170 }
1171 
chroma_check(VP9_COMP * cpi,MACROBLOCK * x,int bsize,unsigned int y_sad,int is_key_frame,int scene_change_detected)1172 static void chroma_check(VP9_COMP *cpi, MACROBLOCK *x, int bsize,
1173                          unsigned int y_sad, int is_key_frame,
1174                          int scene_change_detected) {
1175   int i;
1176   MACROBLOCKD *xd = &x->e_mbd;
1177   int shift = 2;
1178 
1179   if (is_key_frame) return;
1180 
1181   // For speed > 8, avoid the chroma check if y_sad is above threshold.
1182   if (cpi->oxcf.speed > 8) {
1183     if (y_sad > cpi->vbp_thresholds[1] &&
1184         (!cpi->noise_estimate.enabled ||
1185          vp9_noise_estimate_extract_level(&cpi->noise_estimate) < kMedium))
1186       return;
1187   }
1188 
1189   if (cpi->oxcf.content == VP9E_CONTENT_SCREEN && scene_change_detected)
1190     shift = 5;
1191 
1192   for (i = 1; i <= 2; ++i) {
1193     unsigned int uv_sad = UINT_MAX;
1194     struct macroblock_plane *p = &x->plane[i];
1195     struct macroblockd_plane *pd = &xd->plane[i];
1196     const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
1197 
1198     if (bs != BLOCK_INVALID)
1199       uv_sad = cpi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, pd->dst.buf,
1200                                    pd->dst.stride);
1201 
1202     // TODO(marpan): Investigate if we should lower this threshold if
1203     // superblock is detected as skin.
1204     x->color_sensitivity[i - 1] = uv_sad > (y_sad >> shift);
1205   }
1206 }
1207 
avg_source_sad(VP9_COMP * cpi,MACROBLOCK * x,int shift,int sb_offset)1208 static uint64_t avg_source_sad(VP9_COMP *cpi, MACROBLOCK *x, int shift,
1209                                int sb_offset) {
1210   unsigned int tmp_sse;
1211   uint64_t tmp_sad;
1212   unsigned int tmp_variance;
1213   const BLOCK_SIZE bsize = BLOCK_64X64;
1214   uint8_t *src_y = cpi->Source->y_buffer;
1215   int src_ystride = cpi->Source->y_stride;
1216   uint8_t *last_src_y = cpi->Last_Source->y_buffer;
1217   int last_src_ystride = cpi->Last_Source->y_stride;
1218   uint64_t avg_source_sad_threshold = 10000;
1219   uint64_t avg_source_sad_threshold2 = 12000;
1220 #if CONFIG_VP9_HIGHBITDEPTH
1221   if (cpi->common.use_highbitdepth) return 0;
1222 #endif
1223   src_y += shift;
1224   last_src_y += shift;
1225   tmp_sad =
1226       cpi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride);
1227   tmp_variance = vpx_variance64x64(src_y, src_ystride, last_src_y,
1228                                    last_src_ystride, &tmp_sse);
1229   // Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
1230   if (tmp_sad < avg_source_sad_threshold)
1231     x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kLowSadLowSumdiff
1232                                                           : kLowSadHighSumdiff;
1233   else
1234     x->content_state_sb = ((tmp_sse - tmp_variance) < 25) ? kHighSadLowSumdiff
1235                                                           : kHighSadHighSumdiff;
1236 
1237   // Detect large lighting change.
1238   if (cpi->oxcf.content != VP9E_CONTENT_SCREEN &&
1239       cpi->oxcf.rc_mode == VPX_CBR && tmp_variance < (tmp_sse >> 3) &&
1240       (tmp_sse - tmp_variance) > 10000)
1241     x->content_state_sb = kLowVarHighSumdiff;
1242   else if (tmp_sad > (avg_source_sad_threshold << 1))
1243     x->content_state_sb = kVeryHighSad;
1244 
1245   if (cpi->content_state_sb_fd != NULL) {
1246     if (tmp_sad < avg_source_sad_threshold2) {
1247       // Cap the increment to 255.
1248       if (cpi->content_state_sb_fd[sb_offset] < 255)
1249         cpi->content_state_sb_fd[sb_offset]++;
1250     } else {
1251       cpi->content_state_sb_fd[sb_offset] = 0;
1252     }
1253   }
1254   if (tmp_sad == 0) x->zero_temp_sad_source = 1;
1255   return tmp_sad;
1256 }
1257 
1258 // This function chooses partitioning based on the variance between source and
1259 // reconstructed last, where variance is computed for down-sampled inputs.
choose_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * x,int mi_row,int mi_col)1260 static int choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
1261                                MACROBLOCK *x, int mi_row, int mi_col) {
1262   VP9_COMMON *const cm = &cpi->common;
1263   MACROBLOCKD *xd = &x->e_mbd;
1264   int i, j, k, m;
1265   v64x64 vt;
1266   v16x16 *vt2 = NULL;
1267   int force_split[21];
1268   int avg_32x32;
1269   int max_var_32x32 = 0;
1270   int min_var_32x32 = INT_MAX;
1271   int var_32x32;
1272   int avg_16x16[4];
1273   int maxvar_16x16[4];
1274   int minvar_16x16[4];
1275   int64_t threshold_4x4avg;
1276   NOISE_LEVEL noise_level = kLow;
1277   int content_state = 0;
1278   uint8_t *s;
1279   const uint8_t *d;
1280   int sp;
1281   int dp;
1282   int compute_minmax_variance = 1;
1283   unsigned int y_sad = UINT_MAX;
1284   BLOCK_SIZE bsize = BLOCK_64X64;
1285   // Ref frame used in partitioning.
1286   MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME;
1287   int pixels_wide = 64, pixels_high = 64;
1288   int64_t thresholds[4] = { cpi->vbp_thresholds[0], cpi->vbp_thresholds[1],
1289                             cpi->vbp_thresholds[2], cpi->vbp_thresholds[3] };
1290   int scene_change_detected =
1291       cpi->rc.high_source_sad ||
1292       (cpi->use_svc && cpi->svc.high_source_sad_superframe);
1293   int force_64_split = scene_change_detected ||
1294                        (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1295                         cpi->compute_source_sad_onepass &&
1296                         cpi->sf.use_source_sad && !x->zero_temp_sad_source);
1297 
1298   // For the variance computation under SVC mode, we treat the frame as key if
1299   // the reference (base layer frame) is key frame (i.e., is_key_frame == 1).
1300   int is_key_frame =
1301       (frame_is_intra_only(cm) ||
1302        (is_one_pass_svc(cpi) &&
1303         cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame));
1304   // Always use 4x4 partition for key frame.
1305   const int use_4x4_partition = frame_is_intra_only(cm);
1306   const int low_res = (cm->width <= 352 && cm->height <= 288);
1307   int variance4x4downsample[16];
1308   int segment_id;
1309   int sb_offset = (cm->mi_stride >> 3) * (mi_row >> 3) + (mi_col >> 3);
1310 
1311   // For SVC: check if LAST frame is NULL or if the resolution of LAST is
1312   // different than the current frame resolution, and if so, treat this frame
1313   // as a key frame, for the purpose of the superblock partitioning.
1314   // LAST == NULL can happen in some cases where enhancement spatial layers are
1315   // enabled dyanmically in the stream and the only reference is the spatial
1316   // reference (GOLDEN).
1317   if (cpi->use_svc) {
1318     const YV12_BUFFER_CONFIG *const ref = get_ref_frame_buffer(cpi, LAST_FRAME);
1319     if (ref == NULL || ref->y_crop_height != cm->height ||
1320         ref->y_crop_width != cm->width)
1321       is_key_frame = 1;
1322   }
1323 
1324   set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
1325   set_segment_index(cpi, x, mi_row, mi_col, BLOCK_64X64, 0);
1326   segment_id = xd->mi[0]->segment_id;
1327 
1328   if (cpi->oxcf.speed >= 8 || (cpi->use_svc && cpi->svc.non_reference_frame))
1329     compute_minmax_variance = 0;
1330 
1331   memset(x->variance_low, 0, sizeof(x->variance_low));
1332 
1333   if (cpi->sf.use_source_sad && !is_key_frame) {
1334     int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
1335     content_state = x->content_state_sb;
1336     x->skip_low_source_sad = (content_state == kLowSadLowSumdiff ||
1337                               content_state == kLowSadHighSumdiff)
1338                                  ? 1
1339                                  : 0;
1340     x->lowvar_highsumdiff = (content_state == kLowVarHighSumdiff) ? 1 : 0;
1341     if (cpi->content_state_sb_fd != NULL)
1342       x->last_sb_high_content = cpi->content_state_sb_fd[sb_offset2];
1343 
1344     // For SVC on top spatial layer: use/scale the partition from
1345     // the lower spatial resolution if svc_use_lowres_part is enabled.
1346     if (cpi->sf.svc_use_lowres_part &&
1347         cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1 &&
1348         cpi->svc.prev_partition_svc != NULL && content_state != kVeryHighSad) {
1349       if (!scale_partitioning_svc(cpi, x, xd, BLOCK_64X64, mi_row >> 1,
1350                                   mi_col >> 1, mi_row, mi_col)) {
1351         if (cpi->sf.copy_partition_flag) {
1352           update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1353         }
1354         return 0;
1355       }
1356     }
1357     // If source_sad is low copy the partition without computing the y_sad.
1358     if (x->skip_low_source_sad && cpi->sf.copy_partition_flag &&
1359         !force_64_split &&
1360         copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
1361       x->sb_use_mv_part = 1;
1362       if (cpi->sf.svc_use_lowres_part &&
1363           cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1364         update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1365       return 0;
1366     }
1367   }
1368 
1369   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled &&
1370       cyclic_refresh_segment_id_boosted(segment_id)) {
1371     int q = vp9_get_qindex(&cm->seg, segment_id, cm->base_qindex);
1372     set_vbp_thresholds(cpi, thresholds, q, content_state);
1373   } else {
1374     set_vbp_thresholds(cpi, thresholds, cm->base_qindex, content_state);
1375   }
1376   // Decrease 32x32 split threshold for screen on base layer, for scene
1377   // change/high motion frames.
1378   if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1379       cpi->svc.spatial_layer_id == 0 && force_64_split)
1380     thresholds[1] = 3 * thresholds[1] >> 2;
1381 
1382   // For non keyframes, disable 4x4 average for low resolution when speed = 8
1383   threshold_4x4avg = (cpi->oxcf.speed < 8) ? thresholds[1] << 1 : INT64_MAX;
1384 
1385   if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
1386   if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
1387 
1388   s = x->plane[0].src.buf;
1389   sp = x->plane[0].src.stride;
1390 
1391   // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks,
1392   // 5-20 for the 16x16 blocks.
1393   force_split[0] = force_64_split;
1394 
1395   if (!is_key_frame) {
1396     // In the case of spatial/temporal scalable coding, the assumption here is
1397     // that the temporal reference frame will always be of type LAST_FRAME.
1398     // TODO(marpan): If that assumption is broken, we need to revisit this code.
1399     MODE_INFO *mi = xd->mi[0];
1400     YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
1401 
1402     const YV12_BUFFER_CONFIG *yv12_g = NULL;
1403     unsigned int y_sad_g, y_sad_thr, y_sad_last;
1404     bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
1405             (mi_row + 4 < cm->mi_rows);
1406 
1407     assert(yv12 != NULL);
1408 
1409     if (!(is_one_pass_svc(cpi) && cpi->svc.spatial_layer_id) ||
1410         cpi->svc.use_gf_temporal_ref_current_layer) {
1411       // For now, GOLDEN will not be used for non-zero spatial layers, since
1412       // it may not be a temporal reference.
1413       yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
1414     }
1415 
1416     // Only compute y_sad_g (sad for golden reference) for speed < 8.
1417     if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
1418         (cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
1419       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
1420                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
1421       y_sad_g = cpi->fn_ptr[bsize].sdf(
1422           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
1423           xd->plane[0].pre[0].stride);
1424     } else {
1425       y_sad_g = UINT_MAX;
1426     }
1427 
1428     if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
1429         cpi->rc.is_src_frame_alt_ref) {
1430       yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
1431       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
1432                            &cm->frame_refs[ALTREF_FRAME - 1].sf);
1433       mi->ref_frame[0] = ALTREF_FRAME;
1434       y_sad_g = UINT_MAX;
1435     } else {
1436       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
1437                            &cm->frame_refs[LAST_FRAME - 1].sf);
1438       mi->ref_frame[0] = LAST_FRAME;
1439     }
1440     mi->ref_frame[1] = NONE;
1441     mi->sb_type = BLOCK_64X64;
1442     mi->mv[0].as_int = 0;
1443     mi->interp_filter = BILINEAR;
1444 
1445     if (cpi->oxcf.speed >= 8 && !low_res &&
1446         x->content_state_sb != kVeryHighSad) {
1447       y_sad = cpi->fn_ptr[bsize].sdf(
1448           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
1449           xd->plane[0].pre[0].stride);
1450     } else {
1451       const MV dummy_mv = { 0, 0 };
1452       y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
1453                                             &dummy_mv);
1454       x->sb_use_mv_part = 1;
1455       x->sb_mvcol_part = mi->mv[0].as_mv.col;
1456       x->sb_mvrow_part = mi->mv[0].as_mv.row;
1457       if (cpi->oxcf.content == VP9E_CONTENT_SCREEN &&
1458           cpi->svc.spatial_layer_id == cpi->svc.first_spatial_layer_to_encode &&
1459           cpi->svc.high_num_blocks_with_motion && !x->zero_temp_sad_source &&
1460           cm->width > 640 && cm->height > 480) {
1461         // Disable split below 16x16 block size when scroll motion (horz or
1462         // vert) is detected.
1463         // TODO(marpan/jianj): Improve this condition: issue is that search
1464         // range is hard-coded/limited in vp9_int_pro_motion_estimation() so
1465         // scroll motion may not be detected here.
1466         if (((abs(x->sb_mvrow_part) >= 48 && abs(x->sb_mvcol_part) <= 8) ||
1467              (abs(x->sb_mvcol_part) >= 48 && abs(x->sb_mvrow_part) <= 8)) &&
1468             y_sad < 100000) {
1469           compute_minmax_variance = 0;
1470           thresholds[2] = INT64_MAX;
1471         }
1472       }
1473     }
1474 
1475     y_sad_last = y_sad;
1476     // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
1477     // are close if short_circuit_low_temp_var is on.
1478     y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
1479     if (y_sad_g < y_sad_thr) {
1480       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
1481                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
1482       mi->ref_frame[0] = GOLDEN_FRAME;
1483       mi->mv[0].as_int = 0;
1484       y_sad = y_sad_g;
1485       ref_frame_partition = GOLDEN_FRAME;
1486     } else {
1487       x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
1488       ref_frame_partition = LAST_FRAME;
1489     }
1490 
1491     set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
1492     vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
1493 
1494     if (cpi->use_skin_detection)
1495       x->sb_is_skin = skin_sb_split(cpi, low_res, mi_row, mi_col, force_split);
1496 
1497     d = xd->plane[0].dst.buf;
1498     dp = xd->plane[0].dst.stride;
1499 
1500     // If the y_sad is very small, take 64x64 as partition and exit.
1501     // Don't check on boosted segment for now, as 64x64 is suppressed there.
1502     if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
1503       const int block_width = num_8x8_blocks_wide_lookup[BLOCK_64X64];
1504       const int block_height = num_8x8_blocks_high_lookup[BLOCK_64X64];
1505       if (mi_col + block_width / 2 < cm->mi_cols &&
1506           mi_row + block_height / 2 < cm->mi_rows) {
1507         set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_64X64);
1508         x->variance_low[0] = 1;
1509         chroma_check(cpi, x, bsize, y_sad, is_key_frame, scene_change_detected);
1510         if (cpi->sf.svc_use_lowres_part &&
1511             cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1512           update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1513         if (cpi->sf.copy_partition_flag) {
1514           update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1515         }
1516         return 0;
1517       }
1518     }
1519 
1520     // If the y_sad is small enough, copy the partition of the superblock in the
1521     // last frame to current frame only if the last frame is not a keyframe.
1522     // Stop the copy every cpi->max_copied_frame to refresh the partition.
1523     // TODO(jianj) : tune the threshold.
1524     if (cpi->sf.copy_partition_flag && y_sad_last < cpi->vbp_threshold_copy &&
1525         copy_partitioning(cpi, x, xd, mi_row, mi_col, segment_id, sb_offset)) {
1526       chroma_check(cpi, x, bsize, y_sad, is_key_frame, scene_change_detected);
1527       if (cpi->sf.svc_use_lowres_part &&
1528           cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1529         update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1530       return 0;
1531     }
1532   } else {
1533     d = VP9_VAR_OFFS;
1534     dp = 0;
1535 #if CONFIG_VP9_HIGHBITDEPTH
1536     if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1537       switch (xd->bd) {
1538         case 10: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_10); break;
1539         case 12: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_12); break;
1540         case 8:
1541         default: d = CONVERT_TO_BYTEPTR(VP9_HIGH_VAR_OFFS_8); break;
1542       }
1543     }
1544 #endif  // CONFIG_VP9_HIGHBITDEPTH
1545   }
1546 
1547   if (low_res && threshold_4x4avg < INT64_MAX)
1548     CHECK_MEM_ERROR(cm, vt2, vpx_calloc(16, sizeof(*vt2)));
1549   // Fill in the entire tree of 8x8 (or 4x4 under some conditions) variances
1550   // for splits.
1551   for (i = 0; i < 4; i++) {
1552     const int x32_idx = ((i & 1) << 5);
1553     const int y32_idx = ((i >> 1) << 5);
1554     const int i2 = i << 2;
1555     force_split[i + 1] = 0;
1556     avg_16x16[i] = 0;
1557     maxvar_16x16[i] = 0;
1558     minvar_16x16[i] = INT_MAX;
1559     for (j = 0; j < 4; j++) {
1560       const int x16_idx = x32_idx + ((j & 1) << 4);
1561       const int y16_idx = y32_idx + ((j >> 1) << 4);
1562       const int split_index = 5 + i2 + j;
1563       v16x16 *vst = &vt.split[i].split[j];
1564       force_split[split_index] = 0;
1565       variance4x4downsample[i2 + j] = 0;
1566       if (!is_key_frame) {
1567         fill_variance_8x8avg(s, sp, d, dp, x16_idx, y16_idx, vst,
1568 #if CONFIG_VP9_HIGHBITDEPTH
1569                              xd->cur_buf->flags,
1570 #endif
1571                              pixels_wide, pixels_high, is_key_frame);
1572         fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
1573         get_variance(&vt.split[i].split[j].part_variances.none);
1574         avg_16x16[i] += vt.split[i].split[j].part_variances.none.variance;
1575         if (vt.split[i].split[j].part_variances.none.variance < minvar_16x16[i])
1576           minvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
1577         if (vt.split[i].split[j].part_variances.none.variance > maxvar_16x16[i])
1578           maxvar_16x16[i] = vt.split[i].split[j].part_variances.none.variance;
1579         if (vt.split[i].split[j].part_variances.none.variance > thresholds[2]) {
1580           // 16X16 variance is above threshold for split, so force split to 8x8
1581           // for this 16x16 block (this also forces splits for upper levels).
1582           force_split[split_index] = 1;
1583           force_split[i + 1] = 1;
1584           force_split[0] = 1;
1585         } else if (compute_minmax_variance &&
1586                    vt.split[i].split[j].part_variances.none.variance >
1587                        thresholds[1] &&
1588                    !cyclic_refresh_segment_id_boosted(segment_id)) {
1589           // We have some nominal amount of 16x16 variance (based on average),
1590           // compute the minmax over the 8x8 sub-blocks, and if above threshold,
1591           // force split to 8x8 block for this 16x16 block.
1592           int minmax = compute_minmax_8x8(s, sp, d, dp, x16_idx, y16_idx,
1593 #if CONFIG_VP9_HIGHBITDEPTH
1594                                           xd->cur_buf->flags,
1595 #endif
1596                                           pixels_wide, pixels_high);
1597           int thresh_minmax = (int)cpi->vbp_threshold_minmax;
1598           if (x->content_state_sb == kVeryHighSad)
1599             thresh_minmax = thresh_minmax << 1;
1600           if (minmax > thresh_minmax) {
1601             force_split[split_index] = 1;
1602             force_split[i + 1] = 1;
1603             force_split[0] = 1;
1604           }
1605         }
1606       }
1607       if (is_key_frame ||
1608           (low_res && vt.split[i].split[j].part_variances.none.variance >
1609                           threshold_4x4avg)) {
1610         force_split[split_index] = 0;
1611         // Go down to 4x4 down-sampling for variance.
1612         variance4x4downsample[i2 + j] = 1;
1613         for (k = 0; k < 4; k++) {
1614           int x8_idx = x16_idx + ((k & 1) << 3);
1615           int y8_idx = y16_idx + ((k >> 1) << 3);
1616           v8x8 *vst2 = is_key_frame ? &vst->split[k] : &vt2[i2 + j].split[k];
1617           fill_variance_4x4avg(s, sp, d, dp, x8_idx, y8_idx, vst2,
1618 #if CONFIG_VP9_HIGHBITDEPTH
1619                                xd->cur_buf->flags,
1620 #endif
1621                                pixels_wide, pixels_high, is_key_frame);
1622         }
1623       }
1624     }
1625   }
1626   if (cpi->noise_estimate.enabled)
1627     noise_level = vp9_noise_estimate_extract_level(&cpi->noise_estimate);
1628   // Fill the rest of the variance tree by summing split partition values.
1629   avg_32x32 = 0;
1630   for (i = 0; i < 4; i++) {
1631     const int i2 = i << 2;
1632     for (j = 0; j < 4; j++) {
1633       if (variance4x4downsample[i2 + j] == 1) {
1634         v16x16 *vtemp = (!is_key_frame) ? &vt2[i2 + j] : &vt.split[i].split[j];
1635         for (m = 0; m < 4; m++) fill_variance_tree(&vtemp->split[m], BLOCK_8X8);
1636         fill_variance_tree(vtemp, BLOCK_16X16);
1637         // If variance of this 16x16 block is above the threshold, force block
1638         // to split. This also forces a split on the upper levels.
1639         get_variance(&vtemp->part_variances.none);
1640         if (vtemp->part_variances.none.variance > thresholds[2]) {
1641           force_split[5 + i2 + j] = 1;
1642           force_split[i + 1] = 1;
1643           force_split[0] = 1;
1644         }
1645       }
1646     }
1647     fill_variance_tree(&vt.split[i], BLOCK_32X32);
1648     // If variance of this 32x32 block is above the threshold, or if its above
1649     // (some threshold of) the average variance over the sub-16x16 blocks, then
1650     // force this block to split. This also forces a split on the upper
1651     // (64x64) level.
1652     if (!force_split[i + 1]) {
1653       get_variance(&vt.split[i].part_variances.none);
1654       var_32x32 = vt.split[i].part_variances.none.variance;
1655       max_var_32x32 = VPXMAX(var_32x32, max_var_32x32);
1656       min_var_32x32 = VPXMIN(var_32x32, min_var_32x32);
1657       if (vt.split[i].part_variances.none.variance > thresholds[1] ||
1658           (!is_key_frame &&
1659            vt.split[i].part_variances.none.variance > (thresholds[1] >> 1) &&
1660            vt.split[i].part_variances.none.variance > (avg_16x16[i] >> 1))) {
1661         force_split[i + 1] = 1;
1662         force_split[0] = 1;
1663       } else if (!is_key_frame && noise_level < kLow && cm->height <= 360 &&
1664                  (maxvar_16x16[i] - minvar_16x16[i]) > (thresholds[1] >> 1) &&
1665                  maxvar_16x16[i] > thresholds[1]) {
1666         force_split[i + 1] = 1;
1667         force_split[0] = 1;
1668       }
1669       avg_32x32 += var_32x32;
1670     }
1671   }
1672   if (!force_split[0]) {
1673     fill_variance_tree(&vt, BLOCK_64X64);
1674     get_variance(&vt.part_variances.none);
1675     // If variance of this 64x64 block is above (some threshold of) the average
1676     // variance over the sub-32x32 blocks, then force this block to split.
1677     // Only checking this for noise level >= medium for now.
1678     if (!is_key_frame && noise_level >= kMedium &&
1679         vt.part_variances.none.variance > (9 * avg_32x32) >> 5)
1680       force_split[0] = 1;
1681     // Else if the maximum 32x32 variance minus the miniumum 32x32 variance in
1682     // a 64x64 block is greater than threshold and the maximum 32x32 variance is
1683     // above a miniumum threshold, then force the split of a 64x64 block
1684     // Only check this for low noise.
1685     else if (!is_key_frame && noise_level < kMedium &&
1686              (max_var_32x32 - min_var_32x32) > 3 * (thresholds[0] >> 3) &&
1687              max_var_32x32 > thresholds[0] >> 1)
1688       force_split[0] = 1;
1689   }
1690 
1691   // Now go through the entire structure, splitting every block size until
1692   // we get to one that's got a variance lower than our threshold.
1693   if (mi_col + 8 > cm->mi_cols || mi_row + 8 > cm->mi_rows ||
1694       !set_vt_partitioning(cpi, x, xd, &vt, BLOCK_64X64, mi_row, mi_col,
1695                            thresholds[0], BLOCK_16X16, force_split[0])) {
1696     for (i = 0; i < 4; ++i) {
1697       const int x32_idx = ((i & 1) << 2);
1698       const int y32_idx = ((i >> 1) << 2);
1699       const int i2 = i << 2;
1700       if (!set_vt_partitioning(cpi, x, xd, &vt.split[i], BLOCK_32X32,
1701                                (mi_row + y32_idx), (mi_col + x32_idx),
1702                                thresholds[1], BLOCK_16X16,
1703                                force_split[i + 1])) {
1704         for (j = 0; j < 4; ++j) {
1705           const int x16_idx = ((j & 1) << 1);
1706           const int y16_idx = ((j >> 1) << 1);
1707           // For inter frames: if variance4x4downsample[] == 1 for this 16x16
1708           // block, then the variance is based on 4x4 down-sampling, so use vt2
1709           // in set_vt_partioning(), otherwise use vt.
1710           v16x16 *vtemp = (!is_key_frame && variance4x4downsample[i2 + j] == 1)
1711                               ? &vt2[i2 + j]
1712                               : &vt.split[i].split[j];
1713           if (!set_vt_partitioning(
1714                   cpi, x, xd, vtemp, BLOCK_16X16, mi_row + y32_idx + y16_idx,
1715                   mi_col + x32_idx + x16_idx, thresholds[2], cpi->vbp_bsize_min,
1716                   force_split[5 + i2 + j])) {
1717             for (k = 0; k < 4; ++k) {
1718               const int x8_idx = (k & 1);
1719               const int y8_idx = (k >> 1);
1720               if (use_4x4_partition) {
1721                 if (!set_vt_partitioning(cpi, x, xd, &vtemp->split[k],
1722                                          BLOCK_8X8,
1723                                          mi_row + y32_idx + y16_idx + y8_idx,
1724                                          mi_col + x32_idx + x16_idx + x8_idx,
1725                                          thresholds[3], BLOCK_8X8, 0)) {
1726                   set_block_size(
1727                       cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
1728                       (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_4X4);
1729                 }
1730               } else {
1731                 set_block_size(
1732                     cpi, x, xd, (mi_row + y32_idx + y16_idx + y8_idx),
1733                     (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8);
1734               }
1735             }
1736           }
1737         }
1738       }
1739     }
1740   }
1741 
1742   if (!frame_is_intra_only(cm) && cpi->sf.copy_partition_flag) {
1743     update_prev_partition(cpi, x, segment_id, mi_row, mi_col, sb_offset);
1744   }
1745 
1746   if (!frame_is_intra_only(cm) && cpi->sf.svc_use_lowres_part &&
1747       cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 2)
1748     update_partition_svc(cpi, BLOCK_64X64, mi_row, mi_col);
1749 
1750   if (cpi->sf.short_circuit_low_temp_var) {
1751     set_low_temp_var_flag(cpi, x, xd, &vt, thresholds, ref_frame_partition,
1752                           mi_col, mi_row);
1753   }
1754 
1755   chroma_check(cpi, x, bsize, y_sad, is_key_frame, scene_change_detected);
1756   if (vt2) vpx_free(vt2);
1757   return 0;
1758 }
1759 
1760 #if !CONFIG_REALTIME_ONLY
update_state(VP9_COMP * cpi,ThreadData * td,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled)1761 static void update_state(VP9_COMP *cpi, ThreadData *td, PICK_MODE_CONTEXT *ctx,
1762                          int mi_row, int mi_col, BLOCK_SIZE bsize,
1763                          int output_enabled) {
1764   int i, x_idx, y;
1765   VP9_COMMON *const cm = &cpi->common;
1766   RD_COUNTS *const rdc = &td->rd_counts;
1767   MACROBLOCK *const x = &td->mb;
1768   MACROBLOCKD *const xd = &x->e_mbd;
1769   struct macroblock_plane *const p = x->plane;
1770   struct macroblockd_plane *const pd = xd->plane;
1771   MODE_INFO *mi = &ctx->mic;
1772   MODE_INFO *const xdmi = xd->mi[0];
1773   MODE_INFO *mi_addr = xd->mi[0];
1774   const struct segmentation *const seg = &cm->seg;
1775   const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
1776   const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
1777   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
1778   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
1779   MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
1780   int w, h;
1781 
1782   const int mis = cm->mi_stride;
1783   const int mi_width = num_8x8_blocks_wide_lookup[bsize];
1784   const int mi_height = num_8x8_blocks_high_lookup[bsize];
1785   int max_plane;
1786 
1787   assert(mi->sb_type == bsize);
1788 
1789   *mi_addr = *mi;
1790   *x->mbmi_ext = ctx->mbmi_ext;
1791 
1792   // If segmentation in use
1793   if (seg->enabled) {
1794     // For in frame complexity AQ copy the segment id from the segment map.
1795     if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
1796       const uint8_t *const map =
1797           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
1798       mi_addr->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
1799     }
1800     // Else for cyclic refresh mode update the segment map, set the segment id
1801     // and then update the quantizer.
1802     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
1803         cpi->cyclic_refresh->content_mode) {
1804       vp9_cyclic_refresh_update_segment(cpi, xd->mi[0], mi_row, mi_col, bsize,
1805                                         ctx->rate, ctx->dist, x->skip, p);
1806     }
1807   }
1808 
1809   max_plane = is_inter_block(xdmi) ? MAX_MB_PLANE : 1;
1810   for (i = 0; i < max_plane; ++i) {
1811     p[i].coeff = ctx->coeff_pbuf[i][1];
1812     p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
1813     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
1814     p[i].eobs = ctx->eobs_pbuf[i][1];
1815   }
1816 
1817   for (i = max_plane; i < MAX_MB_PLANE; ++i) {
1818     p[i].coeff = ctx->coeff_pbuf[i][2];
1819     p[i].qcoeff = ctx->qcoeff_pbuf[i][2];
1820     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2];
1821     p[i].eobs = ctx->eobs_pbuf[i][2];
1822   }
1823 
1824   // Restore the coding context of the MB to that that was in place
1825   // when the mode was picked for it
1826   for (y = 0; y < mi_height; y++)
1827     for (x_idx = 0; x_idx < mi_width; x_idx++)
1828       if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
1829           (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
1830         xd->mi[x_idx + y * mis] = mi_addr;
1831       }
1832 
1833   if (cpi->oxcf.aq_mode != NO_AQ) vp9_init_plane_quantizers(cpi, x);
1834 
1835   if (is_inter_block(xdmi) && xdmi->sb_type < BLOCK_8X8) {
1836     xdmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
1837     xdmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
1838   }
1839 
1840   x->skip = ctx->skip;
1841   memcpy(x->zcoeff_blk[xdmi->tx_size], ctx->zcoeff_blk,
1842          sizeof(ctx->zcoeff_blk[0]) * ctx->num_4x4_blk);
1843 
1844   if (!output_enabled) return;
1845 
1846 #if CONFIG_INTERNAL_STATS
1847   if (frame_is_intra_only(cm)) {
1848     static const int kf_mode_index[] = {
1849       THR_DC /*DC_PRED*/,          THR_V_PRED /*V_PRED*/,
1850       THR_H_PRED /*H_PRED*/,       THR_D45_PRED /*D45_PRED*/,
1851       THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/,
1852       THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/,
1853       THR_D63_PRED /*D63_PRED*/,   THR_TM /*TM_PRED*/,
1854     };
1855     ++cpi->mode_chosen_counts[kf_mode_index[xdmi->mode]];
1856   } else {
1857     // Note how often each mode chosen as best
1858     ++cpi->mode_chosen_counts[ctx->best_mode_index];
1859   }
1860 #endif
1861   if (!frame_is_intra_only(cm)) {
1862     if (is_inter_block(xdmi)) {
1863       vp9_update_mv_count(td);
1864 
1865       if (cm->interp_filter == SWITCHABLE) {
1866         const int ctx = get_pred_context_switchable_interp(xd);
1867         ++td->counts->switchable_interp[ctx][xdmi->interp_filter];
1868       }
1869     }
1870 
1871     rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
1872     rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
1873     rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
1874 
1875     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
1876       rdc->filter_diff[i] += ctx->best_filter_diff[i];
1877   }
1878 
1879   for (h = 0; h < y_mis; ++h) {
1880     MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
1881     for (w = 0; w < x_mis; ++w) {
1882       MV_REF *const mv = frame_mv + w;
1883       mv->ref_frame[0] = mi->ref_frame[0];
1884       mv->ref_frame[1] = mi->ref_frame[1];
1885       mv->mv[0].as_int = mi->mv[0].as_int;
1886       mv->mv[1].as_int = mi->mv[1].as_int;
1887     }
1888   }
1889 }
1890 #endif  // !CONFIG_REALTIME_ONLY
1891 
vp9_setup_src_planes(MACROBLOCK * x,const YV12_BUFFER_CONFIG * src,int mi_row,int mi_col)1892 void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
1893                           int mi_row, int mi_col) {
1894   uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
1895   const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
1896   int i;
1897 
1898   // Set current frame pointer.
1899   x->e_mbd.cur_buf = src;
1900 
1901   for (i = 0; i < MAX_MB_PLANE; i++)
1902     setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col,
1903                      NULL, x->e_mbd.plane[i].subsampling_x,
1904                      x->e_mbd.plane[i].subsampling_y);
1905 }
1906 
set_mode_info_seg_skip(MACROBLOCK * x,TX_MODE tx_mode,INTERP_FILTER interp_filter,RD_COST * rd_cost,BLOCK_SIZE bsize)1907 static void set_mode_info_seg_skip(MACROBLOCK *x, TX_MODE tx_mode,
1908                                    INTERP_FILTER interp_filter,
1909                                    RD_COST *rd_cost, BLOCK_SIZE bsize) {
1910   MACROBLOCKD *const xd = &x->e_mbd;
1911   MODE_INFO *const mi = xd->mi[0];
1912   INTERP_FILTER filter_ref;
1913 
1914   filter_ref = get_pred_context_switchable_interp(xd);
1915   if (interp_filter == BILINEAR)
1916     filter_ref = BILINEAR;
1917   else if (filter_ref == SWITCHABLE_FILTERS)
1918     filter_ref = EIGHTTAP;
1919 
1920   mi->sb_type = bsize;
1921   mi->mode = ZEROMV;
1922   mi->tx_size =
1923       VPXMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[tx_mode]);
1924   mi->skip = 1;
1925   mi->uv_mode = DC_PRED;
1926   mi->ref_frame[0] = LAST_FRAME;
1927   mi->ref_frame[1] = NONE;
1928   mi->mv[0].as_int = 0;
1929   mi->interp_filter = filter_ref;
1930 
1931   xd->mi[0]->bmi[0].as_mv[0].as_int = 0;
1932   x->skip = 1;
1933 
1934   vp9_rd_cost_init(rd_cost);
1935 }
1936 
1937 #if !CONFIG_REALTIME_ONLY
set_segment_rdmult(VP9_COMP * const cpi,MACROBLOCK * const x,int mi_row,int mi_col,BLOCK_SIZE bsize,AQ_MODE aq_mode)1938 static void set_segment_rdmult(VP9_COMP *const cpi, MACROBLOCK *const x,
1939                                int mi_row, int mi_col, BLOCK_SIZE bsize,
1940                                AQ_MODE aq_mode) {
1941   VP9_COMMON *const cm = &cpi->common;
1942   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1943   const uint8_t *const map =
1944       cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
1945 
1946   vp9_init_plane_quantizers(cpi, x);
1947   vpx_clear_system_state();
1948 
1949   if (aq_mode == NO_AQ || aq_mode == PSNR_AQ) {
1950     if (cpi->sf.enable_tpl_model) x->rdmult = x->cb_rdmult;
1951   } else if (aq_mode == PERCEPTUAL_AQ) {
1952     x->rdmult = x->cb_rdmult;
1953   } else if (aq_mode == CYCLIC_REFRESH_AQ) {
1954     // If segment is boosted, use rdmult for that segment.
1955     if (cyclic_refresh_segment_id_boosted(
1956             get_segment_id(cm, map, bsize, mi_row, mi_col)))
1957       x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
1958   } else {
1959     x->rdmult = vp9_compute_rd_mult(cpi, cm->base_qindex + cm->y_dc_delta_q);
1960   }
1961 
1962   if (oxcf->tuning == VP8_TUNE_SSIM) {
1963     set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
1964   }
1965 }
1966 
rd_pick_sb_modes(VP9_COMP * cpi,TileDataEnc * tile_data,MACROBLOCK * const x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,int rate_in_best_rd,int64_t dist_in_best_rd)1967 static void rd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
1968                              MACROBLOCK *const x, int mi_row, int mi_col,
1969                              RD_COST *rd_cost, BLOCK_SIZE bsize,
1970                              PICK_MODE_CONTEXT *ctx, int rate_in_best_rd,
1971                              int64_t dist_in_best_rd) {
1972   VP9_COMMON *const cm = &cpi->common;
1973   TileInfo *const tile_info = &tile_data->tile_info;
1974   MACROBLOCKD *const xd = &x->e_mbd;
1975   MODE_INFO *mi;
1976   struct macroblock_plane *const p = x->plane;
1977   struct macroblockd_plane *const pd = xd->plane;
1978   const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
1979   int i, orig_rdmult;
1980   int64_t best_rd = INT64_MAX;
1981 
1982   vpx_clear_system_state();
1983 
1984   // Use the lower precision, but faster, 32x32 fdct for mode selection.
1985   x->use_lp32x32fdct = 1;
1986 
1987   set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
1988   mi = xd->mi[0];
1989   mi->sb_type = bsize;
1990 
1991   for (i = 0; i < MAX_MB_PLANE; ++i) {
1992     p[i].coeff = ctx->coeff_pbuf[i][0];
1993     p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
1994     pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
1995     p[i].eobs = ctx->eobs_pbuf[i][0];
1996   }
1997   ctx->is_coded = 0;
1998   ctx->skippable = 0;
1999   ctx->pred_pixel_ready = 0;
2000   x->skip_recode = 0;
2001 
2002   // Set to zero to make sure we do not use the previous encoded frame stats
2003   mi->skip = 0;
2004 
2005 #if CONFIG_VP9_HIGHBITDEPTH
2006   if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
2007     x->source_variance = vp9_high_get_sby_perpixel_variance(
2008         cpi, &x->plane[0].src, bsize, xd->bd);
2009   } else {
2010     x->source_variance =
2011         vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
2012   }
2013 #else
2014   x->source_variance =
2015       vp9_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
2016 #endif  // CONFIG_VP9_HIGHBITDEPTH
2017 
2018   // Save rdmult before it might be changed, so it can be restored later.
2019   orig_rdmult = x->rdmult;
2020 
2021   if ((cpi->sf.tx_domain_thresh > 0.0) || (cpi->sf.quant_opt_thresh > 0.0)) {
2022     double logvar = vp9_log_block_var(cpi, x, bsize);
2023     // Check block complexity as part of descision on using pixel or transform
2024     // domain distortion in rd tests.
2025     x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion &&
2026                          (logvar >= cpi->sf.tx_domain_thresh);
2027 
2028     // Check block complexity as part of descision on using quantized
2029     // coefficient optimisation inside the rd loop.
2030     x->block_qcoeff_opt =
2031         cpi->sf.allow_quant_coeff_opt && (logvar <= cpi->sf.quant_opt_thresh);
2032   } else {
2033     x->block_tx_domain = cpi->sf.allow_txfm_domain_distortion;
2034     x->block_qcoeff_opt = cpi->sf.allow_quant_coeff_opt;
2035   }
2036 
2037   set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
2038   set_segment_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode);
2039   if (rate_in_best_rd < INT_MAX && dist_in_best_rd < INT64_MAX) {
2040     best_rd = vp9_calculate_rd_cost(x->rdmult, x->rddiv, rate_in_best_rd,
2041                                     dist_in_best_rd);
2042   }
2043 
2044   // Find best coding mode & reconstruct the MB so it is available
2045   // as a predictor for MBs that follow in the SB
2046   if (frame_is_intra_only(cm)) {
2047     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
2048   } else {
2049     if (bsize >= BLOCK_8X8) {
2050       if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
2051         vp9_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
2052                                            ctx, best_rd);
2053       else
2054         vp9_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
2055                                   bsize, ctx, best_rd);
2056     } else {
2057       vp9_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col, rd_cost,
2058                                     bsize, ctx, best_rd);
2059     }
2060   }
2061 
2062   // Examine the resulting rate and for AQ mode 2 make a segment choice.
2063   if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
2064       (bsize >= BLOCK_16X16) &&
2065       (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
2066        (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
2067     vp9_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
2068   }
2069 
2070   // TODO(jingning) The rate-distortion optimization flow needs to be
2071   // refactored to provide proper exit/return handle.
2072   if (rd_cost->rate == INT_MAX || rd_cost->dist == INT64_MAX)
2073     rd_cost->rdcost = INT64_MAX;
2074   else
2075     rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
2076 
2077   x->rdmult = orig_rdmult;
2078 
2079   ctx->rate = rd_cost->rate;
2080   ctx->dist = rd_cost->dist;
2081 }
2082 #endif  // !CONFIG_REALTIME_ONLY
2083 
update_stats(VP9_COMMON * cm,ThreadData * td)2084 static void update_stats(VP9_COMMON *cm, ThreadData *td) {
2085   const MACROBLOCK *x = &td->mb;
2086   const MACROBLOCKD *const xd = &x->e_mbd;
2087   const MODE_INFO *const mi = xd->mi[0];
2088   const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
2089   const BLOCK_SIZE bsize = mi->sb_type;
2090 
2091   if (!frame_is_intra_only(cm)) {
2092     FRAME_COUNTS *const counts = td->counts;
2093     const int inter_block = is_inter_block(mi);
2094     const int seg_ref_active =
2095         segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_REF_FRAME);
2096     if (!seg_ref_active) {
2097       counts->intra_inter[get_intra_inter_context(xd)][inter_block]++;
2098       // If the segment reference feature is enabled we have only a single
2099       // reference frame allowed for the segment so exclude it from
2100       // the reference frame counts used to work out probabilities.
2101       if (inter_block) {
2102         const MV_REFERENCE_FRAME ref0 = mi->ref_frame[0];
2103         if (cm->reference_mode == REFERENCE_MODE_SELECT)
2104           counts->comp_inter[vp9_get_reference_mode_context(cm, xd)]
2105                             [has_second_ref(mi)]++;
2106 
2107         if (has_second_ref(mi)) {
2108           const int idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
2109           const int ctx = vp9_get_pred_context_comp_ref_p(cm, xd);
2110           const int bit = mi->ref_frame[!idx] == cm->comp_var_ref[1];
2111           counts->comp_ref[ctx][bit]++;
2112         } else {
2113           counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0]
2114                             [ref0 != LAST_FRAME]++;
2115           if (ref0 != LAST_FRAME)
2116             counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1]
2117                               [ref0 != GOLDEN_FRAME]++;
2118         }
2119       }
2120     }
2121     if (inter_block &&
2122         !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP)) {
2123       const int mode_ctx = mbmi_ext->mode_context[mi->ref_frame[0]];
2124       if (bsize >= BLOCK_8X8) {
2125         const PREDICTION_MODE mode = mi->mode;
2126         ++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
2127       } else {
2128         const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
2129         const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
2130         int idx, idy;
2131         for (idy = 0; idy < 2; idy += num_4x4_h) {
2132           for (idx = 0; idx < 2; idx += num_4x4_w) {
2133             const int j = idy * 2 + idx;
2134             const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
2135             ++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
2136           }
2137         }
2138       }
2139     }
2140   }
2141 }
2142 
2143 #if !CONFIG_REALTIME_ONLY
restore_context(MACROBLOCK * const x,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)2144 static void restore_context(MACROBLOCK *const x, int mi_row, int mi_col,
2145                             ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
2146                             ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
2147                             PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
2148                             BLOCK_SIZE bsize) {
2149   MACROBLOCKD *const xd = &x->e_mbd;
2150   int p;
2151   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2152   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2153   int mi_width = num_8x8_blocks_wide_lookup[bsize];
2154   int mi_height = num_8x8_blocks_high_lookup[bsize];
2155   for (p = 0; p < MAX_MB_PLANE; p++) {
2156     memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
2157            a + num_4x4_blocks_wide * p,
2158            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
2159                xd->plane[p].subsampling_x);
2160     memcpy(xd->left_context[p] +
2161                ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
2162            l + num_4x4_blocks_high * p,
2163            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
2164                xd->plane[p].subsampling_y);
2165   }
2166   memcpy(xd->above_seg_context + mi_col, sa,
2167          sizeof(*xd->above_seg_context) * mi_width);
2168   memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl,
2169          sizeof(xd->left_seg_context[0]) * mi_height);
2170 }
2171 
save_context(MACROBLOCK * const x,int mi_row,int mi_col,ENTROPY_CONTEXT a[16* MAX_MB_PLANE],ENTROPY_CONTEXT l[16* MAX_MB_PLANE],PARTITION_CONTEXT sa[8],PARTITION_CONTEXT sl[8],BLOCK_SIZE bsize)2172 static void save_context(MACROBLOCK *const x, int mi_row, int mi_col,
2173                          ENTROPY_CONTEXT a[16 * MAX_MB_PLANE],
2174                          ENTROPY_CONTEXT l[16 * MAX_MB_PLANE],
2175                          PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8],
2176                          BLOCK_SIZE bsize) {
2177   const MACROBLOCKD *const xd = &x->e_mbd;
2178   int p;
2179   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
2180   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
2181   int mi_width = num_8x8_blocks_wide_lookup[bsize];
2182   int mi_height = num_8x8_blocks_high_lookup[bsize];
2183 
2184   // buffer the above/left context information of the block in search.
2185   for (p = 0; p < MAX_MB_PLANE; ++p) {
2186     memcpy(a + num_4x4_blocks_wide * p,
2187            xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
2188            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
2189                xd->plane[p].subsampling_x);
2190     memcpy(l + num_4x4_blocks_high * p,
2191            xd->left_context[p] +
2192                ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y),
2193            (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
2194                xd->plane[p].subsampling_y);
2195   }
2196   memcpy(sa, xd->above_seg_context + mi_col,
2197          sizeof(*xd->above_seg_context) * mi_width);
2198   memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK),
2199          sizeof(xd->left_seg_context[0]) * mi_height);
2200 }
2201 
encode_b(VP9_COMP * cpi,const TileInfo * const tile,ThreadData * td,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2202 static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, ThreadData *td,
2203                      TOKENEXTRA **tp, int mi_row, int mi_col,
2204                      int output_enabled, BLOCK_SIZE bsize,
2205                      PICK_MODE_CONTEXT *ctx) {
2206   MACROBLOCK *const x = &td->mb;
2207   set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
2208 
2209   if (cpi->sf.enable_tpl_model &&
2210       (cpi->oxcf.aq_mode == NO_AQ || cpi->oxcf.aq_mode == PERCEPTUAL_AQ)) {
2211     const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2212     x->rdmult = x->cb_rdmult;
2213     if (oxcf->tuning == VP8_TUNE_SSIM) {
2214       set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult);
2215     }
2216   }
2217 
2218   update_state(cpi, td, ctx, mi_row, mi_col, bsize, output_enabled);
2219   encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
2220 
2221   if (output_enabled) {
2222     update_stats(&cpi->common, td);
2223 
2224     (*tp)->token = EOSB_TOKEN;
2225     (*tp)++;
2226   }
2227 }
2228 
encode_sb(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)2229 static void encode_sb(VP9_COMP *cpi, ThreadData *td, const TileInfo *const tile,
2230                       TOKENEXTRA **tp, int mi_row, int mi_col,
2231                       int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
2232   VP9_COMMON *const cm = &cpi->common;
2233   MACROBLOCK *const x = &td->mb;
2234   MACROBLOCKD *const xd = &x->e_mbd;
2235 
2236   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
2237   int ctx;
2238   PARTITION_TYPE partition;
2239   BLOCK_SIZE subsize = bsize;
2240 
2241   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2242 
2243   if (bsize >= BLOCK_8X8) {
2244     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
2245     subsize = get_subsize(bsize, pc_tree->partitioning);
2246   } else {
2247     ctx = 0;
2248     subsize = BLOCK_4X4;
2249   }
2250 
2251   partition = partition_lookup[bsl][subsize];
2252   if (output_enabled && bsize != BLOCK_4X4)
2253     td->counts->partition[ctx][partition]++;
2254 
2255   switch (partition) {
2256     case PARTITION_NONE:
2257       encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2258                &pc_tree->none);
2259       break;
2260     case PARTITION_VERT:
2261       encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2262                &pc_tree->vertical[0]);
2263       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
2264         encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, output_enabled,
2265                  subsize, &pc_tree->vertical[1]);
2266       }
2267       break;
2268     case PARTITION_HORZ:
2269       encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2270                &pc_tree->horizontal[0]);
2271       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
2272         encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, output_enabled,
2273                  subsize, &pc_tree->horizontal[1]);
2274       }
2275       break;
2276     default:
2277       assert(partition == PARTITION_SPLIT);
2278       if (bsize == BLOCK_8X8) {
2279         encode_b(cpi, tile, td, tp, mi_row, mi_col, output_enabled, subsize,
2280                  pc_tree->leaf_split[0]);
2281       } else {
2282         encode_sb(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2283                   pc_tree->split[0]);
2284         encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2285                   subsize, pc_tree->split[1]);
2286         encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2287                   subsize, pc_tree->split[2]);
2288         encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
2289                   subsize, pc_tree->split[3]);
2290       }
2291       break;
2292   }
2293 
2294   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
2295     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
2296 }
2297 #endif  // !CONFIG_REALTIME_ONLY
2298 
2299 // Check to see if the given partition size is allowed for a specified number
2300 // of 8x8 block rows and columns remaining in the image.
2301 // If not then return the largest allowed partition size
find_partition_size(BLOCK_SIZE bsize,int rows_left,int cols_left,int * bh,int * bw)2302 static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
2303                                       int cols_left, int *bh, int *bw) {
2304   if (rows_left <= 0 || cols_left <= 0) {
2305     return VPXMIN(bsize, BLOCK_8X8);
2306   } else {
2307     for (; bsize > 0; bsize -= 3) {
2308       *bh = num_8x8_blocks_high_lookup[bsize];
2309       *bw = num_8x8_blocks_wide_lookup[bsize];
2310       if ((*bh <= rows_left) && (*bw <= cols_left)) {
2311         break;
2312       }
2313     }
2314   }
2315   return bsize;
2316 }
2317 
set_partial_b64x64_partition(MODE_INFO * mi,int mis,int bh_in,int bw_in,int row8x8_remaining,int col8x8_remaining,BLOCK_SIZE bsize,MODE_INFO ** mi_8x8)2318 static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in,
2319                                          int bw_in, int row8x8_remaining,
2320                                          int col8x8_remaining, BLOCK_SIZE bsize,
2321                                          MODE_INFO **mi_8x8) {
2322   int bh = bh_in;
2323   int r, c;
2324   for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
2325     int bw = bw_in;
2326     for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
2327       const int index = r * mis + c;
2328       mi_8x8[index] = mi + index;
2329       mi_8x8[index]->sb_type = find_partition_size(
2330           bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
2331     }
2332   }
2333 }
2334 
2335 // This function attempts to set all mode info entries in a given SB64
2336 // to the same block partition size.
2337 // However, at the bottom and right borders of the image the requested size
2338 // may not be allowed in which case this code attempts to choose the largest
2339 // allowable partition.
set_fixed_partitioning(VP9_COMP * cpi,const TileInfo * const tile,MODE_INFO ** mi_8x8,int mi_row,int mi_col,BLOCK_SIZE bsize)2340 static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
2341                                    MODE_INFO **mi_8x8, int mi_row, int mi_col,
2342                                    BLOCK_SIZE bsize) {
2343   VP9_COMMON *const cm = &cpi->common;
2344   const int mis = cm->mi_stride;
2345   const int row8x8_remaining = tile->mi_row_end - mi_row;
2346   const int col8x8_remaining = tile->mi_col_end - mi_col;
2347   int block_row, block_col;
2348   MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
2349   int bh = num_8x8_blocks_high_lookup[bsize];
2350   int bw = num_8x8_blocks_wide_lookup[bsize];
2351 
2352   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
2353 
2354   // Apply the requested partition size to the SB64 if it is all "in image"
2355   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
2356       (row8x8_remaining >= MI_BLOCK_SIZE)) {
2357     for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
2358       for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
2359         int index = block_row * mis + block_col;
2360         mi_8x8[index] = mi_upper_left + index;
2361         mi_8x8[index]->sb_type = bsize;
2362       }
2363     }
2364   } else {
2365     // Else this is a partial SB64.
2366     set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
2367                                  col8x8_remaining, bsize, mi_8x8);
2368   }
2369 }
2370 
2371 static const struct {
2372   int row;
2373   int col;
2374 } coord_lookup[16] = {
2375   // 32x32 index = 0
2376   { 0, 0 },
2377   { 0, 2 },
2378   { 2, 0 },
2379   { 2, 2 },
2380   // 32x32 index = 1
2381   { 0, 4 },
2382   { 0, 6 },
2383   { 2, 4 },
2384   { 2, 6 },
2385   // 32x32 index = 2
2386   { 4, 0 },
2387   { 4, 2 },
2388   { 6, 0 },
2389   { 6, 2 },
2390   // 32x32 index = 3
2391   { 4, 4 },
2392   { 4, 6 },
2393   { 6, 4 },
2394   { 6, 6 },
2395 };
2396 
set_source_var_based_partition(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * const x,MODE_INFO ** mi_8x8,int mi_row,int mi_col)2397 static void set_source_var_based_partition(VP9_COMP *cpi,
2398                                            const TileInfo *const tile,
2399                                            MACROBLOCK *const x,
2400                                            MODE_INFO **mi_8x8, int mi_row,
2401                                            int mi_col) {
2402   VP9_COMMON *const cm = &cpi->common;
2403   const int mis = cm->mi_stride;
2404   const int row8x8_remaining = tile->mi_row_end - mi_row;
2405   const int col8x8_remaining = tile->mi_col_end - mi_col;
2406   MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
2407 
2408   vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
2409 
2410   assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
2411 
2412   // In-image SB64
2413   if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
2414       (row8x8_remaining >= MI_BLOCK_SIZE)) {
2415     int i, j;
2416     int index;
2417     diff d32[4];
2418     const int offset = (mi_row >> 1) * cm->mb_cols + (mi_col >> 1);
2419     int is_larger_better = 0;
2420     int use32x32 = 0;
2421     unsigned int thr = cpi->source_var_thresh;
2422 
2423     memset(d32, 0, 4 * sizeof(diff));
2424 
2425     for (i = 0; i < 4; i++) {
2426       diff *d16[4];
2427 
2428       for (j = 0; j < 4; j++) {
2429         int b_mi_row = coord_lookup[i * 4 + j].row;
2430         int b_mi_col = coord_lookup[i * 4 + j].col;
2431         int boffset = b_mi_row / 2 * cm->mb_cols + b_mi_col / 2;
2432 
2433         d16[j] = cpi->source_diff_var + offset + boffset;
2434 
2435         index = b_mi_row * mis + b_mi_col;
2436         mi_8x8[index] = mi_upper_left + index;
2437         mi_8x8[index]->sb_type = BLOCK_16X16;
2438 
2439         // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
2440         // size to further improve quality.
2441       }
2442 
2443       is_larger_better = (d16[0]->var < thr) && (d16[1]->var < thr) &&
2444                          (d16[2]->var < thr) && (d16[3]->var < thr);
2445 
2446       // Use 32x32 partition
2447       if (is_larger_better) {
2448         use32x32 += 1;
2449 
2450         for (j = 0; j < 4; j++) {
2451           d32[i].sse += d16[j]->sse;
2452           d32[i].sum += d16[j]->sum;
2453         }
2454 
2455         d32[i].var =
2456             (unsigned int)(d32[i].sse -
2457                            (unsigned int)(((int64_t)d32[i].sum * d32[i].sum) >>
2458                                           10));
2459 
2460         index = coord_lookup[i * 4].row * mis + coord_lookup[i * 4].col;
2461         mi_8x8[index] = mi_upper_left + index;
2462         mi_8x8[index]->sb_type = BLOCK_32X32;
2463       }
2464     }
2465 
2466     if (use32x32 == 4) {
2467       thr <<= 1;
2468       is_larger_better = (d32[0].var < thr) && (d32[1].var < thr) &&
2469                          (d32[2].var < thr) && (d32[3].var < thr);
2470 
2471       // Use 64x64 partition
2472       if (is_larger_better) {
2473         mi_8x8[0] = mi_upper_left;
2474         mi_8x8[0]->sb_type = BLOCK_64X64;
2475       }
2476     }
2477   } else {  // partial in-image SB64
2478     int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
2479     int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
2480     set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
2481                                  col8x8_remaining, BLOCK_16X16, mi_8x8);
2482   }
2483 }
2484 
update_state_rt(VP9_COMP * cpi,ThreadData * td,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,int bsize)2485 static void update_state_rt(VP9_COMP *cpi, ThreadData *td,
2486                             PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
2487                             int bsize) {
2488   VP9_COMMON *const cm = &cpi->common;
2489   MACROBLOCK *const x = &td->mb;
2490   MACROBLOCKD *const xd = &x->e_mbd;
2491   MODE_INFO *const mi = xd->mi[0];
2492   struct macroblock_plane *const p = x->plane;
2493   const struct segmentation *const seg = &cm->seg;
2494   const int bw = num_8x8_blocks_wide_lookup[mi->sb_type];
2495   const int bh = num_8x8_blocks_high_lookup[mi->sb_type];
2496   const int x_mis = VPXMIN(bw, cm->mi_cols - mi_col);
2497   const int y_mis = VPXMIN(bh, cm->mi_rows - mi_row);
2498 
2499   *(xd->mi[0]) = ctx->mic;
2500   *(x->mbmi_ext) = ctx->mbmi_ext;
2501 
2502   if (seg->enabled && (cpi->oxcf.aq_mode != NO_AQ || cpi->roi.enabled ||
2503                        cpi->active_map.enabled)) {
2504     // Setting segmentation map for cyclic_refresh.
2505     if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
2506         cpi->cyclic_refresh->content_mode) {
2507       vp9_cyclic_refresh_update_segment(cpi, mi, mi_row, mi_col, bsize,
2508                                         ctx->rate, ctx->dist, x->skip, p);
2509     } else {
2510       const uint8_t *const map =
2511           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
2512       mi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
2513     }
2514     vp9_init_plane_quantizers(cpi, x);
2515   }
2516 
2517   if (is_inter_block(mi)) {
2518     vp9_update_mv_count(td);
2519     if (cm->interp_filter == SWITCHABLE) {
2520       const int pred_ctx = get_pred_context_switchable_interp(xd);
2521       ++td->counts->switchable_interp[pred_ctx][mi->interp_filter];
2522     }
2523 
2524     if (mi->sb_type < BLOCK_8X8) {
2525       mi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
2526       mi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
2527     }
2528   }
2529 
2530   if (cm->use_prev_frame_mvs || !cm->error_resilient_mode ||
2531       (cpi->svc.use_base_mv && cpi->svc.number_spatial_layers > 1 &&
2532        cpi->svc.spatial_layer_id != cpi->svc.number_spatial_layers - 1)) {
2533     MV_REF *const frame_mvs =
2534         cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
2535     int w, h;
2536 
2537     for (h = 0; h < y_mis; ++h) {
2538       MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
2539       for (w = 0; w < x_mis; ++w) {
2540         MV_REF *const mv = frame_mv + w;
2541         mv->ref_frame[0] = mi->ref_frame[0];
2542         mv->ref_frame[1] = mi->ref_frame[1];
2543         mv->mv[0].as_int = mi->mv[0].as_int;
2544         mv->mv[1].as_int = mi->mv[1].as_int;
2545       }
2546     }
2547   }
2548 
2549   x->skip = ctx->skip;
2550   x->skip_txfm[0] = (mi->segment_id || xd->lossless) ? 0 : ctx->skip_txfm[0];
2551 }
2552 
encode_b_rt(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)2553 static void encode_b_rt(VP9_COMP *cpi, ThreadData *td,
2554                         const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
2555                         int mi_col, int output_enabled, BLOCK_SIZE bsize,
2556                         PICK_MODE_CONTEXT *ctx) {
2557   MACROBLOCK *const x = &td->mb;
2558   set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
2559   update_state_rt(cpi, td, ctx, mi_row, mi_col, bsize);
2560 
2561   encode_superblock(cpi, td, tp, output_enabled, mi_row, mi_col, bsize, ctx);
2562   update_stats(&cpi->common, td);
2563 
2564   (*tp)->token = EOSB_TOKEN;
2565   (*tp)++;
2566 }
2567 
encode_sb_rt(VP9_COMP * cpi,ThreadData * td,const TileInfo * const tile,TOKENEXTRA ** tp,int mi_row,int mi_col,int output_enabled,BLOCK_SIZE bsize,PC_TREE * pc_tree)2568 static void encode_sb_rt(VP9_COMP *cpi, ThreadData *td,
2569                          const TileInfo *const tile, TOKENEXTRA **tp,
2570                          int mi_row, int mi_col, int output_enabled,
2571                          BLOCK_SIZE bsize, PC_TREE *pc_tree) {
2572   VP9_COMMON *const cm = &cpi->common;
2573   MACROBLOCK *const x = &td->mb;
2574   MACROBLOCKD *const xd = &x->e_mbd;
2575 
2576   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
2577   int ctx;
2578   PARTITION_TYPE partition;
2579   BLOCK_SIZE subsize;
2580 
2581   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2582 
2583   if (bsize >= BLOCK_8X8) {
2584     const int idx_str = xd->mi_stride * mi_row + mi_col;
2585     MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
2586     ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
2587     subsize = mi_8x8[0]->sb_type;
2588   } else {
2589     ctx = 0;
2590     subsize = BLOCK_4X4;
2591   }
2592 
2593   partition = partition_lookup[bsl][subsize];
2594   if (output_enabled && bsize != BLOCK_4X4)
2595     td->counts->partition[ctx][partition]++;
2596 
2597   switch (partition) {
2598     case PARTITION_NONE:
2599       encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2600                   &pc_tree->none);
2601       break;
2602     case PARTITION_VERT:
2603       encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2604                   &pc_tree->vertical[0]);
2605       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
2606         encode_b_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2607                     subsize, &pc_tree->vertical[1]);
2608       }
2609       break;
2610     case PARTITION_HORZ:
2611       encode_b_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2612                   &pc_tree->horizontal[0]);
2613       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
2614         encode_b_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2615                     subsize, &pc_tree->horizontal[1]);
2616       }
2617       break;
2618     default:
2619       assert(partition == PARTITION_SPLIT);
2620       subsize = get_subsize(bsize, PARTITION_SPLIT);
2621       encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col, output_enabled, subsize,
2622                    pc_tree->split[0]);
2623       encode_sb_rt(cpi, td, tile, tp, mi_row, mi_col + hbs, output_enabled,
2624                    subsize, pc_tree->split[1]);
2625       encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col, output_enabled,
2626                    subsize, pc_tree->split[2]);
2627       encode_sb_rt(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs,
2628                    output_enabled, subsize, pc_tree->split[3]);
2629       break;
2630   }
2631 
2632   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
2633     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
2634 }
2635 
2636 #if !CONFIG_REALTIME_ONLY
rd_use_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi_8x8,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int * rate,int64_t * dist,int do_recon,PC_TREE * pc_tree)2637 static void rd_use_partition(VP9_COMP *cpi, ThreadData *td,
2638                              TileDataEnc *tile_data, MODE_INFO **mi_8x8,
2639                              TOKENEXTRA **tp, int mi_row, int mi_col,
2640                              BLOCK_SIZE bsize, int *rate, int64_t *dist,
2641                              int do_recon, PC_TREE *pc_tree) {
2642   VP9_COMMON *const cm = &cpi->common;
2643   TileInfo *const tile_info = &tile_data->tile_info;
2644   MACROBLOCK *const x = &td->mb;
2645   MACROBLOCKD *const xd = &x->e_mbd;
2646   const int mis = cm->mi_stride;
2647   const int bsl = b_width_log2_lookup[bsize];
2648   const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
2649   const int bss = (1 << bsl) / 4;
2650   int i, pl;
2651   PARTITION_TYPE partition = PARTITION_NONE;
2652   BLOCK_SIZE subsize;
2653   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
2654   PARTITION_CONTEXT sl[8], sa[8];
2655   RD_COST last_part_rdc, none_rdc, chosen_rdc;
2656   BLOCK_SIZE sub_subsize = BLOCK_4X4;
2657   int splits_below = 0;
2658   BLOCK_SIZE bs_type = mi_8x8[0]->sb_type;
2659   int do_partition_search = 1;
2660   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
2661 
2662   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
2663 
2664   assert(num_4x4_blocks_wide_lookup[bsize] ==
2665          num_4x4_blocks_high_lookup[bsize]);
2666 
2667   vp9_rd_cost_reset(&last_part_rdc);
2668   vp9_rd_cost_reset(&none_rdc);
2669   vp9_rd_cost_reset(&chosen_rdc);
2670 
2671   partition = partition_lookup[bsl][bs_type];
2672   subsize = get_subsize(bsize, partition);
2673 
2674   pc_tree->partitioning = partition;
2675   save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2676 
2677   if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ) {
2678     set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
2679     x->mb_energy = vp9_block_energy(cpi, x, bsize);
2680   }
2681 
2682   if (do_partition_search &&
2683       cpi->sf.partition_search_type == SEARCH_PARTITION &&
2684       cpi->sf.adjust_partitioning_from_last_frame) {
2685     // Check if any of the sub blocks are further split.
2686     if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
2687       sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
2688       splits_below = 1;
2689       for (i = 0; i < 4; i++) {
2690         int jj = i >> 1, ii = i & 0x01;
2691         MODE_INFO *this_mi = mi_8x8[jj * bss * mis + ii * bss];
2692         if (this_mi && this_mi->sb_type >= sub_subsize) {
2693           splits_below = 0;
2694         }
2695       }
2696     }
2697 
2698     // If partition is not none try none unless each of the 4 splits are split
2699     // even further..
2700     if (partition != PARTITION_NONE && !splits_below &&
2701         mi_row + (mi_step >> 1) < cm->mi_rows &&
2702         mi_col + (mi_step >> 1) < cm->mi_cols) {
2703       pc_tree->partitioning = PARTITION_NONE;
2704       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, ctx,
2705                        INT_MAX, INT64_MAX);
2706 
2707       pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2708 
2709       if (none_rdc.rate < INT_MAX) {
2710         none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
2711         none_rdc.rdcost =
2712             RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
2713       }
2714 
2715       restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2716       mi_8x8[0]->sb_type = bs_type;
2717       pc_tree->partitioning = partition;
2718     }
2719   }
2720 
2721   switch (partition) {
2722     case PARTITION_NONE:
2723       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, bsize,
2724                        ctx, INT_MAX, INT64_MAX);
2725       break;
2726     case PARTITION_HORZ:
2727       pc_tree->horizontal[0].skip_ref_frame_mask = 0;
2728       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2729                        subsize, &pc_tree->horizontal[0], INT_MAX, INT64_MAX);
2730       if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
2731           mi_row + (mi_step >> 1) < cm->mi_rows) {
2732         RD_COST tmp_rdc;
2733         PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
2734         vp9_rd_cost_init(&tmp_rdc);
2735         update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
2736         encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
2737         pc_tree->horizontal[1].skip_ref_frame_mask = 0;
2738         rd_pick_sb_modes(cpi, tile_data, x, mi_row + (mi_step >> 1), mi_col,
2739                          &tmp_rdc, subsize, &pc_tree->horizontal[1], INT_MAX,
2740                          INT64_MAX);
2741         if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2742           vp9_rd_cost_reset(&last_part_rdc);
2743           break;
2744         }
2745         last_part_rdc.rate += tmp_rdc.rate;
2746         last_part_rdc.dist += tmp_rdc.dist;
2747         last_part_rdc.rdcost += tmp_rdc.rdcost;
2748       }
2749       break;
2750     case PARTITION_VERT:
2751       pc_tree->vertical[0].skip_ref_frame_mask = 0;
2752       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2753                        subsize, &pc_tree->vertical[0], INT_MAX, INT64_MAX);
2754       if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
2755           mi_col + (mi_step >> 1) < cm->mi_cols) {
2756         RD_COST tmp_rdc;
2757         PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
2758         vp9_rd_cost_init(&tmp_rdc);
2759         update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
2760         encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
2761         pc_tree->vertical[bsize > BLOCK_8X8].skip_ref_frame_mask = 0;
2762         rd_pick_sb_modes(
2763             cpi, tile_data, x, mi_row, mi_col + (mi_step >> 1), &tmp_rdc,
2764             subsize, &pc_tree->vertical[bsize > BLOCK_8X8], INT_MAX, INT64_MAX);
2765         if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2766           vp9_rd_cost_reset(&last_part_rdc);
2767           break;
2768         }
2769         last_part_rdc.rate += tmp_rdc.rate;
2770         last_part_rdc.dist += tmp_rdc.dist;
2771         last_part_rdc.rdcost += tmp_rdc.rdcost;
2772       }
2773       break;
2774     default:
2775       assert(partition == PARTITION_SPLIT);
2776       if (bsize == BLOCK_8X8) {
2777         rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
2778                          subsize, pc_tree->leaf_split[0], INT_MAX, INT64_MAX);
2779         break;
2780       }
2781       last_part_rdc.rate = 0;
2782       last_part_rdc.dist = 0;
2783       last_part_rdc.rdcost = 0;
2784       for (i = 0; i < 4; i++) {
2785         int x_idx = (i & 1) * (mi_step >> 1);
2786         int y_idx = (i >> 1) * (mi_step >> 1);
2787         int jj = i >> 1, ii = i & 0x01;
2788         RD_COST tmp_rdc;
2789         if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
2790           continue;
2791 
2792         vp9_rd_cost_init(&tmp_rdc);
2793         rd_use_partition(cpi, td, tile_data, mi_8x8 + jj * bss * mis + ii * bss,
2794                          tp, mi_row + y_idx, mi_col + x_idx, subsize,
2795                          &tmp_rdc.rate, &tmp_rdc.dist, i != 3,
2796                          pc_tree->split[i]);
2797         if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2798           vp9_rd_cost_reset(&last_part_rdc);
2799           break;
2800         }
2801         last_part_rdc.rate += tmp_rdc.rate;
2802         last_part_rdc.dist += tmp_rdc.dist;
2803       }
2804       break;
2805   }
2806 
2807   pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2808   if (last_part_rdc.rate < INT_MAX) {
2809     last_part_rdc.rate += cpi->partition_cost[pl][partition];
2810     last_part_rdc.rdcost =
2811         RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
2812   }
2813 
2814   if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
2815       cpi->sf.partition_search_type == SEARCH_PARTITION &&
2816       partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
2817       (mi_row + mi_step < cm->mi_rows ||
2818        mi_row + (mi_step >> 1) == cm->mi_rows) &&
2819       (mi_col + mi_step < cm->mi_cols ||
2820        mi_col + (mi_step >> 1) == cm->mi_cols)) {
2821     BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
2822     chosen_rdc.rate = 0;
2823     chosen_rdc.dist = 0;
2824     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2825     pc_tree->partitioning = PARTITION_SPLIT;
2826 
2827     // Split partition.
2828     for (i = 0; i < 4; i++) {
2829       int x_idx = (i & 1) * (mi_step >> 1);
2830       int y_idx = (i >> 1) * (mi_step >> 1);
2831       RD_COST tmp_rdc;
2832       ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
2833       PARTITION_CONTEXT sl[8], sa[8];
2834 
2835       if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
2836         continue;
2837 
2838       save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2839       pc_tree->split[i]->partitioning = PARTITION_NONE;
2840       rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
2841                        &tmp_rdc, split_subsize, &pc_tree->split[i]->none,
2842                        INT_MAX, INT64_MAX);
2843 
2844       restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2845 
2846       if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
2847         vp9_rd_cost_reset(&chosen_rdc);
2848         break;
2849       }
2850 
2851       chosen_rdc.rate += tmp_rdc.rate;
2852       chosen_rdc.dist += tmp_rdc.dist;
2853 
2854       if (i != 3)
2855         encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx, 0,
2856                   split_subsize, pc_tree->split[i]);
2857 
2858       pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
2859                                    split_subsize);
2860       chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
2861     }
2862     pl = partition_plane_context(xd, mi_row, mi_col, bsize);
2863     if (chosen_rdc.rate < INT_MAX) {
2864       chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
2865       chosen_rdc.rdcost =
2866           RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
2867     }
2868   }
2869 
2870   // If last_part is better set the partitioning to that.
2871   if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
2872     mi_8x8[0]->sb_type = bsize;
2873     if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
2874     chosen_rdc = last_part_rdc;
2875   }
2876   // If none was better set the partitioning to that.
2877   if (none_rdc.rdcost < chosen_rdc.rdcost) {
2878     if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
2879     chosen_rdc = none_rdc;
2880   }
2881 
2882   restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
2883 
2884   // We must have chosen a partitioning and encoding or we'll fail later on.
2885   // No other opportunities for success.
2886   if (bsize == BLOCK_64X64)
2887     assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
2888 
2889   if (do_recon) {
2890     int output_enabled = (bsize == BLOCK_64X64);
2891     encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
2892               pc_tree);
2893   }
2894 
2895   *rate = chosen_rdc.rate;
2896   *dist = chosen_rdc.dist;
2897 }
2898 
2899 static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
2900   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,  BLOCK_4X4, BLOCK_4X4,
2901   BLOCK_4X4,   BLOCK_8X8,   BLOCK_8X8,  BLOCK_8X8, BLOCK_16X16,
2902   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
2903 };
2904 
2905 static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
2906   BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
2907   BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
2908   BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
2909 };
2910 
2911 // Look at all the mode_info entries for blocks that are part of this
2912 // partition and find the min and max values for sb_type.
2913 // At the moment this is designed to work on a 64x64 SB but could be
2914 // adjusted to use a size parameter.
2915 //
2916 // The min and max are assumed to have been initialized prior to calling this
2917 // function so repeat calls can accumulate a min and max of more than one sb64.
get_sb_partition_size_range(MACROBLOCKD * xd,MODE_INFO ** mi_8x8,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size,int bs_hist[BLOCK_SIZES])2918 static void get_sb_partition_size_range(MACROBLOCKD *xd, MODE_INFO **mi_8x8,
2919                                         BLOCK_SIZE *min_block_size,
2920                                         BLOCK_SIZE *max_block_size,
2921                                         int bs_hist[BLOCK_SIZES]) {
2922   int sb_width_in_blocks = MI_BLOCK_SIZE;
2923   int sb_height_in_blocks = MI_BLOCK_SIZE;
2924   int i, j;
2925   int index = 0;
2926 
2927   // Check the sb_type for each block that belongs to this region.
2928   for (i = 0; i < sb_height_in_blocks; ++i) {
2929     for (j = 0; j < sb_width_in_blocks; ++j) {
2930       MODE_INFO *mi = mi_8x8[index + j];
2931       BLOCK_SIZE sb_type = mi ? mi->sb_type : 0;
2932       bs_hist[sb_type]++;
2933       *min_block_size = VPXMIN(*min_block_size, sb_type);
2934       *max_block_size = VPXMAX(*max_block_size, sb_type);
2935     }
2936     index += xd->mi_stride;
2937   }
2938 }
2939 
2940 // Next square block size less or equal than current block size.
2941 static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
2942   BLOCK_4X4,   BLOCK_4X4,   BLOCK_4X4,   BLOCK_8X8,   BLOCK_8X8,
2943   BLOCK_8X8,   BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32,
2944   BLOCK_32X32, BLOCK_32X32, BLOCK_64X64
2945 };
2946 
2947 // Look at neighboring blocks and set a min and max partition size based on
2948 // what they chose.
rd_auto_partition_range(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCKD * const xd,int mi_row,int mi_col,BLOCK_SIZE * min_block_size,BLOCK_SIZE * max_block_size)2949 static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
2950                                     MACROBLOCKD *const xd, int mi_row,
2951                                     int mi_col, BLOCK_SIZE *min_block_size,
2952                                     BLOCK_SIZE *max_block_size) {
2953   VP9_COMMON *const cm = &cpi->common;
2954   MODE_INFO **mi = xd->mi;
2955   const int left_in_image = !!xd->left_mi;
2956   const int above_in_image = !!xd->above_mi;
2957   const int row8x8_remaining = tile->mi_row_end - mi_row;
2958   const int col8x8_remaining = tile->mi_col_end - mi_col;
2959   int bh, bw;
2960   BLOCK_SIZE min_size = BLOCK_4X4;
2961   BLOCK_SIZE max_size = BLOCK_64X64;
2962   int bs_hist[BLOCK_SIZES] = { 0 };
2963 
2964   // Trap case where we do not have a prediction.
2965   if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
2966     // Default "min to max" and "max to min"
2967     min_size = BLOCK_64X64;
2968     max_size = BLOCK_4X4;
2969 
2970     // NOTE: each call to get_sb_partition_size_range() uses the previous
2971     // passed in values for min and max as a starting point.
2972     // Find the min and max partition used in previous frame at this location
2973     if (cm->frame_type != KEY_FRAME) {
2974       MODE_INFO **prev_mi =
2975           &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
2976       get_sb_partition_size_range(xd, prev_mi, &min_size, &max_size, bs_hist);
2977     }
2978     // Find the min and max partition sizes used in the left SB64
2979     if (left_in_image) {
2980       MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
2981       get_sb_partition_size_range(xd, left_sb64_mi, &min_size, &max_size,
2982                                   bs_hist);
2983     }
2984     // Find the min and max partition sizes used in the above SB64.
2985     if (above_in_image) {
2986       MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
2987       get_sb_partition_size_range(xd, above_sb64_mi, &min_size, &max_size,
2988                                   bs_hist);
2989     }
2990 
2991     // Adjust observed min and max for "relaxed" auto partition case.
2992     if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
2993       min_size = min_partition_size[min_size];
2994       max_size = max_partition_size[max_size];
2995     }
2996   }
2997 
2998   // Check border cases where max and min from neighbors may not be legal.
2999   max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
3000                                  &bh, &bw);
3001   // Test for blocks at the edge of the active image.
3002   // This may be the actual edge of the image or where there are formatting
3003   // bars.
3004   if (vp9_active_edge_sb(cpi, mi_row, mi_col)) {
3005     min_size = BLOCK_4X4;
3006   } else {
3007     min_size =
3008         VPXMIN(cpi->sf.rd_auto_partition_min_limit, VPXMIN(min_size, max_size));
3009   }
3010 
3011   // When use_square_partition_only is true, make sure at least one square
3012   // partition is allowed by selecting the next smaller square size as
3013   // *min_block_size.
3014   if (cpi->sf.use_square_partition_only &&
3015       next_square_size[max_size] < min_size) {
3016     min_size = next_square_size[max_size];
3017   }
3018 
3019   *min_block_size = min_size;
3020   *max_block_size = max_size;
3021 }
3022 
3023 // TODO(jingning) refactor functions setting partition search range
set_partition_range(VP9_COMMON * cm,MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize,BLOCK_SIZE * min_bs,BLOCK_SIZE * max_bs)3024 static void set_partition_range(VP9_COMMON *cm, MACROBLOCKD *xd, int mi_row,
3025                                 int mi_col, BLOCK_SIZE bsize,
3026                                 BLOCK_SIZE *min_bs, BLOCK_SIZE *max_bs) {
3027   int mi_width = num_8x8_blocks_wide_lookup[bsize];
3028   int mi_height = num_8x8_blocks_high_lookup[bsize];
3029   int idx, idy;
3030 
3031   MODE_INFO *mi;
3032   const int idx_str = cm->mi_stride * mi_row + mi_col;
3033   MODE_INFO **prev_mi = &cm->prev_mi_grid_visible[idx_str];
3034   BLOCK_SIZE bs, min_size, max_size;
3035 
3036   min_size = BLOCK_64X64;
3037   max_size = BLOCK_4X4;
3038 
3039   if (prev_mi) {
3040     for (idy = 0; idy < mi_height; ++idy) {
3041       for (idx = 0; idx < mi_width; ++idx) {
3042         mi = prev_mi[idy * cm->mi_stride + idx];
3043         bs = mi ? mi->sb_type : bsize;
3044         min_size = VPXMIN(min_size, bs);
3045         max_size = VPXMAX(max_size, bs);
3046       }
3047     }
3048   }
3049 
3050   if (xd->left_mi) {
3051     for (idy = 0; idy < mi_height; ++idy) {
3052       mi = xd->mi[idy * cm->mi_stride - 1];
3053       bs = mi ? mi->sb_type : bsize;
3054       min_size = VPXMIN(min_size, bs);
3055       max_size = VPXMAX(max_size, bs);
3056     }
3057   }
3058 
3059   if (xd->above_mi) {
3060     for (idx = 0; idx < mi_width; ++idx) {
3061       mi = xd->mi[idx - cm->mi_stride];
3062       bs = mi ? mi->sb_type : bsize;
3063       min_size = VPXMIN(min_size, bs);
3064       max_size = VPXMAX(max_size, bs);
3065     }
3066   }
3067 
3068   if (min_size == max_size) {
3069     min_size = min_partition_size[min_size];
3070     max_size = max_partition_size[max_size];
3071   }
3072 
3073   *min_bs = min_size;
3074   *max_bs = max_size;
3075 }
3076 #endif  // !CONFIG_REALTIME_ONLY
3077 
store_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)3078 static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
3079   memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
3080 }
3081 
load_pred_mv(MACROBLOCK * x,PICK_MODE_CONTEXT * ctx)3082 static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
3083   memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
3084 }
3085 
3086 // Calculate prediction based on the given input features and neural net config.
3087 // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
3088 // layer.
nn_predict(const float * features,const NN_CONFIG * nn_config,float * output)3089 static void nn_predict(const float *features, const NN_CONFIG *nn_config,
3090                        float *output) {
3091   int num_input_nodes = nn_config->num_inputs;
3092   int buf_index = 0;
3093   float buf[2][NN_MAX_NODES_PER_LAYER];
3094   const float *input_nodes = features;
3095 
3096   // Propagate hidden layers.
3097   const int num_layers = nn_config->num_hidden_layers;
3098   int layer, node, i;
3099   assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
3100   for (layer = 0; layer < num_layers; ++layer) {
3101     const float *weights = nn_config->weights[layer];
3102     const float *bias = nn_config->bias[layer];
3103     float *output_nodes = buf[buf_index];
3104     const int num_output_nodes = nn_config->num_hidden_nodes[layer];
3105     assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
3106     for (node = 0; node < num_output_nodes; ++node) {
3107       float val = 0.0f;
3108       for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
3109       val += bias[node];
3110       // ReLU as activation function.
3111       val = VPXMAX(val, 0.0f);
3112       output_nodes[node] = val;
3113       weights += num_input_nodes;
3114     }
3115     num_input_nodes = num_output_nodes;
3116     input_nodes = output_nodes;
3117     buf_index = 1 - buf_index;
3118   }
3119 
3120   // Final output layer.
3121   {
3122     const float *weights = nn_config->weights[num_layers];
3123     for (node = 0; node < nn_config->num_outputs; ++node) {
3124       const float *bias = nn_config->bias[num_layers];
3125       float val = 0.0f;
3126       for (i = 0; i < num_input_nodes; ++i) val += weights[i] * input_nodes[i];
3127       output[node] = val + bias[node];
3128       weights += num_input_nodes;
3129     }
3130   }
3131 }
3132 
3133 #if !CONFIG_REALTIME_ONLY
3134 #define FEATURES 7
3135 // Machine-learning based partition search early termination.
3136 // Return 1 to skip split and rect partitions.
ml_pruning_partition(VP9_COMMON * const cm,MACROBLOCKD * const xd,PICK_MODE_CONTEXT * ctx,int mi_row,int mi_col,BLOCK_SIZE bsize)3137 static int ml_pruning_partition(VP9_COMMON *const cm, MACROBLOCKD *const xd,
3138                                 PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
3139                                 BLOCK_SIZE bsize) {
3140   const int mag_mv =
3141       abs(ctx->mic.mv[0].as_mv.col) + abs(ctx->mic.mv[0].as_mv.row);
3142   const int left_in_image = !!xd->left_mi;
3143   const int above_in_image = !!xd->above_mi;
3144   MODE_INFO **prev_mi =
3145       &cm->prev_mi_grid_visible[mi_col + cm->mi_stride * mi_row];
3146   int above_par = 0;  // above_partitioning
3147   int left_par = 0;   // left_partitioning
3148   int last_par = 0;   // last_partitioning
3149   int offset = 0;
3150   int i;
3151   BLOCK_SIZE context_size;
3152   const NN_CONFIG *nn_config = NULL;
3153   const float *mean, *sd, *linear_weights;
3154   float nn_score, linear_score;
3155   float features[FEATURES];
3156 
3157   assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
3158   vpx_clear_system_state();
3159 
3160   switch (bsize) {
3161     case BLOCK_64X64:
3162       offset = 0;
3163       nn_config = &vp9_partition_nnconfig_64x64;
3164       break;
3165     case BLOCK_32X32:
3166       offset = 8;
3167       nn_config = &vp9_partition_nnconfig_32x32;
3168       break;
3169     case BLOCK_16X16:
3170       offset = 16;
3171       nn_config = &vp9_partition_nnconfig_16x16;
3172       break;
3173     default: assert(0 && "Unexpected block size."); return 0;
3174   }
3175 
3176   if (above_in_image) {
3177     context_size = xd->above_mi->sb_type;
3178     if (context_size < bsize)
3179       above_par = 2;
3180     else if (context_size == bsize)
3181       above_par = 1;
3182   }
3183 
3184   if (left_in_image) {
3185     context_size = xd->left_mi->sb_type;
3186     if (context_size < bsize)
3187       left_par = 2;
3188     else if (context_size == bsize)
3189       left_par = 1;
3190   }
3191 
3192   if (prev_mi) {
3193     context_size = prev_mi[0]->sb_type;
3194     if (context_size < bsize)
3195       last_par = 2;
3196     else if (context_size == bsize)
3197       last_par = 1;
3198   }
3199 
3200   mean = &vp9_partition_feature_mean[offset];
3201   sd = &vp9_partition_feature_std[offset];
3202   features[0] = ((float)ctx->rate - mean[0]) / sd[0];
3203   features[1] = ((float)ctx->dist - mean[1]) / sd[1];
3204   features[2] = ((float)mag_mv / 2 - mean[2]) * sd[2];
3205   features[3] = ((float)(left_par + above_par) / 2 - mean[3]) * sd[3];
3206   features[4] = ((float)ctx->sum_y_eobs - mean[4]) / sd[4];
3207   features[5] = ((float)cm->base_qindex - mean[5]) * sd[5];
3208   features[6] = ((float)last_par - mean[6]) * sd[6];
3209 
3210   // Predict using linear model.
3211   linear_weights = &vp9_partition_linear_weights[offset];
3212   linear_score = linear_weights[FEATURES];
3213   for (i = 0; i < FEATURES; ++i)
3214     linear_score += linear_weights[i] * features[i];
3215   if (linear_score > 0.1f) return 0;
3216 
3217   // Predict using neural net model.
3218   nn_predict(features, nn_config, &nn_score);
3219 
3220   if (linear_score < -0.0f && nn_score < 0.1f) return 1;
3221   if (nn_score < -0.0f && linear_score < 0.1f) return 1;
3222   return 0;
3223 }
3224 #undef FEATURES
3225 
3226 #define FEATURES 4
3227 // ML-based partition search breakout.
ml_predict_breakout(VP9_COMP * const cpi,BLOCK_SIZE bsize,const MACROBLOCK * const x,const RD_COST * const rd_cost)3228 static int ml_predict_breakout(VP9_COMP *const cpi, BLOCK_SIZE bsize,
3229                                const MACROBLOCK *const x,
3230                                const RD_COST *const rd_cost) {
3231   DECLARE_ALIGNED(16, static const uint8_t, vp9_64_zeros[64]) = { 0 };
3232   const VP9_COMMON *const cm = &cpi->common;
3233   float features[FEATURES];
3234   const float *linear_weights = NULL;  // Linear model weights.
3235   float linear_score = 0.0f;
3236   const int qindex = cm->base_qindex;
3237   const int q_ctx = qindex >= 200 ? 0 : (qindex >= 150 ? 1 : 2);
3238   const int is_720p_or_larger = VPXMIN(cm->width, cm->height) >= 720;
3239   const int resolution_ctx = is_720p_or_larger ? 1 : 0;
3240 
3241   switch (bsize) {
3242     case BLOCK_64X64:
3243       linear_weights = vp9_partition_breakout_weights_64[resolution_ctx][q_ctx];
3244       break;
3245     case BLOCK_32X32:
3246       linear_weights = vp9_partition_breakout_weights_32[resolution_ctx][q_ctx];
3247       break;
3248     case BLOCK_16X16:
3249       linear_weights = vp9_partition_breakout_weights_16[resolution_ctx][q_ctx];
3250       break;
3251     case BLOCK_8X8:
3252       linear_weights = vp9_partition_breakout_weights_8[resolution_ctx][q_ctx];
3253       break;
3254     default: assert(0 && "Unexpected block size."); return 0;
3255   }
3256   if (!linear_weights) return 0;
3257 
3258   {  // Generate feature values.
3259 #if CONFIG_VP9_HIGHBITDEPTH
3260     const int ac_q =
3261         vp9_ac_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
3262 #else
3263     const int ac_q = vp9_ac_quant(qindex, 0, cm->bit_depth);
3264 #endif  // CONFIG_VP9_HIGHBITDEPTH
3265     const int num_pels_log2 = num_pels_log2_lookup[bsize];
3266     int feature_index = 0;
3267     unsigned int var, sse;
3268     float rate_f, dist_f;
3269 
3270 #if CONFIG_VP9_HIGHBITDEPTH
3271     if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
3272       var =
3273           vp9_high_get_sby_variance(cpi, &x->plane[0].src, bsize, x->e_mbd.bd);
3274     } else {
3275       var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
3276                                   vp9_64_zeros, 0, &sse);
3277     }
3278 #else
3279     var = cpi->fn_ptr[bsize].vf(x->plane[0].src.buf, x->plane[0].src.stride,
3280                                 vp9_64_zeros, 0, &sse);
3281 #endif
3282     var = var >> num_pels_log2;
3283 
3284     vpx_clear_system_state();
3285 
3286     rate_f = (float)VPXMIN(rd_cost->rate, INT_MAX);
3287     dist_f = (float)(VPXMIN(rd_cost->dist, INT_MAX) >> num_pels_log2);
3288     rate_f =
3289         ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
3290         rate_f;
3291 
3292     features[feature_index++] = rate_f;
3293     features[feature_index++] = dist_f;
3294     features[feature_index++] = (float)var;
3295     features[feature_index++] = (float)ac_q;
3296     assert(feature_index == FEATURES);
3297   }
3298 
3299   {  // Calculate the output score.
3300     int i;
3301     linear_score = linear_weights[FEATURES];
3302     for (i = 0; i < FEATURES; ++i)
3303       linear_score += linear_weights[i] * features[i];
3304   }
3305 
3306   return linear_score >= cpi->sf.rd_ml_partition.search_breakout_thresh[q_ctx];
3307 }
3308 #undef FEATURES
3309 
3310 #define FEATURES 8
3311 #define LABELS 4
ml_prune_rect_partition(VP9_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,const PC_TREE * const pc_tree,int * allow_horz,int * allow_vert,int64_t ref_rd)3312 static void ml_prune_rect_partition(VP9_COMP *const cpi, MACROBLOCK *const x,
3313                                     BLOCK_SIZE bsize,
3314                                     const PC_TREE *const pc_tree,
3315                                     int *allow_horz, int *allow_vert,
3316                                     int64_t ref_rd) {
3317   const NN_CONFIG *nn_config = NULL;
3318   float score[LABELS] = {
3319     0.0f,
3320   };
3321   int thresh = -1;
3322   int i;
3323   (void)x;
3324 
3325   if (ref_rd <= 0 || ref_rd > 1000000000) return;
3326 
3327   switch (bsize) {
3328     case BLOCK_8X8: break;
3329     case BLOCK_16X16:
3330       nn_config = &vp9_rect_part_nnconfig_16;
3331       thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[1];
3332       break;
3333     case BLOCK_32X32:
3334       nn_config = &vp9_rect_part_nnconfig_32;
3335       thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[2];
3336       break;
3337     case BLOCK_64X64:
3338       nn_config = &vp9_rect_part_nnconfig_64;
3339       thresh = cpi->sf.rd_ml_partition.prune_rect_thresh[3];
3340       break;
3341     default: assert(0 && "Unexpected block size."); return;
3342   }
3343   if (!nn_config || thresh < 0) return;
3344 
3345   // Feature extraction and model score calculation.
3346   {
3347     const VP9_COMMON *const cm = &cpi->common;
3348 #if CONFIG_VP9_HIGHBITDEPTH
3349     const int dc_q =
3350         vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (x->e_mbd.bd - 8);
3351 #else
3352     const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
3353 #endif  // CONFIG_VP9_HIGHBITDEPTH
3354     const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
3355     int feature_index = 0;
3356     float features[FEATURES];
3357 
3358     features[feature_index++] = logf((float)dc_q + 1.0f);
3359     features[feature_index++] =
3360         (float)(pc_tree->partitioning == PARTITION_NONE);
3361     features[feature_index++] = logf((float)ref_rd / bs / bs + 1.0f);
3362 
3363     {
3364       const float norm_factor = 1.0f / ((float)ref_rd + 1.0f);
3365       const int64_t none_rdcost = pc_tree->none.rdcost;
3366       float rd_ratio = 2.0f;
3367       if (none_rdcost > 0 && none_rdcost < 1000000000)
3368         rd_ratio = (float)none_rdcost * norm_factor;
3369       features[feature_index++] = VPXMIN(rd_ratio, 2.0f);
3370 
3371       for (i = 0; i < 4; ++i) {
3372         const int64_t this_rd = pc_tree->split[i]->none.rdcost;
3373         const int rd_valid = this_rd > 0 && this_rd < 1000000000;
3374         // Ratio between sub-block RD and whole block RD.
3375         features[feature_index++] =
3376             rd_valid ? (float)this_rd * norm_factor : 1.0f;
3377       }
3378     }
3379 
3380     assert(feature_index == FEATURES);
3381     nn_predict(features, nn_config, score);
3382   }
3383 
3384   // Make decisions based on the model score.
3385   {
3386     int max_score = -1000;
3387     int horz = 0, vert = 0;
3388     int int_score[LABELS];
3389     for (i = 0; i < LABELS; ++i) {
3390       int_score[i] = (int)(100 * score[i]);
3391       max_score = VPXMAX(int_score[i], max_score);
3392     }
3393     thresh = max_score - thresh;
3394     for (i = 0; i < LABELS; ++i) {
3395       if (int_score[i] >= thresh) {
3396         if ((i >> 0) & 1) horz = 1;
3397         if ((i >> 1) & 1) vert = 1;
3398       }
3399     }
3400     *allow_horz = *allow_horz && horz;
3401     *allow_vert = *allow_vert && vert;
3402   }
3403 }
3404 #undef FEATURES
3405 #undef LABELS
3406 
3407 // Perform fast and coarse motion search for the given block. This is a
3408 // pre-processing step for the ML based partition search speedup.
simple_motion_search(const VP9_COMP * const cpi,MACROBLOCK * const x,BLOCK_SIZE bsize,int mi_row,int mi_col,MV ref_mv,MV_REFERENCE_FRAME ref,uint8_t * const pred_buf)3409 static void simple_motion_search(const VP9_COMP *const cpi, MACROBLOCK *const x,
3410                                  BLOCK_SIZE bsize, int mi_row, int mi_col,
3411                                  MV ref_mv, MV_REFERENCE_FRAME ref,
3412                                  uint8_t *const pred_buf) {
3413   const VP9_COMMON *const cm = &cpi->common;
3414   MACROBLOCKD *const xd = &x->e_mbd;
3415   MODE_INFO *const mi = xd->mi[0];
3416   YV12_BUFFER_CONFIG *yv12;
3417   YV12_BUFFER_CONFIG *scaled_ref_frame = vp9_get_scaled_ref_frame(cpi, ref);
3418   const int step_param = 1;
3419   const MvLimits tmp_mv_limits = x->mv_limits;
3420   const SEARCH_METHODS search_method = NSTEP;
3421   const int sadpb = x->sadperbit16;
3422   MV ref_mv_full = { ref_mv.row >> 3, ref_mv.col >> 3 };
3423   MV best_mv = { 0, 0 };
3424   int cost_list[5];
3425 
3426   if (scaled_ref_frame)
3427     yv12 = scaled_ref_frame;
3428   else
3429     yv12 = get_ref_frame_buffer(cpi, ref);
3430 
3431   assert(yv12 != NULL);
3432   if (!yv12) return;
3433   vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
3434                        &cm->frame_refs[ref - 1].sf);
3435   mi->ref_frame[0] = ref;
3436   mi->ref_frame[1] = NONE;
3437   mi->sb_type = bsize;
3438   vp9_set_mv_search_range(&x->mv_limits, &ref_mv);
3439   vp9_full_pixel_search(cpi, x, bsize, &ref_mv_full, step_param, search_method,
3440                         sadpb, cond_cost_list(cpi, cost_list), &ref_mv,
3441                         &best_mv, 0, 0);
3442   best_mv.row *= 8;
3443   best_mv.col *= 8;
3444   x->mv_limits = tmp_mv_limits;
3445   mi->mv[0].as_mv = best_mv;
3446 
3447   set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
3448   xd->plane[0].dst.buf = pred_buf;
3449   xd->plane[0].dst.stride = 64;
3450   vp9_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
3451 }
3452 
3453 // Use a neural net model to prune partition-none and partition-split search.
3454 // Features used: QP; spatial block size contexts; variance of prediction
3455 // residue after simple_motion_search.
3456 #define FEATURES 12
ml_predict_var_rd_paritioning(const VP9_COMP * const cpi,MACROBLOCK * const x,PC_TREE * const pc_tree,BLOCK_SIZE bsize,int mi_row,int mi_col,int * none,int * split)3457 static void ml_predict_var_rd_paritioning(const VP9_COMP *const cpi,
3458                                           MACROBLOCK *const x,
3459                                           PC_TREE *const pc_tree,
3460                                           BLOCK_SIZE bsize, int mi_row,
3461                                           int mi_col, int *none, int *split) {
3462   const VP9_COMMON *const cm = &cpi->common;
3463   const NN_CONFIG *nn_config = NULL;
3464 #if CONFIG_VP9_HIGHBITDEPTH
3465   MACROBLOCKD *xd = &x->e_mbd;
3466   DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64 * 2]);
3467   uint8_t *const pred_buf = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
3468                                 ? (CONVERT_TO_BYTEPTR(pred_buffer))
3469                                 : pred_buffer;
3470 #else
3471   DECLARE_ALIGNED(16, uint8_t, pred_buffer[64 * 64]);
3472   uint8_t *const pred_buf = pred_buffer;
3473 #endif  // CONFIG_VP9_HIGHBITDEPTH
3474   const int speed = cpi->oxcf.speed;
3475   float thresh = 0.0f;
3476 
3477   switch (bsize) {
3478     case BLOCK_64X64:
3479       nn_config = &vp9_part_split_nnconfig_64;
3480       thresh = speed > 0 ? 2.8f : 3.0f;
3481       break;
3482     case BLOCK_32X32:
3483       nn_config = &vp9_part_split_nnconfig_32;
3484       thresh = speed > 0 ? 3.5f : 3.0f;
3485       break;
3486     case BLOCK_16X16:
3487       nn_config = &vp9_part_split_nnconfig_16;
3488       thresh = speed > 0 ? 3.8f : 4.0f;
3489       break;
3490     case BLOCK_8X8:
3491       nn_config = &vp9_part_split_nnconfig_8;
3492       if (cm->width >= 720 && cm->height >= 720)
3493         thresh = speed > 0 ? 2.5f : 2.0f;
3494       else
3495         thresh = speed > 0 ? 3.8f : 2.0f;
3496       break;
3497     default: assert(0 && "Unexpected block size."); return;
3498   }
3499 
3500   if (!nn_config) return;
3501 
3502   // Do a simple single motion search to find a prediction for current block.
3503   // The variance of the residue will be used as input features.
3504   {
3505     MV ref_mv;
3506     const MV_REFERENCE_FRAME ref =
3507         cpi->rc.is_src_frame_alt_ref ? ALTREF_FRAME : LAST_FRAME;
3508     // If bsize is 64x64, use zero MV as reference; otherwise, use MV result
3509     // of previous(larger) block as reference.
3510     if (bsize == BLOCK_64X64)
3511       ref_mv.row = ref_mv.col = 0;
3512     else
3513       ref_mv = pc_tree->mv;
3514     vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
3515     simple_motion_search(cpi, x, bsize, mi_row, mi_col, ref_mv, ref, pred_buf);
3516     pc_tree->mv = x->e_mbd.mi[0]->mv[0].as_mv;
3517   }
3518 
3519   vpx_clear_system_state();
3520 
3521   {
3522     float features[FEATURES] = { 0.0f };
3523 #if CONFIG_VP9_HIGHBITDEPTH
3524     const int dc_q =
3525         vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth) >> (xd->bd - 8);
3526 #else
3527     const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
3528 #endif  // CONFIG_VP9_HIGHBITDEPTH
3529     int feature_idx = 0;
3530     float score;
3531 
3532     // Generate model input features.
3533     features[feature_idx++] = logf((float)dc_q + 1.0f);
3534 
3535     // Get the variance of the residue as input features.
3536     {
3537       const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
3538       const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
3539       const uint8_t *pred = pred_buf;
3540       const uint8_t *src = x->plane[0].src.buf;
3541       const int src_stride = x->plane[0].src.stride;
3542       const int pred_stride = 64;
3543       unsigned int sse;
3544       // Variance of whole block.
3545       const unsigned int var =
3546           cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
3547       const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
3548       const MACROBLOCKD *const xd = &x->e_mbd;
3549       const int has_above = !!xd->above_mi;
3550       const int has_left = !!xd->left_mi;
3551       const BLOCK_SIZE above_bsize = has_above ? xd->above_mi->sb_type : bsize;
3552       const BLOCK_SIZE left_bsize = has_left ? xd->left_mi->sb_type : bsize;
3553       int i;
3554 
3555       features[feature_idx++] = (float)has_above;
3556       features[feature_idx++] = (float)b_width_log2_lookup[above_bsize];
3557       features[feature_idx++] = (float)b_height_log2_lookup[above_bsize];
3558       features[feature_idx++] = (float)has_left;
3559       features[feature_idx++] = (float)b_width_log2_lookup[left_bsize];
3560       features[feature_idx++] = (float)b_height_log2_lookup[left_bsize];
3561       features[feature_idx++] = logf((float)var + 1.0f);
3562       for (i = 0; i < 4; ++i) {
3563         const int x_idx = (i & 1) * bs / 2;
3564         const int y_idx = (i >> 1) * bs / 2;
3565         const int src_offset = y_idx * src_stride + x_idx;
3566         const int pred_offset = y_idx * pred_stride + x_idx;
3567         // Variance of quarter block.
3568         const unsigned int sub_var =
3569             cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
3570                                     pred + pred_offset, pred_stride, &sse);
3571         const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
3572         features[feature_idx++] = var_ratio;
3573       }
3574     }
3575     assert(feature_idx == FEATURES);
3576 
3577     // Feed the features into the model to get the confidence score.
3578     nn_predict(features, nn_config, &score);
3579 
3580     // Higher score means that the model has higher confidence that the split
3581     // partition is better than the non-split partition. So if the score is
3582     // high enough, we skip the none-split partition search; if the score is
3583     // low enough, we skip the split partition search.
3584     if (score > thresh) *none = 0;
3585     if (score < -thresh) *split = 0;
3586   }
3587 }
3588 #undef FEATURES
3589 #endif  // !CONFIG_REALTIME_ONLY
3590 
log_wiener_var(int64_t wiener_variance)3591 static double log_wiener_var(int64_t wiener_variance) {
3592   return log(1.0 + wiener_variance) / log(2.0);
3593 }
3594 
build_kmeans_segmentation(VP9_COMP * cpi)3595 static void build_kmeans_segmentation(VP9_COMP *cpi) {
3596   VP9_COMMON *cm = &cpi->common;
3597   BLOCK_SIZE bsize = BLOCK_64X64;
3598   KMEANS_DATA *kmeans_data;
3599 
3600   vp9_disable_segmentation(&cm->seg);
3601   if (cm->show_frame) {
3602     int mi_row, mi_col;
3603     cpi->kmeans_data_size = 0;
3604     cpi->kmeans_ctr_num = 8;
3605 
3606     for (mi_row = 0; mi_row < cm->mi_rows; mi_row += MI_BLOCK_SIZE) {
3607       for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
3608         int mb_row_start = mi_row >> 1;
3609         int mb_col_start = mi_col >> 1;
3610         int mb_row_end = VPXMIN(
3611             (mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows);
3612         int mb_col_end = VPXMIN(
3613             (mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols);
3614         int row, col;
3615         int64_t wiener_variance = 0;
3616 
3617         for (row = mb_row_start; row < mb_row_end; ++row)
3618           for (col = mb_col_start; col < mb_col_end; ++col)
3619             wiener_variance += cpi->mb_wiener_variance[row * cm->mb_cols + col];
3620 
3621         wiener_variance /=
3622             (mb_row_end - mb_row_start) * (mb_col_end - mb_col_start);
3623 
3624 #if CONFIG_MULTITHREAD
3625         pthread_mutex_lock(&cpi->kmeans_mutex);
3626 #endif  // CONFIG_MULTITHREAD
3627 
3628         kmeans_data = &cpi->kmeans_data_arr[cpi->kmeans_data_size++];
3629         kmeans_data->value = log_wiener_var(wiener_variance);
3630         kmeans_data->pos = mi_row * cpi->kmeans_data_stride + mi_col;
3631 #if CONFIG_MULTITHREAD
3632         pthread_mutex_unlock(&cpi->kmeans_mutex);
3633 #endif  // CONFIG_MULTITHREAD
3634       }
3635     }
3636 
3637     vp9_kmeans(cpi->kmeans_ctr_ls, cpi->kmeans_boundary_ls,
3638                cpi->kmeans_count_ls, cpi->kmeans_ctr_num, cpi->kmeans_data_arr,
3639                cpi->kmeans_data_size);
3640 
3641     vp9_perceptual_aq_mode_setup(cpi, &cm->seg);
3642   }
3643 }
3644 
3645 #if !CONFIG_REALTIME_ONLY
wiener_var_segment(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col)3646 static int wiener_var_segment(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
3647                               int mi_col) {
3648   VP9_COMMON *cm = &cpi->common;
3649   int mb_row_start = mi_row >> 1;
3650   int mb_col_start = mi_col >> 1;
3651   int mb_row_end =
3652       VPXMIN((mi_row + num_8x8_blocks_high_lookup[bsize]) >> 1, cm->mb_rows);
3653   int mb_col_end =
3654       VPXMIN((mi_col + num_8x8_blocks_wide_lookup[bsize]) >> 1, cm->mb_cols);
3655   int row, col, idx;
3656   int64_t wiener_variance = 0;
3657   int segment_id;
3658   int8_t seg_hist[MAX_SEGMENTS] = { 0 };
3659   int8_t max_count = 0, max_index = -1;
3660 
3661   vpx_clear_system_state();
3662 
3663   assert(cpi->norm_wiener_variance > 0);
3664 
3665   for (row = mb_row_start; row < mb_row_end; ++row) {
3666     for (col = mb_col_start; col < mb_col_end; ++col) {
3667       wiener_variance = cpi->mb_wiener_variance[row * cm->mb_cols + col];
3668       segment_id =
3669           vp9_get_group_idx(log_wiener_var(wiener_variance),
3670                             cpi->kmeans_boundary_ls, cpi->kmeans_ctr_num);
3671       ++seg_hist[segment_id];
3672     }
3673   }
3674 
3675   for (idx = 0; idx < cpi->kmeans_ctr_num; ++idx) {
3676     if (seg_hist[idx] > max_count) {
3677       max_count = seg_hist[idx];
3678       max_index = idx;
3679     }
3680   }
3681 
3682   assert(max_index >= 0);
3683   segment_id = max_index;
3684 
3685   return segment_id;
3686 }
3687 
get_rdmult_delta(VP9_COMP * cpi,BLOCK_SIZE bsize,int mi_row,int mi_col,int orig_rdmult)3688 static int get_rdmult_delta(VP9_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
3689                             int mi_col, int orig_rdmult) {
3690   const int gf_group_index = cpi->twopass.gf_group.index;
3691   int64_t intra_cost = 0;
3692   int64_t mc_dep_cost = 0;
3693   int mi_wide = num_8x8_blocks_wide_lookup[bsize];
3694   int mi_high = num_8x8_blocks_high_lookup[bsize];
3695   int row, col;
3696 
3697   int dr = 0;
3698   int count = 0;
3699   double r0, rk, beta;
3700 
3701   TplDepFrame *tpl_frame;
3702   TplDepStats *tpl_stats;
3703   int tpl_stride;
3704 
3705   if (gf_group_index >= MAX_ARF_GOP_SIZE) return orig_rdmult;
3706   tpl_frame = &cpi->tpl_stats[gf_group_index];
3707 
3708   if (tpl_frame->is_valid == 0) return orig_rdmult;
3709   tpl_stats = tpl_frame->tpl_stats_ptr;
3710   tpl_stride = tpl_frame->stride;
3711 
3712   if (cpi->twopass.gf_group.layer_depth[gf_group_index] > 1) return orig_rdmult;
3713 
3714   for (row = mi_row; row < mi_row + mi_high; ++row) {
3715     for (col = mi_col; col < mi_col + mi_wide; ++col) {
3716       TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
3717 
3718       if (row >= cpi->common.mi_rows || col >= cpi->common.mi_cols) continue;
3719 
3720       intra_cost += this_stats->intra_cost;
3721       mc_dep_cost += this_stats->mc_dep_cost;
3722 
3723       ++count;
3724     }
3725   }
3726 
3727   vpx_clear_system_state();
3728 
3729   r0 = cpi->rd.r0;
3730   rk = (double)intra_cost / mc_dep_cost;
3731   beta = r0 / rk;
3732   dr = vp9_get_adaptive_rdmult(cpi, beta);
3733 
3734   dr = VPXMIN(dr, orig_rdmult * 3 / 2);
3735   dr = VPXMAX(dr, orig_rdmult * 1 / 2);
3736 
3737   dr = VPXMAX(1, dr);
3738 
3739   return dr;
3740 }
3741 #endif  // !CONFIG_REALTIME_ONLY
3742 
3743 #if CONFIG_RATE_CTRL
assign_partition_info(const int row_start_4x4,const int col_start_4x4,const int block_width_4x4,const int block_height_4x4,const int num_unit_rows,const int num_unit_cols,PARTITION_INFO * partition_info)3744 static void assign_partition_info(
3745     const int row_start_4x4, const int col_start_4x4, const int block_width_4x4,
3746     const int block_height_4x4, const int num_unit_rows,
3747     const int num_unit_cols, PARTITION_INFO *partition_info) {
3748   int i, j;
3749   for (i = 0; i < block_height_4x4; ++i) {
3750     for (j = 0; j < block_width_4x4; ++j) {
3751       const int row_4x4 = row_start_4x4 + i;
3752       const int col_4x4 = col_start_4x4 + j;
3753       const int unit_index = row_4x4 * num_unit_cols + col_4x4;
3754       if (row_4x4 >= num_unit_rows || col_4x4 >= num_unit_cols) continue;
3755       partition_info[unit_index].row = row_4x4 << 2;
3756       partition_info[unit_index].column = col_4x4 << 2;
3757       partition_info[unit_index].row_start = row_start_4x4 << 2;
3758       partition_info[unit_index].column_start = col_start_4x4 << 2;
3759       partition_info[unit_index].width = block_width_4x4 << 2;
3760       partition_info[unit_index].height = block_height_4x4 << 2;
3761     }
3762   }
3763 }
3764 
assign_motion_vector_info(const int block_width_4x4,const int block_height_4x4,const int row_start_4x4,const int col_start_4x4,const int num_unit_rows,const int num_unit_cols,MV * source_mv[2],MV_REFERENCE_FRAME source_ref_frame[2],MOTION_VECTOR_INFO * motion_vector_info)3765 static void assign_motion_vector_info(const int block_width_4x4,
3766                                       const int block_height_4x4,
3767                                       const int row_start_4x4,
3768                                       const int col_start_4x4,
3769                                       const int num_unit_rows,
3770                                       const int num_unit_cols, MV *source_mv[2],
3771                                       MV_REFERENCE_FRAME source_ref_frame[2],
3772                                       MOTION_VECTOR_INFO *motion_vector_info) {
3773   int i, j;
3774   for (i = 0; i < block_height_4x4; ++i) {
3775     for (j = 0; j < block_width_4x4; ++j) {
3776       const int row_4x4 = row_start_4x4 + i;
3777       const int col_4x4 = col_start_4x4 + j;
3778       const int unit_index = row_4x4 * num_unit_cols + col_4x4;
3779       if (row_4x4 >= num_unit_rows || col_4x4 >= num_unit_cols) continue;
3780       if (source_ref_frame[1] == NONE) {
3781         assert(source_mv[1]->row == 0 && source_mv[1]->col == 0);
3782       }
3783       motion_vector_info[unit_index].ref_frame[0] = source_ref_frame[0];
3784       motion_vector_info[unit_index].ref_frame[1] = source_ref_frame[1];
3785       motion_vector_info[unit_index].mv[0].as_mv.row = source_mv[0]->row;
3786       motion_vector_info[unit_index].mv[0].as_mv.col = source_mv[0]->col;
3787       motion_vector_info[unit_index].mv[1].as_mv.row = source_mv[1]->row;
3788       motion_vector_info[unit_index].mv[1].as_mv.col = source_mv[1]->col;
3789     }
3790   }
3791 }
3792 
store_superblock_info(const PC_TREE * const pc_tree,MODE_INFO ** mi_grid_visible,const int mi_stride,const int square_size_4x4,const int num_unit_rows,const int num_unit_cols,const int row_start_4x4,const int col_start_4x4,PARTITION_INFO * partition_info,MOTION_VECTOR_INFO * motion_vector_info)3793 static void store_superblock_info(
3794     const PC_TREE *const pc_tree, MODE_INFO **mi_grid_visible,
3795     const int mi_stride, const int square_size_4x4, const int num_unit_rows,
3796     const int num_unit_cols, const int row_start_4x4, const int col_start_4x4,
3797     PARTITION_INFO *partition_info, MOTION_VECTOR_INFO *motion_vector_info) {
3798   const int subblock_square_size_4x4 = square_size_4x4 >> 1;
3799   if (row_start_4x4 >= num_unit_rows || col_start_4x4 >= num_unit_cols) return;
3800   assert(pc_tree->partitioning != PARTITION_INVALID);
3801   // End node, no split.
3802   if (pc_tree->partitioning == PARTITION_NONE ||
3803       pc_tree->partitioning == PARTITION_HORZ ||
3804       pc_tree->partitioning == PARTITION_VERT || square_size_4x4 == 1) {
3805     const int mi_row = row_start_4x4 >> 1;
3806     const int mi_col = col_start_4x4 >> 1;
3807     const int mi_idx = mi_stride * mi_row + mi_col;
3808     MODE_INFO **mi = mi_grid_visible + mi_idx;
3809     MV *source_mv[2];
3810     MV_REFERENCE_FRAME source_ref_frame[2];
3811 
3812     // partition info
3813     const int block_width_4x4 = (pc_tree->partitioning == PARTITION_VERT)
3814                                     ? square_size_4x4 >> 1
3815                                     : square_size_4x4;
3816     const int block_height_4x4 = (pc_tree->partitioning == PARTITION_HORZ)
3817                                      ? square_size_4x4 >> 1
3818                                      : square_size_4x4;
3819     assign_partition_info(row_start_4x4, col_start_4x4, block_width_4x4,
3820                           block_height_4x4, num_unit_rows, num_unit_cols,
3821                           partition_info);
3822     if (pc_tree->partitioning == PARTITION_VERT) {
3823       assign_partition_info(row_start_4x4, col_start_4x4 + block_width_4x4,
3824                             block_width_4x4, block_height_4x4, num_unit_rows,
3825                             num_unit_cols, partition_info);
3826     } else if (pc_tree->partitioning == PARTITION_HORZ) {
3827       assign_partition_info(row_start_4x4 + block_height_4x4, col_start_4x4,
3828                             block_width_4x4, block_height_4x4, num_unit_rows,
3829                             num_unit_cols, partition_info);
3830     }
3831 
3832     // motion vector info
3833     if (pc_tree->partitioning == PARTITION_HORZ) {
3834       int is_valid_second_rectangle = 0;
3835       assert(square_size_4x4 > 1);
3836       // First rectangle.
3837       source_ref_frame[0] = mi[0]->ref_frame[0];
3838       source_ref_frame[1] = mi[0]->ref_frame[1];
3839       source_mv[0] = &mi[0]->mv[0].as_mv;
3840       source_mv[1] = &mi[0]->mv[1].as_mv;
3841       assign_motion_vector_info(block_width_4x4, block_height_4x4,
3842                                 row_start_4x4, col_start_4x4, num_unit_rows,
3843                                 num_unit_cols, source_mv, source_ref_frame,
3844                                 motion_vector_info);
3845       // Second rectangle.
3846       if (square_size_4x4 == 2) {
3847         is_valid_second_rectangle = 1;
3848         source_ref_frame[0] = mi[0]->ref_frame[0];
3849         source_ref_frame[1] = mi[0]->ref_frame[1];
3850         source_mv[0] = &mi[0]->bmi[2].as_mv[0].as_mv;
3851         source_mv[1] = &mi[0]->bmi[2].as_mv[1].as_mv;
3852       } else {
3853         const int mi_row_2 = mi_row + (block_height_4x4 >> 1);
3854         const int mi_col_2 = mi_col;
3855         if (mi_row_2 * 2 < num_unit_rows && mi_col_2 * 2 < num_unit_cols) {
3856           const int mi_idx_2 = mi_stride * mi_row_2 + mi_col_2;
3857           is_valid_second_rectangle = 1;
3858           mi = mi_grid_visible + mi_idx_2;
3859           source_ref_frame[0] = mi[0]->ref_frame[0];
3860           source_ref_frame[1] = mi[0]->ref_frame[1];
3861           source_mv[0] = &mi[0]->mv[0].as_mv;
3862           source_mv[1] = &mi[0]->mv[1].as_mv;
3863         }
3864       }
3865       if (is_valid_second_rectangle) {
3866         assign_motion_vector_info(
3867             block_width_4x4, block_height_4x4, row_start_4x4 + block_height_4x4,
3868             col_start_4x4, num_unit_rows, num_unit_cols, source_mv,
3869             source_ref_frame, motion_vector_info);
3870       }
3871     } else if (pc_tree->partitioning == PARTITION_VERT) {
3872       int is_valid_second_rectangle = 0;
3873       assert(square_size_4x4 > 1);
3874       // First rectangle.
3875       source_ref_frame[0] = mi[0]->ref_frame[0];
3876       source_ref_frame[1] = mi[0]->ref_frame[1];
3877       source_mv[0] = &mi[0]->mv[0].as_mv;
3878       source_mv[1] = &mi[0]->mv[1].as_mv;
3879       assign_motion_vector_info(block_width_4x4, block_height_4x4,
3880                                 row_start_4x4, col_start_4x4, num_unit_rows,
3881                                 num_unit_cols, source_mv, source_ref_frame,
3882                                 motion_vector_info);
3883       // Second rectangle.
3884       if (square_size_4x4 == 2) {
3885         is_valid_second_rectangle = 1;
3886         source_ref_frame[0] = mi[0]->ref_frame[0];
3887         source_ref_frame[1] = mi[0]->ref_frame[1];
3888         source_mv[0] = &mi[0]->bmi[1].as_mv[0].as_mv;
3889         source_mv[1] = &mi[0]->bmi[1].as_mv[1].as_mv;
3890       } else {
3891         const int mi_row_2 = mi_row;
3892         const int mi_col_2 = mi_col + (block_width_4x4 >> 1);
3893         if (mi_row_2 * 2 < num_unit_rows && mi_col_2 * 2 < num_unit_cols) {
3894           const int mi_idx_2 = mi_stride * mi_row_2 + mi_col_2;
3895           is_valid_second_rectangle = 1;
3896           mi = mi_grid_visible + mi_idx_2;
3897           source_ref_frame[0] = mi[0]->ref_frame[0];
3898           source_ref_frame[1] = mi[0]->ref_frame[1];
3899           source_mv[0] = &mi[0]->mv[0].as_mv;
3900           source_mv[1] = &mi[0]->mv[1].as_mv;
3901         }
3902       }
3903       if (is_valid_second_rectangle) {
3904         assign_motion_vector_info(
3905             block_width_4x4, block_height_4x4, row_start_4x4,
3906             col_start_4x4 + block_width_4x4, num_unit_rows, num_unit_cols,
3907             source_mv, source_ref_frame, motion_vector_info);
3908       }
3909     } else {
3910       assert(pc_tree->partitioning == PARTITION_NONE || square_size_4x4 == 1);
3911       source_ref_frame[0] = mi[0]->ref_frame[0];
3912       source_ref_frame[1] = mi[0]->ref_frame[1];
3913       if (square_size_4x4 == 1) {
3914         const int sub8x8_row = row_start_4x4 % 2;
3915         const int sub8x8_col = col_start_4x4 % 2;
3916         const int sub8x8_idx = sub8x8_row * 2 + sub8x8_col;
3917         source_mv[0] = &mi[0]->bmi[sub8x8_idx].as_mv[0].as_mv;
3918         source_mv[1] = &mi[0]->bmi[sub8x8_idx].as_mv[1].as_mv;
3919       } else {
3920         source_mv[0] = &mi[0]->mv[0].as_mv;
3921         source_mv[1] = &mi[0]->mv[1].as_mv;
3922       }
3923       assign_motion_vector_info(block_width_4x4, block_height_4x4,
3924                                 row_start_4x4, col_start_4x4, num_unit_rows,
3925                                 num_unit_cols, source_mv, source_ref_frame,
3926                                 motion_vector_info);
3927     }
3928 
3929     return;
3930   }
3931   // recursively traverse partition tree when partition is split.
3932   assert(pc_tree->partitioning == PARTITION_SPLIT);
3933   store_superblock_info(pc_tree->split[0], mi_grid_visible, mi_stride,
3934                         subblock_square_size_4x4, num_unit_rows, num_unit_cols,
3935                         row_start_4x4, col_start_4x4, partition_info,
3936                         motion_vector_info);
3937   store_superblock_info(pc_tree->split[1], mi_grid_visible, mi_stride,
3938                         subblock_square_size_4x4, num_unit_rows, num_unit_cols,
3939                         row_start_4x4, col_start_4x4 + subblock_square_size_4x4,
3940                         partition_info, motion_vector_info);
3941   store_superblock_info(pc_tree->split[2], mi_grid_visible, mi_stride,
3942                         subblock_square_size_4x4, num_unit_rows, num_unit_cols,
3943                         row_start_4x4 + subblock_square_size_4x4, col_start_4x4,
3944                         partition_info, motion_vector_info);
3945   store_superblock_info(pc_tree->split[3], mi_grid_visible, mi_stride,
3946                         subblock_square_size_4x4, num_unit_rows, num_unit_cols,
3947                         row_start_4x4 + subblock_square_size_4x4,
3948                         col_start_4x4 + subblock_square_size_4x4,
3949                         partition_info, motion_vector_info);
3950 }
3951 #endif  // CONFIG_RATE_CTRL
3952 
3953 #if !CONFIG_REALTIME_ONLY
3954 // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
3955 // unlikely to be selected depending on previous rate-distortion optimization
3956 // results, for encoding speed-up.
rd_pick_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,RD_COST * rd_cost,RD_COST best_rdc,PC_TREE * pc_tree)3957 static int rd_pick_partition(VP9_COMP *cpi, ThreadData *td,
3958                              TileDataEnc *tile_data, TOKENEXTRA **tp,
3959                              int mi_row, int mi_col, BLOCK_SIZE bsize,
3960                              RD_COST *rd_cost, RD_COST best_rdc,
3961                              PC_TREE *pc_tree) {
3962   VP9_COMMON *const cm = &cpi->common;
3963   const VP9EncoderConfig *const oxcf = &cpi->oxcf;
3964   TileInfo *const tile_info = &tile_data->tile_info;
3965   MACROBLOCK *const x = &td->mb;
3966   MACROBLOCKD *const xd = &x->e_mbd;
3967   const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
3968   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
3969   PARTITION_CONTEXT sl[8], sa[8];
3970   TOKENEXTRA *tp_orig = *tp;
3971   PICK_MODE_CONTEXT *const ctx = &pc_tree->none;
3972   int i;
3973   const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
3974   BLOCK_SIZE subsize;
3975   RD_COST this_rdc, sum_rdc;
3976   int do_split = bsize >= BLOCK_8X8;
3977   int do_rect = 1;
3978   INTERP_FILTER pred_interp_filter;
3979 
3980   // Override skipping rectangular partition operations for edge blocks
3981   const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
3982   const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
3983   const int xss = x->e_mbd.plane[1].subsampling_x;
3984   const int yss = x->e_mbd.plane[1].subsampling_y;
3985 
3986   BLOCK_SIZE min_size = x->min_partition_size;
3987   BLOCK_SIZE max_size = x->max_partition_size;
3988 
3989   int partition_none_allowed = !force_horz_split && !force_vert_split;
3990   int partition_horz_allowed =
3991       !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
3992   int partition_vert_allowed =
3993       !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
3994 
3995   int64_t dist_breakout_thr = cpi->sf.partition_search_breakout_thr.dist;
3996   int rate_breakout_thr = cpi->sf.partition_search_breakout_thr.rate;
3997   int must_split = 0;
3998   int should_encode_sb = 0;
3999 
4000   // Ref frames picked in the [i_th] quarter subblock during square partition
4001   // RD search. It may be used to prune ref frame selection of rect partitions.
4002   uint8_t ref_frames_used[4] = { 0, 0, 0, 0 };
4003 
4004   int partition_mul = x->cb_rdmult;
4005 
4006   (void)*tp_orig;
4007 
4008   assert(num_8x8_blocks_wide_lookup[bsize] ==
4009          num_8x8_blocks_high_lookup[bsize]);
4010 
4011   dist_breakout_thr >>=
4012       8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
4013 
4014   rate_breakout_thr *= num_pels_log2_lookup[bsize];
4015 
4016   vp9_rd_cost_init(&this_rdc);
4017   vp9_rd_cost_init(&sum_rdc);
4018 
4019   set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
4020 
4021   if (oxcf->tuning == VP8_TUNE_SSIM) {
4022     set_ssim_rdmult(cpi, x, bsize, mi_row, mi_col, &partition_mul);
4023   }
4024   vp9_rd_cost_update(partition_mul, x->rddiv, &best_rdc);
4025 
4026   if (bsize == BLOCK_16X16 && cpi->oxcf.aq_mode != NO_AQ &&
4027       cpi->oxcf.aq_mode != LOOKAHEAD_AQ)
4028     x->mb_energy = vp9_block_energy(cpi, x, bsize);
4029 
4030   if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
4031     int cb_partition_search_ctrl =
4032         ((pc_tree->index == 0 || pc_tree->index == 3) +
4033          get_chessboard_index(cm->current_video_frame)) &
4034         0x1;
4035 
4036     if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
4037       set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
4038   }
4039 
4040   // Get sub block energy range
4041   if (bsize >= BLOCK_16X16) {
4042     int min_energy, max_energy;
4043     vp9_get_sub_block_energy(cpi, x, mi_row, mi_col, bsize, &min_energy,
4044                              &max_energy);
4045     must_split = (min_energy < -3) && (max_energy - min_energy > 2);
4046   }
4047 
4048   // Determine partition types in search according to the speed features.
4049   // The threshold set here has to be of square block size.
4050   if (cpi->sf.auto_min_max_partition_size) {
4051     partition_none_allowed &= (bsize <= max_size);
4052     partition_horz_allowed &=
4053         ((bsize <= max_size && bsize > min_size) || force_horz_split);
4054     partition_vert_allowed &=
4055         ((bsize <= max_size && bsize > min_size) || force_vert_split);
4056     do_split &= bsize > min_size;
4057   }
4058 
4059   if (cpi->sf.use_square_partition_only &&
4060       (bsize > cpi->sf.use_square_only_thresh_high ||
4061        bsize < cpi->sf.use_square_only_thresh_low)) {
4062     if (cpi->use_svc) {
4063       if (!vp9_active_h_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
4064         partition_horz_allowed &= force_horz_split;
4065       if (!vp9_active_v_edge(cpi, mi_row, mi_step) || x->e_mbd.lossless)
4066         partition_vert_allowed &= force_vert_split;
4067     } else {
4068       partition_horz_allowed &= force_horz_split;
4069       partition_vert_allowed &= force_vert_split;
4070     }
4071   }
4072 
4073   save_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4074 
4075   pc_tree->partitioning = PARTITION_NONE;
4076 
4077   if (cpi->sf.rd_ml_partition.var_pruning && !frame_is_intra_only(cm)) {
4078     const int do_rd_ml_partition_var_pruning =
4079         partition_none_allowed && do_split &&
4080         mi_row + num_8x8_blocks_high_lookup[bsize] <= cm->mi_rows &&
4081         mi_col + num_8x8_blocks_wide_lookup[bsize] <= cm->mi_cols;
4082     if (do_rd_ml_partition_var_pruning) {
4083       ml_predict_var_rd_paritioning(cpi, x, pc_tree, bsize, mi_row, mi_col,
4084                                     &partition_none_allowed, &do_split);
4085     } else {
4086       vp9_zero(pc_tree->mv);
4087     }
4088     if (bsize > BLOCK_8X8) {  // Store MV result as reference for subblocks.
4089       for (i = 0; i < 4; ++i) pc_tree->split[i]->mv = pc_tree->mv;
4090     }
4091   }
4092 
4093   // PARTITION_NONE
4094   if (partition_none_allowed) {
4095     rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx,
4096                      best_rdc.rate, best_rdc.dist);
4097     ctx->rdcost = this_rdc.rdcost;
4098     if (this_rdc.rate != INT_MAX) {
4099       if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4100         const int ref1 = ctx->mic.ref_frame[0];
4101         const int ref2 = ctx->mic.ref_frame[1];
4102         for (i = 0; i < 4; ++i) {
4103           ref_frames_used[i] |= (1 << ref1);
4104           if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4105         }
4106       }
4107       if (bsize >= BLOCK_8X8) {
4108         this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
4109         vp9_rd_cost_update(partition_mul, x->rddiv, &this_rdc);
4110       }
4111 
4112       if (this_rdc.rdcost < best_rdc.rdcost) {
4113         MODE_INFO *mi = xd->mi[0];
4114 
4115         best_rdc = this_rdc;
4116         should_encode_sb = 1;
4117         if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
4118 
4119         if (cpi->sf.rd_ml_partition.search_early_termination) {
4120           // Currently, the machine-learning based partition search early
4121           // termination is only used while bsize is 16x16, 32x32 or 64x64,
4122           // VPXMIN(cm->width, cm->height) >= 480, and speed = 0.
4123           if (!x->e_mbd.lossless &&
4124               !segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP) &&
4125               ctx->mic.mode >= INTRA_MODES && bsize >= BLOCK_16X16) {
4126             if (ml_pruning_partition(cm, xd, ctx, mi_row, mi_col, bsize)) {
4127               do_split = 0;
4128               do_rect = 0;
4129             }
4130           }
4131         }
4132 
4133         if ((do_split || do_rect) && !x->e_mbd.lossless && ctx->skippable) {
4134           const int use_ml_based_breakout =
4135               cpi->sf.rd_ml_partition.search_breakout && cm->base_qindex >= 100;
4136           if (use_ml_based_breakout) {
4137             if (ml_predict_breakout(cpi, bsize, x, &this_rdc)) {
4138               do_split = 0;
4139               do_rect = 0;
4140             }
4141           } else {
4142             if (!cpi->sf.rd_ml_partition.search_early_termination) {
4143               if ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
4144                   (best_rdc.dist < dist_breakout_thr &&
4145                    best_rdc.rate < rate_breakout_thr)) {
4146                 do_split = 0;
4147                 do_rect = 0;
4148               }
4149             }
4150           }
4151         }
4152       }
4153     }
4154     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4155   } else {
4156     vp9_zero(ctx->pred_mv);
4157     ctx->mic.interp_filter = EIGHTTAP;
4158   }
4159 
4160   // store estimated motion vector
4161   store_pred_mv(x, ctx);
4162 
4163   // If the interp_filter is marked as SWITCHABLE_FILTERS, it was for an
4164   // intra block and used for context purposes.
4165   if (ctx->mic.interp_filter == SWITCHABLE_FILTERS) {
4166     pred_interp_filter = EIGHTTAP;
4167   } else {
4168     pred_interp_filter = ctx->mic.interp_filter;
4169   }
4170 
4171   // PARTITION_SPLIT
4172   // TODO(jingning): use the motion vectors given by the above search as
4173   // the starting point of motion search in the following partition type check.
4174   pc_tree->split[0]->none.rdcost = 0;
4175   pc_tree->split[1]->none.rdcost = 0;
4176   pc_tree->split[2]->none.rdcost = 0;
4177   pc_tree->split[3]->none.rdcost = 0;
4178   if (do_split || must_split) {
4179     subsize = get_subsize(bsize, PARTITION_SPLIT);
4180     load_pred_mv(x, ctx);
4181     if (bsize == BLOCK_8X8) {
4182       i = 4;
4183       if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
4184         pc_tree->leaf_split[0]->pred_interp_filter = pred_interp_filter;
4185       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4186                        pc_tree->leaf_split[0], best_rdc.rate, best_rdc.dist);
4187       if (sum_rdc.rate == INT_MAX) {
4188         sum_rdc.rdcost = INT64_MAX;
4189       } else {
4190         if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4191           const int ref1 = pc_tree->leaf_split[0]->mic.ref_frame[0];
4192           const int ref2 = pc_tree->leaf_split[0]->mic.ref_frame[1];
4193           for (i = 0; i < 4; ++i) {
4194             ref_frames_used[i] |= (1 << ref1);
4195             if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4196           }
4197         }
4198       }
4199     } else {
4200       for (i = 0; (i < 4) && ((sum_rdc.rdcost < best_rdc.rdcost) || must_split);
4201            ++i) {
4202         const int x_idx = (i & 1) * mi_step;
4203         const int y_idx = (i >> 1) * mi_step;
4204         int found_best_rd = 0;
4205         RD_COST best_rdc_split;
4206         vp9_rd_cost_reset(&best_rdc_split);
4207 
4208         if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) {
4209           // A must split test here increases the number of sub
4210           // partitions but hurts metrics results quite a bit,
4211           // so this extra test is commented out pending
4212           // further tests on whether it adds much in terms of
4213           // visual quality.
4214           // (must_split) ? best_rdc.rate
4215           //              : best_rdc.rate - sum_rdc.rate,
4216           // (must_split) ? best_rdc.dist
4217           //              : best_rdc.dist - sum_rdc.dist,
4218           best_rdc_split.rate = best_rdc.rate - sum_rdc.rate;
4219           best_rdc_split.dist = best_rdc.dist - sum_rdc.dist;
4220         }
4221 
4222         if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
4223           continue;
4224 
4225         pc_tree->split[i]->index = i;
4226         if (cpi->sf.prune_ref_frame_for_rect_partitions)
4227           pc_tree->split[i]->none.rate = INT_MAX;
4228         found_best_rd = rd_pick_partition(
4229             cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
4230             &this_rdc, best_rdc_split, pc_tree->split[i]);
4231 
4232         if (found_best_rd == 0) {
4233           sum_rdc.rdcost = INT64_MAX;
4234           break;
4235         } else {
4236           if (cpi->sf.prune_ref_frame_for_rect_partitions &&
4237               pc_tree->split[i]->none.rate != INT_MAX) {
4238             const int ref1 = pc_tree->split[i]->none.mic.ref_frame[0];
4239             const int ref2 = pc_tree->split[i]->none.mic.ref_frame[1];
4240             ref_frames_used[i] |= (1 << ref1);
4241             if (ref2 > 0) ref_frames_used[i] |= (1 << ref2);
4242           }
4243           sum_rdc.rate += this_rdc.rate;
4244           sum_rdc.dist += this_rdc.dist;
4245           vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4246         }
4247       }
4248     }
4249 
4250     if (((sum_rdc.rdcost < best_rdc.rdcost) || must_split) && i == 4) {
4251       sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
4252       vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4253 
4254       if ((sum_rdc.rdcost < best_rdc.rdcost) ||
4255           (must_split && (sum_rdc.dist < best_rdc.dist))) {
4256         best_rdc = sum_rdc;
4257         should_encode_sb = 1;
4258         pc_tree->partitioning = PARTITION_SPLIT;
4259 
4260         // Rate and distortion based partition search termination clause.
4261         if (!cpi->sf.rd_ml_partition.search_early_termination &&
4262             !x->e_mbd.lossless &&
4263             ((best_rdc.dist < (dist_breakout_thr >> 2)) ||
4264              (best_rdc.dist < dist_breakout_thr &&
4265               best_rdc.rate < rate_breakout_thr))) {
4266           do_rect = 0;
4267         }
4268       }
4269     } else {
4270       // skip rectangular partition test when larger block size
4271       // gives better rd cost
4272       if (cpi->sf.less_rectangular_check &&
4273           (bsize > cpi->sf.use_square_only_thresh_high ||
4274            best_rdc.dist < dist_breakout_thr))
4275         do_rect &= !partition_none_allowed;
4276     }
4277     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4278   }
4279 
4280   pc_tree->horizontal[0].skip_ref_frame_mask = 0;
4281   pc_tree->horizontal[1].skip_ref_frame_mask = 0;
4282   pc_tree->vertical[0].skip_ref_frame_mask = 0;
4283   pc_tree->vertical[1].skip_ref_frame_mask = 0;
4284   if (cpi->sf.prune_ref_frame_for_rect_partitions) {
4285     uint8_t used_frames;
4286     used_frames = ref_frames_used[0] | ref_frames_used[1];
4287     if (used_frames) {
4288       pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames & 0xff;
4289     }
4290     used_frames = ref_frames_used[2] | ref_frames_used[3];
4291     if (used_frames) {
4292       pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames & 0xff;
4293     }
4294     used_frames = ref_frames_used[0] | ref_frames_used[2];
4295     if (used_frames) {
4296       pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames & 0xff;
4297     }
4298     used_frames = ref_frames_used[1] | ref_frames_used[3];
4299     if (used_frames) {
4300       pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames & 0xff;
4301     }
4302   }
4303 
4304   {
4305     const int do_ml_rect_partition_pruning =
4306         !frame_is_intra_only(cm) && !force_horz_split && !force_vert_split &&
4307         (partition_horz_allowed || partition_vert_allowed) && bsize > BLOCK_8X8;
4308     if (do_ml_rect_partition_pruning) {
4309       ml_prune_rect_partition(cpi, x, bsize, pc_tree, &partition_horz_allowed,
4310                               &partition_vert_allowed, best_rdc.rdcost);
4311     }
4312   }
4313 
4314   // PARTITION_HORZ
4315   if (partition_horz_allowed &&
4316       (do_rect || vp9_active_h_edge(cpi, mi_row, mi_step))) {
4317     const int part_mode_rate = cpi->partition_cost[pl][PARTITION_HORZ];
4318     subsize = get_subsize(bsize, PARTITION_HORZ);
4319     load_pred_mv(x, ctx);
4320     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4321         partition_none_allowed)
4322       pc_tree->horizontal[0].pred_interp_filter = pred_interp_filter;
4323     rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4324                      &pc_tree->horizontal[0], best_rdc.rate - part_mode_rate,
4325                      best_rdc.dist);
4326     if (sum_rdc.rdcost < INT64_MAX) {
4327       sum_rdc.rate += part_mode_rate;
4328       vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4329     }
4330 
4331     if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + mi_step < cm->mi_rows &&
4332         bsize > BLOCK_8X8) {
4333       PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
4334       update_state(cpi, td, ctx, mi_row, mi_col, subsize, 0);
4335       encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize, ctx);
4336       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4337           partition_none_allowed)
4338         pc_tree->horizontal[1].pred_interp_filter = pred_interp_filter;
4339       rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
4340                        subsize, &pc_tree->horizontal[1],
4341                        best_rdc.rate - sum_rdc.rate,
4342                        best_rdc.dist - sum_rdc.dist);
4343       if (this_rdc.rate == INT_MAX) {
4344         sum_rdc.rdcost = INT64_MAX;
4345       } else {
4346         sum_rdc.rate += this_rdc.rate;
4347         sum_rdc.dist += this_rdc.dist;
4348         vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4349       }
4350     }
4351 
4352     if (sum_rdc.rdcost < best_rdc.rdcost) {
4353       best_rdc = sum_rdc;
4354       should_encode_sb = 1;
4355       pc_tree->partitioning = PARTITION_HORZ;
4356 
4357       if (cpi->sf.less_rectangular_check &&
4358           bsize > cpi->sf.use_square_only_thresh_high)
4359         do_rect = 0;
4360     }
4361     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4362   }
4363 
4364   // PARTITION_VERT
4365   if (partition_vert_allowed &&
4366       (do_rect || vp9_active_v_edge(cpi, mi_col, mi_step))) {
4367     const int part_mode_rate = cpi->partition_cost[pl][PARTITION_VERT];
4368     subsize = get_subsize(bsize, PARTITION_VERT);
4369     load_pred_mv(x, ctx);
4370     if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4371         partition_none_allowed)
4372       pc_tree->vertical[0].pred_interp_filter = pred_interp_filter;
4373     rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
4374                      &pc_tree->vertical[0], best_rdc.rate - part_mode_rate,
4375                      best_rdc.dist);
4376     if (sum_rdc.rdcost < INT64_MAX) {
4377       sum_rdc.rate += part_mode_rate;
4378       vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4379     }
4380 
4381     if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + mi_step < cm->mi_cols &&
4382         bsize > BLOCK_8X8) {
4383       update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 0);
4384       encode_superblock(cpi, td, tp, 0, mi_row, mi_col, subsize,
4385                         &pc_tree->vertical[0]);
4386       if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
4387           partition_none_allowed)
4388         pc_tree->vertical[1].pred_interp_filter = pred_interp_filter;
4389       rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
4390                        subsize, &pc_tree->vertical[1],
4391                        best_rdc.rate - sum_rdc.rate,
4392                        best_rdc.dist - sum_rdc.dist);
4393       if (this_rdc.rate == INT_MAX) {
4394         sum_rdc.rdcost = INT64_MAX;
4395       } else {
4396         sum_rdc.rate += this_rdc.rate;
4397         sum_rdc.dist += this_rdc.dist;
4398         vp9_rd_cost_update(partition_mul, x->rddiv, &sum_rdc);
4399       }
4400     }
4401 
4402     if (sum_rdc.rdcost < best_rdc.rdcost) {
4403       best_rdc = sum_rdc;
4404       should_encode_sb = 1;
4405       pc_tree->partitioning = PARTITION_VERT;
4406     }
4407     restore_context(x, mi_row, mi_col, a, l, sa, sl, bsize);
4408   }
4409 
4410   *rd_cost = best_rdc;
4411 
4412   if (should_encode_sb && pc_tree->index != 3) {
4413     int output_enabled = (bsize == BLOCK_64X64);
4414     encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
4415               pc_tree);
4416 #if CONFIG_RATE_CTRL
4417     if (oxcf->use_simple_encode_api) {
4418       // Store partition, motion vector of the superblock.
4419       if (output_enabled) {
4420         const int num_unit_rows =
4421             get_num_unit_4x4(cpi->frame_info.frame_height);
4422         const int num_unit_cols = get_num_unit_4x4(cpi->frame_info.frame_width);
4423         store_superblock_info(pc_tree, cm->mi_grid_visible, cm->mi_stride,
4424                               num_4x4_blocks_wide_lookup[BLOCK_64X64],
4425                               num_unit_rows, num_unit_cols, mi_row << 1,
4426                               mi_col << 1, cpi->partition_info,
4427                               cpi->motion_vector_info);
4428       }
4429     }
4430 #endif  // CONFIG_RATE_CTRL
4431   }
4432 
4433   if (bsize == BLOCK_64X64) {
4434     assert(tp_orig < *tp);
4435     assert(best_rdc.rate < INT_MAX);
4436     assert(best_rdc.dist < INT64_MAX);
4437   } else {
4438     assert(tp_orig == *tp);
4439   }
4440 
4441   return should_encode_sb;
4442 }
4443 
encode_rd_sb_row(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,TOKENEXTRA ** tp)4444 static void encode_rd_sb_row(VP9_COMP *cpi, ThreadData *td,
4445                              TileDataEnc *tile_data, int mi_row,
4446                              TOKENEXTRA **tp) {
4447   VP9_COMMON *const cm = &cpi->common;
4448   TileInfo *const tile_info = &tile_data->tile_info;
4449   MACROBLOCK *const x = &td->mb;
4450   MACROBLOCKD *const xd = &x->e_mbd;
4451   SPEED_FEATURES *const sf = &cpi->sf;
4452   const int mi_col_start = tile_info->mi_col_start;
4453   const int mi_col_end = tile_info->mi_col_end;
4454   int mi_col;
4455   const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
4456   const int num_sb_cols =
4457       get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
4458   int sb_col_in_tile;
4459 
4460   // Initialize the left context for the new SB row
4461   memset(&xd->left_context, 0, sizeof(xd->left_context));
4462   memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
4463 
4464   // Code each SB in the row
4465   for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
4466        mi_col += MI_BLOCK_SIZE, sb_col_in_tile++) {
4467     const struct segmentation *const seg = &cm->seg;
4468     int dummy_rate;
4469     int64_t dummy_dist;
4470     RD_COST dummy_rdc;
4471     int i;
4472     int seg_skip = 0;
4473     int orig_rdmult = cpi->rd.RDMULT;
4474 
4475     const int idx_str = cm->mi_stride * mi_row + mi_col;
4476     MODE_INFO **mi = cm->mi_grid_visible + idx_str;
4477 
4478     vp9_rd_cost_reset(&dummy_rdc);
4479     (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
4480                                    sb_col_in_tile);
4481 
4482     if (sf->adaptive_pred_interp_filter) {
4483       for (i = 0; i < 64; ++i) td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
4484 
4485       for (i = 0; i < 64; ++i) {
4486         td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
4487         td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
4488         td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
4489         td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
4490       }
4491     }
4492 
4493     for (i = 0; i < MAX_REF_FRAMES; ++i) {
4494       x->pred_mv[i].row = INT16_MAX;
4495       x->pred_mv[i].col = INT16_MAX;
4496     }
4497     td->pc_root->index = 0;
4498 
4499     if (seg->enabled) {
4500       const uint8_t *const map =
4501           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
4502       int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
4503       seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
4504     }
4505 
4506     x->source_variance = UINT_MAX;
4507 
4508     x->cb_rdmult = orig_rdmult;
4509 
4510     if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
4511       const BLOCK_SIZE bsize =
4512           seg_skip ? BLOCK_64X64 : sf->always_this_block_size;
4513       set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4514       set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
4515       rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4516                        &dummy_rate, &dummy_dist, 1, td->pc_root);
4517     } else if (sf->partition_search_type == VAR_BASED_PARTITION &&
4518                cm->frame_type != KEY_FRAME) {
4519       choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
4520       rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, BLOCK_64X64,
4521                        &dummy_rate, &dummy_dist, 1, td->pc_root);
4522     } else {
4523       if (cpi->twopass.gf_group.index > 0 && cpi->sf.enable_tpl_model) {
4524         int dr =
4525             get_rdmult_delta(cpi, BLOCK_64X64, mi_row, mi_col, orig_rdmult);
4526         x->cb_rdmult = dr;
4527       }
4528 
4529       if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ && cm->show_frame) {
4530         x->segment_id = wiener_var_segment(cpi, BLOCK_64X64, mi_row, mi_col);
4531         x->cb_rdmult = vp9_compute_rd_mult(
4532             cpi, vp9_get_qindex(&cm->seg, x->segment_id, cm->base_qindex));
4533       }
4534 
4535       // If required set upper and lower partition size limits
4536       if (sf->auto_min_max_partition_size) {
4537         set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
4538         rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
4539                                 &x->min_partition_size, &x->max_partition_size);
4540       }
4541       td->pc_root->none.rdcost = 0;
4542       rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, BLOCK_64X64,
4543                         &dummy_rdc, dummy_rdc, td->pc_root);
4544     }
4545     (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
4546                                     sb_col_in_tile, num_sb_cols);
4547   }
4548 }
4549 #endif  // !CONFIG_REALTIME_ONLY
4550 
init_encode_frame_mb_context(VP9_COMP * cpi)4551 static void init_encode_frame_mb_context(VP9_COMP *cpi) {
4552   MACROBLOCK *const x = &cpi->td.mb;
4553   VP9_COMMON *const cm = &cpi->common;
4554   MACROBLOCKD *const xd = &x->e_mbd;
4555   const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols);
4556 
4557   // Copy data over into macro block data structures.
4558   vp9_setup_src_planes(x, cpi->Source, 0, 0);
4559 
4560   vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
4561 
4562   // Note: this memset assumes above_context[0], [1] and [2]
4563   // are allocated as part of the same buffer.
4564   memset(xd->above_context[0], 0,
4565          sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE);
4566   memset(xd->above_seg_context, 0,
4567          sizeof(*xd->above_seg_context) * aligned_mi_cols);
4568 }
4569 
check_dual_ref_flags(VP9_COMP * cpi)4570 static int check_dual_ref_flags(VP9_COMP *cpi) {
4571   const int ref_flags = cpi->ref_frame_flags;
4572 
4573   if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
4574     return 0;
4575   } else {
4576     return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) +
4577             !!(ref_flags & VP9_ALT_FLAG)) >= 2;
4578   }
4579 }
4580 
reset_skip_tx_size(VP9_COMMON * cm,TX_SIZE max_tx_size)4581 static void reset_skip_tx_size(VP9_COMMON *cm, TX_SIZE max_tx_size) {
4582   int mi_row, mi_col;
4583   const int mis = cm->mi_stride;
4584   MODE_INFO **mi_ptr = cm->mi_grid_visible;
4585 
4586   for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
4587     for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
4588       if (mi_ptr[mi_col]->tx_size > max_tx_size)
4589         mi_ptr[mi_col]->tx_size = max_tx_size;
4590     }
4591   }
4592 }
4593 
get_frame_type(const VP9_COMP * cpi)4594 static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) {
4595   if (frame_is_intra_only(&cpi->common))
4596     return INTRA_FRAME;
4597   else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
4598     return ALTREF_FRAME;
4599   else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
4600     return GOLDEN_FRAME;
4601   else
4602     return LAST_FRAME;
4603 }
4604 
select_tx_mode(const VP9_COMP * cpi,MACROBLOCKD * const xd)4605 static TX_MODE select_tx_mode(const VP9_COMP *cpi, MACROBLOCKD *const xd) {
4606   if (xd->lossless) return ONLY_4X4;
4607   if (cpi->common.frame_type == KEY_FRAME && cpi->sf.use_nonrd_pick_mode)
4608     return ALLOW_16X16;
4609   if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
4610     return ALLOW_32X32;
4611   else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
4612            cpi->sf.tx_size_search_method == USE_TX_8X8)
4613     return TX_MODE_SELECT;
4614   else
4615     return cpi->common.tx_mode;
4616 }
4617 
hybrid_intra_mode_search(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)4618 static void hybrid_intra_mode_search(VP9_COMP *cpi, MACROBLOCK *const x,
4619                                      RD_COST *rd_cost, BLOCK_SIZE bsize,
4620                                      PICK_MODE_CONTEXT *ctx) {
4621   if (!cpi->sf.nonrd_keyframe && bsize < BLOCK_16X16)
4622     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4623   else
4624     vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
4625 }
4626 
hybrid_search_svc_baseiskey(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,TileDataEnc * tile_data,int mi_row,int mi_col)4627 static void hybrid_search_svc_baseiskey(VP9_COMP *cpi, MACROBLOCK *const x,
4628                                         RD_COST *rd_cost, BLOCK_SIZE bsize,
4629                                         PICK_MODE_CONTEXT *ctx,
4630                                         TileDataEnc *tile_data, int mi_row,
4631                                         int mi_col) {
4632   if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
4633     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4634   } else {
4635     if (cpi->svc.disable_inter_layer_pred == INTER_LAYER_PRED_OFF)
4636       vp9_pick_intra_mode(cpi, x, rd_cost, bsize, ctx);
4637     else if (bsize >= BLOCK_8X8)
4638       vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
4639                           ctx);
4640     else
4641       vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
4642   }
4643 }
4644 
hybrid_search_scene_change(VP9_COMP * cpi,MACROBLOCK * const x,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx,TileDataEnc * tile_data,int mi_row,int mi_col)4645 static void hybrid_search_scene_change(VP9_COMP *cpi, MACROBLOCK *const x,
4646                                        RD_COST *rd_cost, BLOCK_SIZE bsize,
4647                                        PICK_MODE_CONTEXT *ctx,
4648                                        TileDataEnc *tile_data, int mi_row,
4649                                        int mi_col) {
4650   if (!cpi->sf.nonrd_keyframe && bsize <= BLOCK_8X8) {
4651     vp9_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX);
4652   } else {
4653     vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize, ctx);
4654   }
4655 }
4656 
nonrd_pick_sb_modes(VP9_COMP * cpi,TileDataEnc * tile_data,MACROBLOCK * const x,int mi_row,int mi_col,RD_COST * rd_cost,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)4657 static void nonrd_pick_sb_modes(VP9_COMP *cpi, TileDataEnc *tile_data,
4658                                 MACROBLOCK *const x, int mi_row, int mi_col,
4659                                 RD_COST *rd_cost, BLOCK_SIZE bsize,
4660                                 PICK_MODE_CONTEXT *ctx) {
4661   VP9_COMMON *const cm = &cpi->common;
4662   TileInfo *const tile_info = &tile_data->tile_info;
4663   MACROBLOCKD *const xd = &x->e_mbd;
4664   MODE_INFO *mi;
4665   ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
4666   BLOCK_SIZE bs = VPXMAX(bsize, BLOCK_8X8);  // processing unit block size
4667   const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs];
4668   const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs];
4669   int plane;
4670 
4671   set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
4672 
4673   set_segment_index(cpi, x, mi_row, mi_col, bsize, 0);
4674 
4675   mi = xd->mi[0];
4676   mi->sb_type = bsize;
4677 
4678   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
4679     struct macroblockd_plane *pd = &xd->plane[plane];
4680     memcpy(a + num_4x4_blocks_wide * plane, pd->above_context,
4681            (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
4682     memcpy(l + num_4x4_blocks_high * plane, pd->left_context,
4683            (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
4684   }
4685 
4686   if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled)
4687     if (cyclic_refresh_segment_id_boosted(mi->segment_id))
4688       x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
4689 
4690   if (frame_is_intra_only(cm))
4691     hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx);
4692   else if (cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)
4693     hybrid_search_svc_baseiskey(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
4694                                 mi_col);
4695   else if (segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP))
4696     set_mode_info_seg_skip(x, cm->tx_mode, cm->interp_filter, rd_cost, bsize);
4697   else if (bsize >= BLOCK_8X8) {
4698     if (cpi->rc.hybrid_intra_scene_change)
4699       hybrid_search_scene_change(cpi, x, rd_cost, bsize, ctx, tile_data, mi_row,
4700                                  mi_col);
4701     else
4702       vp9_pick_inter_mode(cpi, x, tile_data, mi_row, mi_col, rd_cost, bsize,
4703                           ctx);
4704   } else {
4705     vp9_pick_inter_mode_sub8x8(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx);
4706   }
4707 
4708   duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
4709 
4710   for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
4711     struct macroblockd_plane *pd = &xd->plane[plane];
4712     memcpy(pd->above_context, a + num_4x4_blocks_wide * plane,
4713            (sizeof(a[0]) * num_4x4_blocks_wide) >> pd->subsampling_x);
4714     memcpy(pd->left_context, l + num_4x4_blocks_high * plane,
4715            (sizeof(l[0]) * num_4x4_blocks_high) >> pd->subsampling_y);
4716   }
4717 
4718   if (rd_cost->rate == INT_MAX) vp9_rd_cost_reset(rd_cost);
4719 
4720   ctx->rate = rd_cost->rate;
4721   ctx->dist = rd_cost->dist;
4722 }
4723 
fill_mode_info_sb(VP9_COMMON * cm,MACROBLOCK * x,int mi_row,int mi_col,BLOCK_SIZE bsize,PC_TREE * pc_tree)4724 static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row,
4725                               int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) {
4726   MACROBLOCKD *xd = &x->e_mbd;
4727   int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
4728   PARTITION_TYPE partition = pc_tree->partitioning;
4729   BLOCK_SIZE subsize = get_subsize(bsize, partition);
4730 
4731   assert(bsize >= BLOCK_8X8);
4732 
4733   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
4734 
4735   switch (partition) {
4736     case PARTITION_NONE:
4737       set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4738       *(xd->mi[0]) = pc_tree->none.mic;
4739       *(x->mbmi_ext) = pc_tree->none.mbmi_ext;
4740       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize);
4741       break;
4742     case PARTITION_VERT:
4743       set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4744       *(xd->mi[0]) = pc_tree->vertical[0].mic;
4745       *(x->mbmi_ext) = pc_tree->vertical[0].mbmi_ext;
4746       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
4747 
4748       if (mi_col + hbs < cm->mi_cols) {
4749         set_mode_info_offsets(cm, x, xd, mi_row, mi_col + hbs);
4750         *(xd->mi[0]) = pc_tree->vertical[1].mic;
4751         *(x->mbmi_ext) = pc_tree->vertical[1].mbmi_ext;
4752         duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, subsize);
4753       }
4754       break;
4755     case PARTITION_HORZ:
4756       set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
4757       *(xd->mi[0]) = pc_tree->horizontal[0].mic;
4758       *(x->mbmi_ext) = pc_tree->horizontal[0].mbmi_ext;
4759       duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, subsize);
4760       if (mi_row + hbs < cm->mi_rows) {
4761         set_mode_info_offsets(cm, x, xd, mi_row + hbs, mi_col);
4762         *(xd->mi[0]) = pc_tree->horizontal[1].mic;
4763         *(x->mbmi_ext) = pc_tree->horizontal[1].mbmi_ext;
4764         duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, subsize);
4765       }
4766       break;
4767     case PARTITION_SPLIT: {
4768       fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, pc_tree->split[0]);
4769       fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize,
4770                         pc_tree->split[1]);
4771       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize,
4772                         pc_tree->split[2]);
4773       fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize,
4774                         pc_tree->split[3]);
4775       break;
4776     }
4777     default: break;
4778   }
4779 }
4780 
4781 // Reset the prediction pixel ready flag recursively.
pred_pixel_ready_reset(PC_TREE * pc_tree,BLOCK_SIZE bsize)4782 static void pred_pixel_ready_reset(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
4783   pc_tree->none.pred_pixel_ready = 0;
4784   pc_tree->horizontal[0].pred_pixel_ready = 0;
4785   pc_tree->horizontal[1].pred_pixel_ready = 0;
4786   pc_tree->vertical[0].pred_pixel_ready = 0;
4787   pc_tree->vertical[1].pred_pixel_ready = 0;
4788 
4789   if (bsize > BLOCK_8X8) {
4790     BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
4791     int i;
4792     for (i = 0; i < 4; ++i) pred_pixel_ready_reset(pc_tree->split[i], subsize);
4793   }
4794 }
4795 
4796 #define FEATURES 6
4797 #define LABELS 2
ml_predict_var_paritioning(VP9_COMP * cpi,MACROBLOCK * x,BLOCK_SIZE bsize,int mi_row,int mi_col)4798 static int ml_predict_var_paritioning(VP9_COMP *cpi, MACROBLOCK *x,
4799                                       BLOCK_SIZE bsize, int mi_row,
4800                                       int mi_col) {
4801   VP9_COMMON *const cm = &cpi->common;
4802   const NN_CONFIG *nn_config = NULL;
4803 
4804   switch (bsize) {
4805     case BLOCK_64X64: nn_config = &vp9_var_part_nnconfig_64; break;
4806     case BLOCK_32X32: nn_config = &vp9_var_part_nnconfig_32; break;
4807     case BLOCK_16X16: nn_config = &vp9_var_part_nnconfig_16; break;
4808     case BLOCK_8X8: break;
4809     default: assert(0 && "Unexpected block size."); return -1;
4810   }
4811 
4812   if (!nn_config) return -1;
4813 
4814   vpx_clear_system_state();
4815 
4816   {
4817     const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f;
4818     float features[FEATURES] = { 0.0f };
4819     const int dc_q = vp9_dc_quant(cm->base_qindex, 0, cm->bit_depth);
4820     int feature_idx = 0;
4821     float score[LABELS];
4822 
4823     features[feature_idx++] = logf((float)(dc_q * dc_q) / 256.0f + 1.0f);
4824     vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
4825     {
4826       const int bs = 4 * num_4x4_blocks_wide_lookup[bsize];
4827       const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
4828       const int sb_offset_row = 8 * (mi_row & 7);
4829       const int sb_offset_col = 8 * (mi_col & 7);
4830       const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col;
4831       const uint8_t *src = x->plane[0].src.buf;
4832       const int src_stride = x->plane[0].src.stride;
4833       const int pred_stride = 64;
4834       unsigned int sse;
4835       int i;
4836       // Variance of whole block.
4837       const unsigned int var =
4838           cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse);
4839       const float factor = (var == 0) ? 1.0f : (1.0f / (float)var);
4840 
4841       features[feature_idx++] = logf((float)var + 1.0f);
4842       for (i = 0; i < 4; ++i) {
4843         const int x_idx = (i & 1) * bs / 2;
4844         const int y_idx = (i >> 1) * bs / 2;
4845         const int src_offset = y_idx * src_stride + x_idx;
4846         const int pred_offset = y_idx * pred_stride + x_idx;
4847         // Variance of quarter block.
4848         const unsigned int sub_var =
4849             cpi->fn_ptr[subsize].vf(src + src_offset, src_stride,
4850                                     pred + pred_offset, pred_stride, &sse);
4851         const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var;
4852         features[feature_idx++] = var_ratio;
4853       }
4854     }
4855 
4856     assert(feature_idx == FEATURES);
4857     nn_predict(features, nn_config, score);
4858     if (score[0] > thresh) return PARTITION_SPLIT;
4859     if (score[0] < -thresh) return PARTITION_NONE;
4860     return -1;
4861   }
4862 }
4863 #undef FEATURES
4864 #undef LABELS
4865 
nonrd_pick_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,RD_COST * rd_cost,int do_recon,int64_t best_rd,PC_TREE * pc_tree)4866 static void nonrd_pick_partition(VP9_COMP *cpi, ThreadData *td,
4867                                  TileDataEnc *tile_data, TOKENEXTRA **tp,
4868                                  int mi_row, int mi_col, BLOCK_SIZE bsize,
4869                                  RD_COST *rd_cost, int do_recon,
4870                                  int64_t best_rd, PC_TREE *pc_tree) {
4871   const SPEED_FEATURES *const sf = &cpi->sf;
4872   VP9_COMMON *const cm = &cpi->common;
4873   TileInfo *const tile_info = &tile_data->tile_info;
4874   MACROBLOCK *const x = &td->mb;
4875   MACROBLOCKD *const xd = &x->e_mbd;
4876   const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
4877   TOKENEXTRA *tp_orig = *tp;
4878   PICK_MODE_CONTEXT *ctx = &pc_tree->none;
4879   int i;
4880   BLOCK_SIZE subsize = bsize;
4881   RD_COST this_rdc, sum_rdc, best_rdc;
4882   int do_split = bsize >= BLOCK_8X8;
4883   int do_rect = 1;
4884   // Override skipping rectangular partition operations for edge blocks
4885   const int force_horz_split = (mi_row + ms >= cm->mi_rows);
4886   const int force_vert_split = (mi_col + ms >= cm->mi_cols);
4887   const int xss = x->e_mbd.plane[1].subsampling_x;
4888   const int yss = x->e_mbd.plane[1].subsampling_y;
4889 
4890   int partition_none_allowed = !force_horz_split && !force_vert_split;
4891   int partition_horz_allowed =
4892       !force_vert_split && yss <= xss && bsize >= BLOCK_8X8;
4893   int partition_vert_allowed =
4894       !force_horz_split && xss <= yss && bsize >= BLOCK_8X8;
4895   const int use_ml_based_partitioning =
4896       sf->partition_search_type == ML_BASED_PARTITION;
4897 
4898   (void)*tp_orig;
4899 
4900   // Avoid checking for rectangular partitions for speed >= 5.
4901   if (cpi->oxcf.speed >= 5) do_rect = 0;
4902 
4903   assert(num_8x8_blocks_wide_lookup[bsize] ==
4904          num_8x8_blocks_high_lookup[bsize]);
4905 
4906   vp9_rd_cost_init(&sum_rdc);
4907   vp9_rd_cost_reset(&best_rdc);
4908   best_rdc.rdcost = best_rd;
4909 
4910   // Determine partition types in search according to the speed features.
4911   // The threshold set here has to be of square block size.
4912   if (sf->auto_min_max_partition_size) {
4913     partition_none_allowed &=
4914         (bsize <= x->max_partition_size && bsize >= x->min_partition_size);
4915     partition_horz_allowed &=
4916         ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
4917          force_horz_split);
4918     partition_vert_allowed &=
4919         ((bsize <= x->max_partition_size && bsize > x->min_partition_size) ||
4920          force_vert_split);
4921     do_split &= bsize > x->min_partition_size;
4922   }
4923   if (sf->use_square_partition_only) {
4924     partition_horz_allowed &= force_horz_split;
4925     partition_vert_allowed &= force_vert_split;
4926   }
4927 
4928   if (use_ml_based_partitioning) {
4929     if (partition_none_allowed || do_split) do_rect = 0;
4930     if (partition_none_allowed && do_split) {
4931       const int ml_predicted_partition =
4932           ml_predict_var_paritioning(cpi, x, bsize, mi_row, mi_col);
4933       if (ml_predicted_partition == PARTITION_NONE) do_split = 0;
4934       if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0;
4935     }
4936   }
4937 
4938   if (!partition_none_allowed && !do_split) do_rect = 1;
4939 
4940   ctx->pred_pixel_ready =
4941       !(partition_vert_allowed || partition_horz_allowed || do_split);
4942 
4943   // PARTITION_NONE
4944   if (partition_none_allowed) {
4945     nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize,
4946                         ctx);
4947     ctx->mic = *xd->mi[0];
4948     ctx->mbmi_ext = *x->mbmi_ext;
4949     ctx->skip_txfm[0] = x->skip_txfm[0];
4950     ctx->skip = x->skip;
4951 
4952     if (this_rdc.rate != INT_MAX) {
4953       const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
4954       this_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
4955       this_rdc.rdcost =
4956           RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
4957       if (this_rdc.rdcost < best_rdc.rdcost) {
4958         best_rdc = this_rdc;
4959         if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
4960 
4961         if (!use_ml_based_partitioning) {
4962           int64_t dist_breakout_thr = sf->partition_search_breakout_thr.dist;
4963           int64_t rate_breakout_thr = sf->partition_search_breakout_thr.rate;
4964           dist_breakout_thr >>=
4965               8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]);
4966           rate_breakout_thr *= num_pels_log2_lookup[bsize];
4967           if (!x->e_mbd.lossless && this_rdc.rate < rate_breakout_thr &&
4968               this_rdc.dist < dist_breakout_thr) {
4969             do_split = 0;
4970             do_rect = 0;
4971           }
4972         }
4973       }
4974     }
4975   }
4976 
4977   // store estimated motion vector
4978   store_pred_mv(x, ctx);
4979 
4980   // PARTITION_SPLIT
4981   if (do_split) {
4982     int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
4983     sum_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
4984     sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
4985     subsize = get_subsize(bsize, PARTITION_SPLIT);
4986     for (i = 0; i < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++i) {
4987       const int x_idx = (i & 1) * ms;
4988       const int y_idx = (i >> 1) * ms;
4989 
4990       if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
4991         continue;
4992       load_pred_mv(x, ctx);
4993       nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
4994                            mi_col + x_idx, subsize, &this_rdc, 0,
4995                            best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]);
4996 
4997       if (this_rdc.rate == INT_MAX) {
4998         vp9_rd_cost_reset(&sum_rdc);
4999       } else {
5000         sum_rdc.rate += this_rdc.rate;
5001         sum_rdc.dist += this_rdc.dist;
5002         sum_rdc.rdcost += this_rdc.rdcost;
5003       }
5004     }
5005 
5006     if (sum_rdc.rdcost < best_rdc.rdcost) {
5007       best_rdc = sum_rdc;
5008       pc_tree->partitioning = PARTITION_SPLIT;
5009     } else {
5010       // skip rectangular partition test when larger block size
5011       // gives better rd cost
5012       if (sf->less_rectangular_check) do_rect &= !partition_none_allowed;
5013     }
5014   }
5015 
5016   // PARTITION_HORZ
5017   if (partition_horz_allowed && do_rect) {
5018     subsize = get_subsize(bsize, PARTITION_HORZ);
5019     load_pred_mv(x, ctx);
5020     pc_tree->horizontal[0].pred_pixel_ready = 1;
5021     nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
5022                         &pc_tree->horizontal[0]);
5023 
5024     pc_tree->horizontal[0].mic = *xd->mi[0];
5025     pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
5026     pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
5027     pc_tree->horizontal[0].skip = x->skip;
5028 
5029     if (sum_rdc.rdcost < best_rdc.rdcost && mi_row + ms < cm->mi_rows) {
5030       load_pred_mv(x, ctx);
5031       pc_tree->horizontal[1].pred_pixel_ready = 1;
5032       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + ms, mi_col, &this_rdc,
5033                           subsize, &pc_tree->horizontal[1]);
5034 
5035       pc_tree->horizontal[1].mic = *xd->mi[0];
5036       pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
5037       pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
5038       pc_tree->horizontal[1].skip = x->skip;
5039 
5040       if (this_rdc.rate == INT_MAX) {
5041         vp9_rd_cost_reset(&sum_rdc);
5042       } else {
5043         int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
5044         this_rdc.rate += cpi->partition_cost[pl][PARTITION_HORZ];
5045         sum_rdc.rate += this_rdc.rate;
5046         sum_rdc.dist += this_rdc.dist;
5047         sum_rdc.rdcost =
5048             RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
5049       }
5050     }
5051 
5052     if (sum_rdc.rdcost < best_rdc.rdcost) {
5053       best_rdc = sum_rdc;
5054       pc_tree->partitioning = PARTITION_HORZ;
5055     } else {
5056       pred_pixel_ready_reset(pc_tree, bsize);
5057     }
5058   }
5059 
5060   // PARTITION_VERT
5061   if (partition_vert_allowed && do_rect) {
5062     subsize = get_subsize(bsize, PARTITION_VERT);
5063     load_pred_mv(x, ctx);
5064     pc_tree->vertical[0].pred_pixel_ready = 1;
5065     nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, subsize,
5066                         &pc_tree->vertical[0]);
5067     pc_tree->vertical[0].mic = *xd->mi[0];
5068     pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5069     pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5070     pc_tree->vertical[0].skip = x->skip;
5071 
5072     if (sum_rdc.rdcost < best_rdc.rdcost && mi_col + ms < cm->mi_cols) {
5073       load_pred_mv(x, ctx);
5074       pc_tree->vertical[1].pred_pixel_ready = 1;
5075       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + ms, &this_rdc,
5076                           subsize, &pc_tree->vertical[1]);
5077       pc_tree->vertical[1].mic = *xd->mi[0];
5078       pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5079       pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5080       pc_tree->vertical[1].skip = x->skip;
5081 
5082       if (this_rdc.rate == INT_MAX) {
5083         vp9_rd_cost_reset(&sum_rdc);
5084       } else {
5085         int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
5086         sum_rdc.rate += cpi->partition_cost[pl][PARTITION_VERT];
5087         sum_rdc.rate += this_rdc.rate;
5088         sum_rdc.dist += this_rdc.dist;
5089         sum_rdc.rdcost =
5090             RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
5091       }
5092     }
5093 
5094     if (sum_rdc.rdcost < best_rdc.rdcost) {
5095       best_rdc = sum_rdc;
5096       pc_tree->partitioning = PARTITION_VERT;
5097     } else {
5098       pred_pixel_ready_reset(pc_tree, bsize);
5099     }
5100   }
5101 
5102   *rd_cost = best_rdc;
5103 
5104   if (best_rdc.rate == INT_MAX) {
5105     vp9_rd_cost_reset(rd_cost);
5106     return;
5107   }
5108 
5109   // update mode info array
5110   fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, pc_tree);
5111 
5112   if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && do_recon) {
5113     int output_enabled = (bsize == BLOCK_64X64);
5114     encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled, bsize,
5115                  pc_tree);
5116   }
5117 
5118   if (bsize == BLOCK_64X64 && do_recon) {
5119     assert(tp_orig < *tp);
5120     assert(best_rdc.rate < INT_MAX);
5121     assert(best_rdc.dist < INT64_MAX);
5122   } else {
5123     assert(tp_orig == *tp);
5124   }
5125 }
5126 
nonrd_select_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,RD_COST * rd_cost,PC_TREE * pc_tree)5127 static void nonrd_select_partition(VP9_COMP *cpi, ThreadData *td,
5128                                    TileDataEnc *tile_data, MODE_INFO **mi,
5129                                    TOKENEXTRA **tp, int mi_row, int mi_col,
5130                                    BLOCK_SIZE bsize, int output_enabled,
5131                                    RD_COST *rd_cost, PC_TREE *pc_tree) {
5132   VP9_COMMON *const cm = &cpi->common;
5133   TileInfo *const tile_info = &tile_data->tile_info;
5134   MACROBLOCK *const x = &td->mb;
5135   MACROBLOCKD *const xd = &x->e_mbd;
5136   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
5137   const int mis = cm->mi_stride;
5138   PARTITION_TYPE partition;
5139   BLOCK_SIZE subsize;
5140   RD_COST this_rdc;
5141   BLOCK_SIZE subsize_ref =
5142       (cpi->sf.adapt_partition_source_sad) ? BLOCK_8X8 : BLOCK_16X16;
5143 
5144   vp9_rd_cost_reset(&this_rdc);
5145   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
5146 
5147   subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
5148   partition = partition_lookup[bsl][subsize];
5149 
5150   if (bsize == BLOCK_32X32 && subsize == BLOCK_32X32) {
5151     x->max_partition_size = BLOCK_32X32;
5152     x->min_partition_size = BLOCK_16X16;
5153     nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
5154                          0, INT64_MAX, pc_tree);
5155   } else if (bsize == BLOCK_32X32 && partition != PARTITION_NONE &&
5156              subsize >= subsize_ref) {
5157     x->max_partition_size = BLOCK_32X32;
5158     x->min_partition_size = BLOCK_8X8;
5159     nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
5160                          0, INT64_MAX, pc_tree);
5161   } else if (bsize == BLOCK_16X16 && partition != PARTITION_NONE) {
5162     x->max_partition_size = BLOCK_16X16;
5163     x->min_partition_size = BLOCK_8X8;
5164     nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, bsize, rd_cost,
5165                          0, INT64_MAX, pc_tree);
5166   } else {
5167     switch (partition) {
5168       case PARTITION_NONE:
5169         pc_tree->none.pred_pixel_ready = 1;
5170         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
5171                             &pc_tree->none);
5172         pc_tree->none.mic = *xd->mi[0];
5173         pc_tree->none.mbmi_ext = *x->mbmi_ext;
5174         pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
5175         pc_tree->none.skip = x->skip;
5176         break;
5177       case PARTITION_VERT:
5178         pc_tree->vertical[0].pred_pixel_ready = 1;
5179         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
5180                             &pc_tree->vertical[0]);
5181         pc_tree->vertical[0].mic = *xd->mi[0];
5182         pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5183         pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5184         pc_tree->vertical[0].skip = x->skip;
5185         if (mi_col + hbs < cm->mi_cols) {
5186           pc_tree->vertical[1].pred_pixel_ready = 1;
5187           nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs,
5188                               &this_rdc, subsize, &pc_tree->vertical[1]);
5189           pc_tree->vertical[1].mic = *xd->mi[0];
5190           pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5191           pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5192           pc_tree->vertical[1].skip = x->skip;
5193           if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5194               rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5195             rd_cost->rate += this_rdc.rate;
5196             rd_cost->dist += this_rdc.dist;
5197           }
5198         }
5199         break;
5200       case PARTITION_HORZ:
5201         pc_tree->horizontal[0].pred_pixel_ready = 1;
5202         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, rd_cost, subsize,
5203                             &pc_tree->horizontal[0]);
5204         pc_tree->horizontal[0].mic = *xd->mi[0];
5205         pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
5206         pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
5207         pc_tree->horizontal[0].skip = x->skip;
5208         if (mi_row + hbs < cm->mi_rows) {
5209           pc_tree->horizontal[1].pred_pixel_ready = 1;
5210           nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col,
5211                               &this_rdc, subsize, &pc_tree->horizontal[1]);
5212           pc_tree->horizontal[1].mic = *xd->mi[0];
5213           pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
5214           pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
5215           pc_tree->horizontal[1].skip = x->skip;
5216           if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5217               rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5218             rd_cost->rate += this_rdc.rate;
5219             rd_cost->dist += this_rdc.dist;
5220           }
5221         }
5222         break;
5223       default:
5224         assert(partition == PARTITION_SPLIT);
5225         subsize = get_subsize(bsize, PARTITION_SPLIT);
5226         nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5227                                subsize, output_enabled, rd_cost,
5228                                pc_tree->split[0]);
5229         nonrd_select_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
5230                                mi_col + hbs, subsize, output_enabled, &this_rdc,
5231                                pc_tree->split[1]);
5232         if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5233             rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5234           rd_cost->rate += this_rdc.rate;
5235           rd_cost->dist += this_rdc.dist;
5236         }
5237         nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis, tp,
5238                                mi_row + hbs, mi_col, subsize, output_enabled,
5239                                &this_rdc, pc_tree->split[2]);
5240         if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5241             rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5242           rd_cost->rate += this_rdc.rate;
5243           rd_cost->dist += this_rdc.dist;
5244         }
5245         nonrd_select_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
5246                                mi_row + hbs, mi_col + hbs, subsize,
5247                                output_enabled, &this_rdc, pc_tree->split[3]);
5248         if (this_rdc.rate != INT_MAX && this_rdc.dist != INT64_MAX &&
5249             rd_cost->rate != INT_MAX && rd_cost->dist != INT64_MAX) {
5250           rd_cost->rate += this_rdc.rate;
5251           rd_cost->dist += this_rdc.dist;
5252         }
5253         break;
5254     }
5255   }
5256 
5257   if (bsize == BLOCK_64X64 && output_enabled)
5258     encode_sb_rt(cpi, td, tile_info, tp, mi_row, mi_col, 1, bsize, pc_tree);
5259 }
5260 
nonrd_use_partition(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,MODE_INFO ** mi,TOKENEXTRA ** tp,int mi_row,int mi_col,BLOCK_SIZE bsize,int output_enabled,RD_COST * dummy_cost,PC_TREE * pc_tree)5261 static void nonrd_use_partition(VP9_COMP *cpi, ThreadData *td,
5262                                 TileDataEnc *tile_data, MODE_INFO **mi,
5263                                 TOKENEXTRA **tp, int mi_row, int mi_col,
5264                                 BLOCK_SIZE bsize, int output_enabled,
5265                                 RD_COST *dummy_cost, PC_TREE *pc_tree) {
5266   VP9_COMMON *const cm = &cpi->common;
5267   TileInfo *tile_info = &tile_data->tile_info;
5268   MACROBLOCK *const x = &td->mb;
5269   MACROBLOCKD *const xd = &x->e_mbd;
5270   const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
5271   const int mis = cm->mi_stride;
5272   PARTITION_TYPE partition;
5273   BLOCK_SIZE subsize;
5274 
5275   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
5276 
5277   subsize = (bsize >= BLOCK_8X8) ? mi[0]->sb_type : BLOCK_4X4;
5278   partition = partition_lookup[bsl][subsize];
5279 
5280   if (output_enabled && bsize != BLOCK_4X4) {
5281     int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
5282     td->counts->partition[ctx][partition]++;
5283   }
5284 
5285   switch (partition) {
5286     case PARTITION_NONE:
5287       pc_tree->none.pred_pixel_ready = 1;
5288       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5289                           subsize, &pc_tree->none);
5290       pc_tree->none.mic = *xd->mi[0];
5291       pc_tree->none.mbmi_ext = *x->mbmi_ext;
5292       pc_tree->none.skip_txfm[0] = x->skip_txfm[0];
5293       pc_tree->none.skip = x->skip;
5294       encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5295                   subsize, &pc_tree->none);
5296       break;
5297     case PARTITION_VERT:
5298       pc_tree->vertical[0].pred_pixel_ready = 1;
5299       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5300                           subsize, &pc_tree->vertical[0]);
5301       pc_tree->vertical[0].mic = *xd->mi[0];
5302       pc_tree->vertical[0].mbmi_ext = *x->mbmi_ext;
5303       pc_tree->vertical[0].skip_txfm[0] = x->skip_txfm[0];
5304       pc_tree->vertical[0].skip = x->skip;
5305       encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5306                   subsize, &pc_tree->vertical[0]);
5307       if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
5308         pc_tree->vertical[1].pred_pixel_ready = 1;
5309         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, dummy_cost,
5310                             subsize, &pc_tree->vertical[1]);
5311         pc_tree->vertical[1].mic = *xd->mi[0];
5312         pc_tree->vertical[1].mbmi_ext = *x->mbmi_ext;
5313         pc_tree->vertical[1].skip_txfm[0] = x->skip_txfm[0];
5314         pc_tree->vertical[1].skip = x->skip;
5315         encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col + hbs,
5316                     output_enabled, subsize, &pc_tree->vertical[1]);
5317       }
5318       break;
5319     case PARTITION_HORZ:
5320       pc_tree->horizontal[0].pred_pixel_ready = 1;
5321       nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5322                           subsize, &pc_tree->horizontal[0]);
5323       pc_tree->horizontal[0].mic = *xd->mi[0];
5324       pc_tree->horizontal[0].mbmi_ext = *x->mbmi_ext;
5325       pc_tree->horizontal[0].skip_txfm[0] = x->skip_txfm[0];
5326       pc_tree->horizontal[0].skip = x->skip;
5327       encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5328                   subsize, &pc_tree->horizontal[0]);
5329 
5330       if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
5331         pc_tree->horizontal[1].pred_pixel_ready = 1;
5332         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, dummy_cost,
5333                             subsize, &pc_tree->horizontal[1]);
5334         pc_tree->horizontal[1].mic = *xd->mi[0];
5335         pc_tree->horizontal[1].mbmi_ext = *x->mbmi_ext;
5336         pc_tree->horizontal[1].skip_txfm[0] = x->skip_txfm[0];
5337         pc_tree->horizontal[1].skip = x->skip;
5338         encode_b_rt(cpi, td, tile_info, tp, mi_row + hbs, mi_col,
5339                     output_enabled, subsize, &pc_tree->horizontal[1]);
5340       }
5341       break;
5342     default:
5343       assert(partition == PARTITION_SPLIT);
5344       subsize = get_subsize(bsize, PARTITION_SPLIT);
5345       if (bsize == BLOCK_8X8) {
5346         nonrd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, dummy_cost,
5347                             subsize, pc_tree->leaf_split[0]);
5348         encode_b_rt(cpi, td, tile_info, tp, mi_row, mi_col, output_enabled,
5349                     subsize, pc_tree->leaf_split[0]);
5350       } else {
5351         nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, subsize,
5352                             output_enabled, dummy_cost, pc_tree->split[0]);
5353         nonrd_use_partition(cpi, td, tile_data, mi + hbs, tp, mi_row,
5354                             mi_col + hbs, subsize, output_enabled, dummy_cost,
5355                             pc_tree->split[1]);
5356         nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis, tp,
5357                             mi_row + hbs, mi_col, subsize, output_enabled,
5358                             dummy_cost, pc_tree->split[2]);
5359         nonrd_use_partition(cpi, td, tile_data, mi + hbs * mis + hbs, tp,
5360                             mi_row + hbs, mi_col + hbs, subsize, output_enabled,
5361                             dummy_cost, pc_tree->split[3]);
5362       }
5363       break;
5364   }
5365 
5366   if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
5367     update_partition_context(xd, mi_row, mi_col, subsize, bsize);
5368 }
5369 
5370 // Get a prediction(stored in x->est_pred) for the whole 64x64 superblock.
get_estimated_pred(VP9_COMP * cpi,const TileInfo * const tile,MACROBLOCK * x,int mi_row,int mi_col)5371 static void get_estimated_pred(VP9_COMP *cpi, const TileInfo *const tile,
5372                                MACROBLOCK *x, int mi_row, int mi_col) {
5373   VP9_COMMON *const cm = &cpi->common;
5374   const int is_key_frame = frame_is_intra_only(cm);
5375   MACROBLOCKD *xd = &x->e_mbd;
5376 
5377   set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
5378 
5379   if (!is_key_frame) {
5380     MODE_INFO *mi = xd->mi[0];
5381     YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
5382     const YV12_BUFFER_CONFIG *yv12_g = NULL;
5383     const BLOCK_SIZE bsize = BLOCK_32X32 + (mi_col + 4 < cm->mi_cols) * 2 +
5384                              (mi_row + 4 < cm->mi_rows);
5385     unsigned int y_sad_g, y_sad_thr;
5386     unsigned int y_sad = UINT_MAX;
5387 
5388     assert(yv12 != NULL);
5389 
5390     if (!(is_one_pass_svc(cpi) && cpi->svc.spatial_layer_id) ||
5391         cpi->svc.use_gf_temporal_ref_current_layer) {
5392       // For now, GOLDEN will not be used for non-zero spatial layers, since
5393       // it may not be a temporal reference.
5394       yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
5395     }
5396 
5397     // Only compute y_sad_g (sad for golden reference) for speed < 8.
5398     if (cpi->oxcf.speed < 8 && yv12_g && yv12_g != yv12 &&
5399         (cpi->ref_frame_flags & VP9_GOLD_FLAG)) {
5400       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
5401                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
5402       y_sad_g = cpi->fn_ptr[bsize].sdf(
5403           x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
5404           xd->plane[0].pre[0].stride);
5405     } else {
5406       y_sad_g = UINT_MAX;
5407     }
5408 
5409     if (cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR &&
5410         cpi->rc.is_src_frame_alt_ref) {
5411       yv12 = get_ref_frame_buffer(cpi, ALTREF_FRAME);
5412       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
5413                            &cm->frame_refs[ALTREF_FRAME - 1].sf);
5414       mi->ref_frame[0] = ALTREF_FRAME;
5415       y_sad_g = UINT_MAX;
5416     } else {
5417       vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
5418                            &cm->frame_refs[LAST_FRAME - 1].sf);
5419       mi->ref_frame[0] = LAST_FRAME;
5420     }
5421     mi->ref_frame[1] = NONE;
5422     mi->sb_type = BLOCK_64X64;
5423     mi->mv[0].as_int = 0;
5424     mi->interp_filter = BILINEAR;
5425 
5426     {
5427       const MV dummy_mv = { 0, 0 };
5428       y_sad = vp9_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col,
5429                                             &dummy_mv);
5430       x->sb_use_mv_part = 1;
5431       x->sb_mvcol_part = mi->mv[0].as_mv.col;
5432       x->sb_mvrow_part = mi->mv[0].as_mv.row;
5433     }
5434 
5435     // Pick ref frame for partitioning, bias last frame when y_sad_g and y_sad
5436     // are close if short_circuit_low_temp_var is on.
5437     y_sad_thr = cpi->sf.short_circuit_low_temp_var ? (y_sad * 7) >> 3 : y_sad;
5438     if (y_sad_g < y_sad_thr) {
5439       vp9_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
5440                            &cm->frame_refs[GOLDEN_FRAME - 1].sf);
5441       mi->ref_frame[0] = GOLDEN_FRAME;
5442       mi->mv[0].as_int = 0;
5443     } else {
5444       x->pred_mv[LAST_FRAME] = mi->mv[0].as_mv;
5445     }
5446 
5447     set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
5448     xd->plane[0].dst.buf = x->est_pred;
5449     xd->plane[0].dst.stride = 64;
5450     vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_64X64);
5451   } else {
5452 #if CONFIG_VP9_HIGHBITDEPTH
5453     switch (xd->bd) {
5454       case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break;
5455       case 10:
5456         memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0]));
5457         break;
5458       case 12:
5459         memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0]));
5460         break;
5461     }
5462 #else
5463     memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0]));
5464 #endif  // CONFIG_VP9_HIGHBITDEPTH
5465   }
5466 }
5467 
encode_nonrd_sb_row(VP9_COMP * cpi,ThreadData * td,TileDataEnc * tile_data,int mi_row,TOKENEXTRA ** tp)5468 static void encode_nonrd_sb_row(VP9_COMP *cpi, ThreadData *td,
5469                                 TileDataEnc *tile_data, int mi_row,
5470                                 TOKENEXTRA **tp) {
5471   SPEED_FEATURES *const sf = &cpi->sf;
5472   VP9_COMMON *const cm = &cpi->common;
5473   TileInfo *const tile_info = &tile_data->tile_info;
5474   MACROBLOCK *const x = &td->mb;
5475   MACROBLOCKD *const xd = &x->e_mbd;
5476   const int mi_col_start = tile_info->mi_col_start;
5477   const int mi_col_end = tile_info->mi_col_end;
5478   int mi_col;
5479   const int sb_row = mi_row >> MI_BLOCK_SIZE_LOG2;
5480   const int num_sb_cols =
5481       get_num_cols(tile_data->tile_info, MI_BLOCK_SIZE_LOG2);
5482   int sb_col_in_tile;
5483 
5484   // Initialize the left context for the new SB row
5485   memset(&xd->left_context, 0, sizeof(xd->left_context));
5486   memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
5487 
5488   // Code each SB in the row
5489   for (mi_col = mi_col_start, sb_col_in_tile = 0; mi_col < mi_col_end;
5490        mi_col += MI_BLOCK_SIZE, ++sb_col_in_tile) {
5491     const struct segmentation *const seg = &cm->seg;
5492     RD_COST dummy_rdc;
5493     const int idx_str = cm->mi_stride * mi_row + mi_col;
5494     MODE_INFO **mi = cm->mi_grid_visible + idx_str;
5495     PARTITION_SEARCH_TYPE partition_search_type = sf->partition_search_type;
5496     BLOCK_SIZE bsize = BLOCK_64X64;
5497     int seg_skip = 0;
5498     int i;
5499 
5500     (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
5501                                    sb_col_in_tile);
5502 
5503     if (cpi->use_skin_detection) {
5504       vp9_compute_skin_sb(cpi, BLOCK_16X16, mi_row, mi_col);
5505     }
5506 
5507     x->source_variance = UINT_MAX;
5508     for (i = 0; i < MAX_REF_FRAMES; ++i) {
5509       x->pred_mv[i].row = INT16_MAX;
5510       x->pred_mv[i].col = INT16_MAX;
5511     }
5512     vp9_rd_cost_init(&dummy_rdc);
5513     x->color_sensitivity[0] = 0;
5514     x->color_sensitivity[1] = 0;
5515     x->sb_is_skin = 0;
5516     x->skip_low_source_sad = 0;
5517     x->lowvar_highsumdiff = 0;
5518     x->content_state_sb = 0;
5519     x->zero_temp_sad_source = 0;
5520     x->sb_use_mv_part = 0;
5521     x->sb_mvcol_part = 0;
5522     x->sb_mvrow_part = 0;
5523     x->sb_pickmode_part = 0;
5524     x->arf_frame_usage = 0;
5525     x->lastgolden_frame_usage = 0;
5526 
5527     if (cpi->compute_source_sad_onepass && cpi->sf.use_source_sad) {
5528       int shift = cpi->Source->y_stride * (mi_row << 3) + (mi_col << 3);
5529       int sb_offset2 = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
5530       int64_t source_sad = avg_source_sad(cpi, x, shift, sb_offset2);
5531       if (sf->adapt_partition_source_sad &&
5532           (cpi->oxcf.rc_mode == VPX_VBR && !cpi->rc.is_src_frame_alt_ref &&
5533            source_sad > sf->adapt_partition_thresh &&
5534            (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)))
5535         partition_search_type = REFERENCE_PARTITION;
5536     }
5537 
5538     if (seg->enabled) {
5539       const uint8_t *const map =
5540           seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
5541       int segment_id = get_segment_id(cm, map, BLOCK_64X64, mi_row, mi_col);
5542       seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
5543 
5544       if (cpi->roi.enabled && cpi->roi.skip[BACKGROUND_SEG_SKIP_ID] &&
5545           cpi->rc.frames_since_key > FRAMES_NO_SKIPPING_AFTER_KEY &&
5546           x->content_state_sb > kLowSadLowSumdiff) {
5547         // For ROI with skip, force segment = 0 (no skip) over whole
5548         // superblock to avoid artifacts if temporal change in source_sad is
5549         // not 0.
5550         int xi, yi;
5551         const int bw = num_8x8_blocks_wide_lookup[BLOCK_64X64];
5552         const int bh = num_8x8_blocks_high_lookup[BLOCK_64X64];
5553         const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
5554         const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
5555         const int block_index = mi_row * cm->mi_cols + mi_col;
5556         set_mode_info_offsets(cm, x, xd, mi_row, mi_col);
5557         for (yi = 0; yi < ymis; yi++)
5558           for (xi = 0; xi < xmis; xi++) {
5559             int map_offset = block_index + yi * cm->mi_cols + xi;
5560             cpi->segmentation_map[map_offset] = 0;
5561           }
5562         set_segment_index(cpi, x, mi_row, mi_col, BLOCK_64X64, 0);
5563         seg_skip = 0;
5564       }
5565       if (seg_skip) {
5566         partition_search_type = FIXED_PARTITION;
5567       }
5568     }
5569 
5570     // Set the partition type of the 64X64 block
5571     switch (partition_search_type) {
5572       case VAR_BASED_PARTITION:
5573         // TODO(jingning, marpan): The mode decision and encoding process
5574         // support both intra and inter sub8x8 block coding for RTC mode.
5575         // Tune the thresholds accordingly to use sub8x8 block coding for
5576         // coding performance improvement.
5577         choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
5578         nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5579                             BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5580         break;
5581       case ML_BASED_PARTITION:
5582         get_estimated_pred(cpi, tile_info, x, mi_row, mi_col);
5583         x->max_partition_size = BLOCK_64X64;
5584         x->min_partition_size = BLOCK_8X8;
5585         x->sb_pickmode_part = 1;
5586         nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
5587                              BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
5588                              td->pc_root);
5589         break;
5590       case SOURCE_VAR_BASED_PARTITION:
5591         set_source_var_based_partition(cpi, tile_info, x, mi, mi_row, mi_col);
5592         nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5593                             BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5594         break;
5595       case FIXED_PARTITION:
5596         if (!seg_skip) bsize = sf->always_this_block_size;
5597         set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
5598         nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5599                             BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5600         break;
5601       default:
5602         assert(partition_search_type == REFERENCE_PARTITION);
5603         x->sb_pickmode_part = 1;
5604         set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
5605         // Use nonrd_pick_partition on scene-cut for VBR mode.
5606         // nonrd_pick_partition does not support 4x4 partition, so avoid it
5607         // on key frame for now.
5608         if ((cpi->oxcf.rc_mode == VPX_VBR && cpi->rc.high_source_sad &&
5609              cpi->oxcf.speed < 6 && !frame_is_intra_only(cm) &&
5610              (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame))) {
5611           // Use lower max_partition_size for low resoultions.
5612           if (cm->width <= 352 && cm->height <= 288)
5613             x->max_partition_size = BLOCK_32X32;
5614           else
5615             x->max_partition_size = BLOCK_64X64;
5616           x->min_partition_size = BLOCK_8X8;
5617           nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
5618                                BLOCK_64X64, &dummy_rdc, 1, INT64_MAX,
5619                                td->pc_root);
5620         } else {
5621           choose_partitioning(cpi, tile_info, x, mi_row, mi_col);
5622           // TODO(marpan): Seems like nonrd_select_partition does not support
5623           // 4x4 partition. Since 4x4 is used on key frame, use this switch
5624           // for now.
5625           if (frame_is_intra_only(cm))
5626             nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5627                                 BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5628           else
5629             nonrd_select_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col,
5630                                    BLOCK_64X64, 1, &dummy_rdc, td->pc_root);
5631         }
5632 
5633         break;
5634     }
5635 
5636     // Update ref_frame usage for inter frame if this group is ARF group.
5637     if (!cpi->rc.is_src_frame_alt_ref && !cpi->refresh_golden_frame &&
5638         !cpi->refresh_alt_ref_frame && cpi->rc.alt_ref_gf_group &&
5639         cpi->sf.use_altref_onepass) {
5640       int sboffset = ((cm->mi_cols + 7) >> 3) * (mi_row >> 3) + (mi_col >> 3);
5641       if (cpi->count_arf_frame_usage != NULL)
5642         cpi->count_arf_frame_usage[sboffset] = x->arf_frame_usage;
5643       if (cpi->count_lastgolden_frame_usage != NULL)
5644         cpi->count_lastgolden_frame_usage[sboffset] = x->lastgolden_frame_usage;
5645     }
5646 
5647     (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
5648                                     sb_col_in_tile, num_sb_cols);
5649   }
5650 }
5651 // end RTC play code
5652 
variance(const diff * const d)5653 static INLINE uint32_t variance(const diff *const d) {
5654   return d->sse - (uint32_t)(((int64_t)d->sum * d->sum) >> 8);
5655 }
5656 
5657 #if CONFIG_VP9_HIGHBITDEPTH
variance_highbd(diff * const d)5658 static INLINE uint32_t variance_highbd(diff *const d) {
5659   const int64_t var = (int64_t)d->sse - (((int64_t)d->sum * d->sum) >> 8);
5660   return (var >= 0) ? (uint32_t)var : 0;
5661 }
5662 #endif  // CONFIG_VP9_HIGHBITDEPTH
5663 
set_var_thresh_from_histogram(VP9_COMP * cpi)5664 static int set_var_thresh_from_histogram(VP9_COMP *cpi) {
5665   const SPEED_FEATURES *const sf = &cpi->sf;
5666   const VP9_COMMON *const cm = &cpi->common;
5667 
5668   const uint8_t *src = cpi->Source->y_buffer;
5669   const uint8_t *last_src = cpi->Last_Source->y_buffer;
5670   const int src_stride = cpi->Source->y_stride;
5671   const int last_stride = cpi->Last_Source->y_stride;
5672 
5673   // Pick cutoff threshold
5674   const int cutoff = (VPXMIN(cm->width, cm->height) >= 720)
5675                          ? (cm->MBs * VAR_HIST_LARGE_CUT_OFF / 100)
5676                          : (cm->MBs * VAR_HIST_SMALL_CUT_OFF / 100);
5677   DECLARE_ALIGNED(16, int, hist[VAR_HIST_BINS]);
5678   diff *var16 = cpi->source_diff_var;
5679 
5680   int sum = 0;
5681   int i, j;
5682 
5683   memset(hist, 0, VAR_HIST_BINS * sizeof(hist[0]));
5684 
5685   for (i = 0; i < cm->mb_rows; i++) {
5686     for (j = 0; j < cm->mb_cols; j++) {
5687 #if CONFIG_VP9_HIGHBITDEPTH
5688       if (cm->use_highbitdepth) {
5689         switch (cm->bit_depth) {
5690           case VPX_BITS_8:
5691             vpx_highbd_8_get16x16var(src, src_stride, last_src, last_stride,
5692                                      &var16->sse, &var16->sum);
5693             var16->var = variance(var16);
5694             break;
5695           case VPX_BITS_10:
5696             vpx_highbd_10_get16x16var(src, src_stride, last_src, last_stride,
5697                                       &var16->sse, &var16->sum);
5698             var16->var = variance_highbd(var16);
5699             break;
5700           default:
5701             assert(cm->bit_depth == VPX_BITS_12);
5702             vpx_highbd_12_get16x16var(src, src_stride, last_src, last_stride,
5703                                       &var16->sse, &var16->sum);
5704             var16->var = variance_highbd(var16);
5705             break;
5706         }
5707       } else {
5708         vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
5709                         &var16->sum);
5710         var16->var = variance(var16);
5711       }
5712 #else
5713       vpx_get16x16var(src, src_stride, last_src, last_stride, &var16->sse,
5714                       &var16->sum);
5715       var16->var = variance(var16);
5716 #endif  // CONFIG_VP9_HIGHBITDEPTH
5717 
5718       if (var16->var >= VAR_HIST_MAX_BG_VAR)
5719         hist[VAR_HIST_BINS - 1]++;
5720       else
5721         hist[var16->var / VAR_HIST_FACTOR]++;
5722 
5723       src += 16;
5724       last_src += 16;
5725       var16++;
5726     }
5727 
5728     src = src - cm->mb_cols * 16 + 16 * src_stride;
5729     last_src = last_src - cm->mb_cols * 16 + 16 * last_stride;
5730   }
5731 
5732   cpi->source_var_thresh = 0;
5733 
5734   if (hist[VAR_HIST_BINS - 1] < cutoff) {
5735     for (i = 0; i < VAR_HIST_BINS - 1; i++) {
5736       sum += hist[i];
5737 
5738       if (sum > cutoff) {
5739         cpi->source_var_thresh = (i + 1) * VAR_HIST_FACTOR;
5740         return 0;
5741       }
5742     }
5743   }
5744 
5745   return sf->search_type_check_frequency;
5746 }
5747 
source_var_based_partition_search_method(VP9_COMP * cpi)5748 static void source_var_based_partition_search_method(VP9_COMP *cpi) {
5749   VP9_COMMON *const cm = &cpi->common;
5750   SPEED_FEATURES *const sf = &cpi->sf;
5751 
5752   if (cm->frame_type == KEY_FRAME) {
5753     // For key frame, use SEARCH_PARTITION.
5754     sf->partition_search_type = SEARCH_PARTITION;
5755   } else if (cm->intra_only) {
5756     sf->partition_search_type = FIXED_PARTITION;
5757   } else {
5758     if (cm->last_width != cm->width || cm->last_height != cm->height) {
5759       if (cpi->source_diff_var) vpx_free(cpi->source_diff_var);
5760 
5761       CHECK_MEM_ERROR(cm, cpi->source_diff_var,
5762                       vpx_calloc(cm->MBs, sizeof(diff)));
5763     }
5764 
5765     if (!cpi->frames_till_next_var_check)
5766       cpi->frames_till_next_var_check = set_var_thresh_from_histogram(cpi);
5767 
5768     if (cpi->frames_till_next_var_check > 0) {
5769       sf->partition_search_type = FIXED_PARTITION;
5770       cpi->frames_till_next_var_check--;
5771     }
5772   }
5773 }
5774 
get_skip_encode_frame(const VP9_COMMON * cm,ThreadData * const td)5775 static int get_skip_encode_frame(const VP9_COMMON *cm, ThreadData *const td) {
5776   unsigned int intra_count = 0, inter_count = 0;
5777   int j;
5778 
5779   for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
5780     intra_count += td->counts->intra_inter[j][0];
5781     inter_count += td->counts->intra_inter[j][1];
5782   }
5783 
5784   return (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME &&
5785          cm->show_frame;
5786 }
5787 
vp9_init_tile_data(VP9_COMP * cpi)5788 void vp9_init_tile_data(VP9_COMP *cpi) {
5789   VP9_COMMON *const cm = &cpi->common;
5790   const int tile_cols = 1 << cm->log2_tile_cols;
5791   const int tile_rows = 1 << cm->log2_tile_rows;
5792   int tile_col, tile_row;
5793   TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
5794   TOKENLIST *tplist = cpi->tplist[0][0];
5795   int tile_tok = 0;
5796   int tplist_count = 0;
5797 
5798   if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
5799     if (cpi->tile_data != NULL) vpx_free(cpi->tile_data);
5800     CHECK_MEM_ERROR(
5801         cm, cpi->tile_data,
5802         vpx_malloc(tile_cols * tile_rows * sizeof(*cpi->tile_data)));
5803     cpi->allocated_tiles = tile_cols * tile_rows;
5804 
5805     for (tile_row = 0; tile_row < tile_rows; ++tile_row)
5806       for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
5807         TileDataEnc *tile_data =
5808             &cpi->tile_data[tile_row * tile_cols + tile_col];
5809         int i, j;
5810         for (i = 0; i < BLOCK_SIZES; ++i) {
5811           for (j = 0; j < MAX_MODES; ++j) {
5812             tile_data->thresh_freq_fact[i][j] = RD_THRESH_INIT_FACT;
5813 #if CONFIG_RATE_CTRL
5814             if (cpi->oxcf.use_simple_encode_api) {
5815               tile_data->thresh_freq_fact_prev[i][j] = RD_THRESH_INIT_FACT;
5816             }
5817 #endif  // CONFIG_RATE_CTRL
5818 #if CONFIG_CONSISTENT_RECODE
5819             tile_data->thresh_freq_fact_prev[i][j] = RD_THRESH_INIT_FACT;
5820 #endif  // CONFIG_CONSISTENT_RECODE
5821             tile_data->mode_map[i][j] = j;
5822           }
5823         }
5824 #if CONFIG_MULTITHREAD
5825         tile_data->row_base_thresh_freq_fact = NULL;
5826 #endif
5827       }
5828   }
5829 
5830   for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
5831     for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
5832       TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5833       TileInfo *tile_info = &this_tile->tile_info;
5834       if (cpi->sf.adaptive_rd_thresh_row_mt &&
5835           this_tile->row_base_thresh_freq_fact == NULL)
5836         vp9_row_mt_alloc_rd_thresh(cpi, this_tile);
5837       vp9_tile_init(tile_info, cm, tile_row, tile_col);
5838 
5839       cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
5840       pre_tok = cpi->tile_tok[tile_row][tile_col];
5841       tile_tok = allocated_tokens(*tile_info);
5842 
5843       cpi->tplist[tile_row][tile_col] = tplist + tplist_count;
5844       tplist = cpi->tplist[tile_row][tile_col];
5845       tplist_count = get_num_vert_units(*tile_info, MI_BLOCK_SIZE_LOG2);
5846     }
5847   }
5848 }
5849 
vp9_encode_sb_row(VP9_COMP * cpi,ThreadData * td,int tile_row,int tile_col,int mi_row)5850 void vp9_encode_sb_row(VP9_COMP *cpi, ThreadData *td, int tile_row,
5851                        int tile_col, int mi_row) {
5852   VP9_COMMON *const cm = &cpi->common;
5853   const int tile_cols = 1 << cm->log2_tile_cols;
5854   TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5855   const TileInfo *const tile_info = &this_tile->tile_info;
5856   TOKENEXTRA *tok = NULL;
5857   int tile_sb_row;
5858   int tile_mb_cols = (tile_info->mi_col_end - tile_info->mi_col_start + 1) >> 1;
5859 
5860   tile_sb_row = mi_cols_aligned_to_sb(mi_row - tile_info->mi_row_start) >>
5861                 MI_BLOCK_SIZE_LOG2;
5862   get_start_tok(cpi, tile_row, tile_col, mi_row, &tok);
5863   cpi->tplist[tile_row][tile_col][tile_sb_row].start = tok;
5864 
5865 #if CONFIG_REALTIME_ONLY
5866   assert(cpi->sf.use_nonrd_pick_mode);
5867   encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
5868 #else
5869   if (cpi->sf.use_nonrd_pick_mode)
5870     encode_nonrd_sb_row(cpi, td, this_tile, mi_row, &tok);
5871   else
5872     encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
5873 #endif
5874 
5875   cpi->tplist[tile_row][tile_col][tile_sb_row].stop = tok;
5876   cpi->tplist[tile_row][tile_col][tile_sb_row].count =
5877       (unsigned int)(cpi->tplist[tile_row][tile_col][tile_sb_row].stop -
5878                      cpi->tplist[tile_row][tile_col][tile_sb_row].start);
5879   assert(tok - cpi->tplist[tile_row][tile_col][tile_sb_row].start <=
5880          get_token_alloc(MI_BLOCK_SIZE >> 1, tile_mb_cols));
5881 
5882   (void)tile_mb_cols;
5883 }
5884 
vp9_encode_tile(VP9_COMP * cpi,ThreadData * td,int tile_row,int tile_col)5885 void vp9_encode_tile(VP9_COMP *cpi, ThreadData *td, int tile_row,
5886                      int tile_col) {
5887   VP9_COMMON *const cm = &cpi->common;
5888   const int tile_cols = 1 << cm->log2_tile_cols;
5889   TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
5890   const TileInfo *const tile_info = &this_tile->tile_info;
5891   const int mi_row_start = tile_info->mi_row_start;
5892   const int mi_row_end = tile_info->mi_row_end;
5893   int mi_row;
5894 
5895   for (mi_row = mi_row_start; mi_row < mi_row_end; mi_row += MI_BLOCK_SIZE)
5896     vp9_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
5897 }
5898 
encode_tiles(VP9_COMP * cpi)5899 static void encode_tiles(VP9_COMP *cpi) {
5900   VP9_COMMON *const cm = &cpi->common;
5901   const int tile_cols = 1 << cm->log2_tile_cols;
5902   const int tile_rows = 1 << cm->log2_tile_rows;
5903   int tile_col, tile_row;
5904 
5905   vp9_init_tile_data(cpi);
5906 
5907   for (tile_row = 0; tile_row < tile_rows; ++tile_row)
5908     for (tile_col = 0; tile_col < tile_cols; ++tile_col)
5909       vp9_encode_tile(cpi, &cpi->td, tile_row, tile_col);
5910 }
5911 
compare_kmeans_data(const void * a,const void * b)5912 static int compare_kmeans_data(const void *a, const void *b) {
5913   if (((const KMEANS_DATA *)a)->value > ((const KMEANS_DATA *)b)->value) {
5914     return 1;
5915   } else if (((const KMEANS_DATA *)a)->value <
5916              ((const KMEANS_DATA *)b)->value) {
5917     return -1;
5918   } else {
5919     return 0;
5920   }
5921 }
5922 
compute_boundary_ls(const double * ctr_ls,int k,double * boundary_ls)5923 static void compute_boundary_ls(const double *ctr_ls, int k,
5924                                 double *boundary_ls) {
5925   // boundary_ls[j] is the upper bound of data centered at ctr_ls[j]
5926   int j;
5927   for (j = 0; j < k - 1; ++j) {
5928     boundary_ls[j] = (ctr_ls[j] + ctr_ls[j + 1]) / 2.;
5929   }
5930   boundary_ls[k - 1] = DBL_MAX;
5931 }
5932 
vp9_get_group_idx(double value,double * boundary_ls,int k)5933 int vp9_get_group_idx(double value, double *boundary_ls, int k) {
5934   int group_idx = 0;
5935   while (value >= boundary_ls[group_idx]) {
5936     ++group_idx;
5937     if (group_idx == k - 1) {
5938       break;
5939     }
5940   }
5941   return group_idx;
5942 }
5943 
vp9_kmeans(double * ctr_ls,double * boundary_ls,int * count_ls,int k,KMEANS_DATA * arr,int size)5944 void vp9_kmeans(double *ctr_ls, double *boundary_ls, int *count_ls, int k,
5945                 KMEANS_DATA *arr, int size) {
5946   int i, j;
5947   int itr;
5948   int group_idx;
5949   double sum[MAX_KMEANS_GROUPS];
5950   int count[MAX_KMEANS_GROUPS];
5951 
5952   vpx_clear_system_state();
5953 
5954   assert(k >= 2 && k <= MAX_KMEANS_GROUPS);
5955 
5956   qsort(arr, size, sizeof(*arr), compare_kmeans_data);
5957 
5958   // initialize the center points
5959   for (j = 0; j < k; ++j) {
5960     ctr_ls[j] = arr[(size * (2 * j + 1)) / (2 * k)].value;
5961   }
5962 
5963   for (itr = 0; itr < 10; ++itr) {
5964     compute_boundary_ls(ctr_ls, k, boundary_ls);
5965     for (i = 0; i < MAX_KMEANS_GROUPS; ++i) {
5966       sum[i] = 0;
5967       count[i] = 0;
5968     }
5969 
5970     // Both the data and centers are sorted in ascending order.
5971     // As each data point is processed in order, its corresponding group index
5972     // can only increase. So we only need to reset the group index to zero here.
5973     group_idx = 0;
5974     for (i = 0; i < size; ++i) {
5975       while (arr[i].value >= boundary_ls[group_idx]) {
5976         // place samples into clusters
5977         ++group_idx;
5978         if (group_idx == k - 1) {
5979           break;
5980         }
5981       }
5982       sum[group_idx] += arr[i].value;
5983       ++count[group_idx];
5984     }
5985 
5986     for (group_idx = 0; group_idx < k; ++group_idx) {
5987       if (count[group_idx] > 0)
5988         ctr_ls[group_idx] = sum[group_idx] / count[group_idx];
5989 
5990       sum[group_idx] = 0;
5991       count[group_idx] = 0;
5992     }
5993   }
5994 
5995   // compute group_idx, boundary_ls and count_ls
5996   for (j = 0; j < k; ++j) {
5997     count_ls[j] = 0;
5998   }
5999   compute_boundary_ls(ctr_ls, k, boundary_ls);
6000   group_idx = 0;
6001   for (i = 0; i < size; ++i) {
6002     while (arr[i].value >= boundary_ls[group_idx]) {
6003       ++group_idx;
6004       if (group_idx == k - 1) {
6005         break;
6006       }
6007     }
6008     arr[i].group_idx = group_idx;
6009     ++count_ls[group_idx];
6010   }
6011 }
6012 
encode_frame_internal(VP9_COMP * cpi)6013 static void encode_frame_internal(VP9_COMP *cpi) {
6014   SPEED_FEATURES *const sf = &cpi->sf;
6015   ThreadData *const td = &cpi->td;
6016   MACROBLOCK *const x = &td->mb;
6017   VP9_COMMON *const cm = &cpi->common;
6018   MACROBLOCKD *const xd = &x->e_mbd;
6019   const int gf_group_index = cpi->twopass.gf_group.index;
6020 
6021   xd->mi = cm->mi_grid_visible;
6022   xd->mi[0] = cm->mi;
6023   vp9_zero(*td->counts);
6024   vp9_zero(cpi->td.rd_counts);
6025 
6026   xd->lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 &&
6027                  cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
6028 
6029 #if CONFIG_VP9_HIGHBITDEPTH
6030   if (cm->use_highbitdepth)
6031     x->fwd_txfm4x4 = xd->lossless ? vp9_highbd_fwht4x4 : vpx_highbd_fdct4x4;
6032   else
6033     x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
6034   x->highbd_inv_txfm_add =
6035       xd->lossless ? vp9_highbd_iwht4x4_add : vp9_highbd_idct4x4_add;
6036 #else
6037   x->fwd_txfm4x4 = xd->lossless ? vp9_fwht4x4 : vpx_fdct4x4;
6038 #endif  // CONFIG_VP9_HIGHBITDEPTH
6039   x->inv_txfm_add = xd->lossless ? vp9_iwht4x4_add : vp9_idct4x4_add;
6040 #if CONFIG_CONSISTENT_RECODE
6041   x->optimize = sf->optimize_coefficients == 1 && cpi->oxcf.pass != 1;
6042 #endif
6043   if (xd->lossless) x->optimize = 0;
6044   x->sharpness = cpi->oxcf.sharpness;
6045   x->adjust_rdmult_by_segment = (cpi->oxcf.aq_mode == VARIANCE_AQ);
6046 
6047   cm->tx_mode = select_tx_mode(cpi, xd);
6048 
6049   vp9_frame_init_quantizer(cpi);
6050 
6051   vp9_initialize_rd_consts(cpi);
6052   vp9_initialize_me_consts(cpi, x, cm->base_qindex);
6053   init_encode_frame_mb_context(cpi);
6054   cm->use_prev_frame_mvs =
6055       !cm->error_resilient_mode && cm->width == cm->last_width &&
6056       cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
6057   // Special case: set prev_mi to NULL when the previous mode info
6058   // context cannot be used.
6059   cm->prev_mi =
6060       cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
6061 
6062   x->quant_fp = cpi->sf.use_quant_fp;
6063   vp9_zero(x->skip_txfm);
6064   if (sf->use_nonrd_pick_mode) {
6065     // Initialize internal buffer pointers for rtc coding, where non-RD
6066     // mode decision is used and hence no buffer pointer swap needed.
6067     int i;
6068     struct macroblock_plane *const p = x->plane;
6069     struct macroblockd_plane *const pd = xd->plane;
6070     PICK_MODE_CONTEXT *ctx = &cpi->td.pc_root->none;
6071 
6072     for (i = 0; i < MAX_MB_PLANE; ++i) {
6073       p[i].coeff = ctx->coeff_pbuf[i][0];
6074       p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
6075       pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
6076       p[i].eobs = ctx->eobs_pbuf[i][0];
6077     }
6078     vp9_zero(x->zcoeff_blk);
6079 
6080     if (cm->frame_type != KEY_FRAME && cpi->rc.frames_since_golden == 0 &&
6081         !(cpi->oxcf.lag_in_frames > 0 && cpi->oxcf.rc_mode == VPX_VBR) &&
6082         !cpi->use_svc)
6083       cpi->ref_frame_flags &= (~VP9_GOLD_FLAG);
6084 
6085     if (sf->partition_search_type == SOURCE_VAR_BASED_PARTITION)
6086       source_var_based_partition_search_method(cpi);
6087   } else if (gf_group_index && gf_group_index < MAX_ARF_GOP_SIZE &&
6088              cpi->sf.enable_tpl_model) {
6089     TplDepFrame *tpl_frame = &cpi->tpl_stats[cpi->twopass.gf_group.index];
6090     TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
6091 
6092     int tpl_stride = tpl_frame->stride;
6093     int64_t intra_cost_base = 0;
6094     int64_t mc_dep_cost_base = 0;
6095     int row, col;
6096 
6097     for (row = 0; row < cm->mi_rows && tpl_frame->is_valid; ++row) {
6098       for (col = 0; col < cm->mi_cols; ++col) {
6099         TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
6100         intra_cost_base += this_stats->intra_cost;
6101         mc_dep_cost_base += this_stats->mc_dep_cost;
6102       }
6103     }
6104 
6105     vpx_clear_system_state();
6106 
6107     if (tpl_frame->is_valid)
6108       cpi->rd.r0 = (double)intra_cost_base / mc_dep_cost_base;
6109   }
6110 
6111   // Frame segmentation
6112   if (cpi->oxcf.aq_mode == PERCEPTUAL_AQ) build_kmeans_segmentation(cpi);
6113 
6114   {
6115     struct vpx_usec_timer emr_timer;
6116     vpx_usec_timer_start(&emr_timer);
6117 
6118     if (!cpi->row_mt) {
6119       cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
6120       cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
6121       // If allowed, encoding tiles in parallel with one thread handling one
6122       // tile when row based multi-threading is disabled.
6123       if (VPXMIN(cpi->oxcf.max_threads, 1 << cm->log2_tile_cols) > 1)
6124         vp9_encode_tiles_mt(cpi);
6125       else
6126         encode_tiles(cpi);
6127     } else {
6128       cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
6129       cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
6130       vp9_encode_tiles_row_mt(cpi);
6131     }
6132 
6133     vpx_usec_timer_mark(&emr_timer);
6134     cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
6135   }
6136 
6137   sf->skip_encode_frame =
6138       sf->skip_encode_sb ? get_skip_encode_frame(cm, td) : 0;
6139 
6140 #if 0
6141   // Keep record of the total distortion this time around for future use
6142   cpi->last_frame_distortion = cpi->frame_distortion;
6143 #endif
6144 }
6145 
get_interp_filter(const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS],int is_alt_ref)6146 static INTERP_FILTER get_interp_filter(
6147     const int64_t threshes[SWITCHABLE_FILTER_CONTEXTS], int is_alt_ref) {
6148   if (!is_alt_ref && threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP] &&
6149       threshes[EIGHTTAP_SMOOTH] > threshes[EIGHTTAP_SHARP] &&
6150       threshes[EIGHTTAP_SMOOTH] > threshes[SWITCHABLE - 1]) {
6151     return EIGHTTAP_SMOOTH;
6152   } else if (threshes[EIGHTTAP_SHARP] > threshes[EIGHTTAP] &&
6153              threshes[EIGHTTAP_SHARP] > threshes[SWITCHABLE - 1]) {
6154     return EIGHTTAP_SHARP;
6155   } else if (threshes[EIGHTTAP] > threshes[SWITCHABLE - 1]) {
6156     return EIGHTTAP;
6157   } else {
6158     return SWITCHABLE;
6159   }
6160 }
6161 
compute_frame_aq_offset(struct VP9_COMP * cpi)6162 static int compute_frame_aq_offset(struct VP9_COMP *cpi) {
6163   VP9_COMMON *const cm = &cpi->common;
6164   MODE_INFO **mi_8x8_ptr = cm->mi_grid_visible;
6165   struct segmentation *const seg = &cm->seg;
6166 
6167   int mi_row, mi_col;
6168   int sum_delta = 0;
6169   int map_index = 0;
6170   int qdelta_index;
6171   int segment_id;
6172 
6173   for (mi_row = 0; mi_row < cm->mi_rows; mi_row++) {
6174     MODE_INFO **mi_8x8 = mi_8x8_ptr;
6175     for (mi_col = 0; mi_col < cm->mi_cols; mi_col++, mi_8x8++) {
6176       segment_id = mi_8x8[0]->segment_id;
6177       qdelta_index = get_segdata(seg, segment_id, SEG_LVL_ALT_Q);
6178       sum_delta += qdelta_index;
6179       map_index++;
6180     }
6181     mi_8x8_ptr += cm->mi_stride;
6182   }
6183 
6184   return sum_delta / (cm->mi_rows * cm->mi_cols);
6185 }
6186 
6187 #if CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL
restore_encode_params(VP9_COMP * cpi)6188 static void restore_encode_params(VP9_COMP *cpi) {
6189   VP9_COMMON *const cm = &cpi->common;
6190   const int tile_cols = 1 << cm->log2_tile_cols;
6191   const int tile_rows = 1 << cm->log2_tile_rows;
6192   int tile_col, tile_row;
6193   int i, j;
6194   RD_OPT *rd_opt = &cpi->rd;
6195   for (i = 0; i < MAX_REF_FRAMES; i++) {
6196     for (j = 0; j < REFERENCE_MODES; j++)
6197       rd_opt->prediction_type_threshes[i][j] =
6198           rd_opt->prediction_type_threshes_prev[i][j];
6199 
6200     for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; j++)
6201       rd_opt->filter_threshes[i][j] = rd_opt->filter_threshes_prev[i][j];
6202   }
6203 
6204   if (cpi->tile_data != NULL) {
6205     for (tile_row = 0; tile_row < tile_rows; ++tile_row)
6206       for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
6207         TileDataEnc *tile_data =
6208             &cpi->tile_data[tile_row * tile_cols + tile_col];
6209         for (i = 0; i < BLOCK_SIZES; ++i) {
6210           for (j = 0; j < MAX_MODES; ++j) {
6211             tile_data->thresh_freq_fact[i][j] =
6212                 tile_data->thresh_freq_fact_prev[i][j];
6213           }
6214         }
6215       }
6216   }
6217 
6218   cm->interp_filter = cpi->sf.default_interp_filter;
6219 }
6220 #endif  // CONFIG_CONSISTENT_RECODE || CONFIG_RATE_CTRL
6221 
vp9_encode_frame(VP9_COMP * cpi)6222 void vp9_encode_frame(VP9_COMP *cpi) {
6223   VP9_COMMON *const cm = &cpi->common;
6224 
6225 #if CONFIG_RATE_CTRL
6226   if (cpi->oxcf.use_simple_encode_api) {
6227     restore_encode_params(cpi);
6228   }
6229 #endif  // CONFIG_RATE_CTRL
6230 #if CONFIG_CONSISTENT_RECODE
6231   restore_encode_params(cpi);
6232 #endif
6233 
6234 #if CONFIG_MISMATCH_DEBUG
6235   mismatch_reset_frame(MAX_MB_PLANE);
6236 #endif
6237 
6238   // In the longer term the encoder should be generalized to match the
6239   // decoder such that we allow compound where one of the 3 buffers has a
6240   // different sign bias and that buffer is then the fixed ref. However, this
6241   // requires further work in the rd loop. For now the only supported encoder
6242   // side behavior is where the ALT ref buffer has opposite sign bias to
6243   // the other two.
6244   if (!frame_is_intra_only(cm)) {
6245     if (vp9_compound_reference_allowed(cm)) {
6246       cpi->allow_comp_inter_inter = 1;
6247       vp9_setup_compound_reference_mode(cm);
6248     } else {
6249       cpi->allow_comp_inter_inter = 0;
6250     }
6251   }
6252 
6253   if (cpi->sf.frame_parameter_update) {
6254     int i;
6255     RD_OPT *const rd_opt = &cpi->rd;
6256     FRAME_COUNTS *counts = cpi->td.counts;
6257     RD_COUNTS *const rdc = &cpi->td.rd_counts;
6258 
6259     // This code does a single RD pass over the whole frame assuming
6260     // either compound, single or hybrid prediction as per whatever has
6261     // worked best for that type of frame in the past.
6262     // It also predicts whether another coding mode would have worked
6263     // better than this coding mode. If that is the case, it remembers
6264     // that for subsequent frames.
6265     // It also does the same analysis for transform size selection.
6266     const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
6267     int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
6268     int64_t *const filter_thrs = rd_opt->filter_threshes[frame_type];
6269     const int is_alt_ref = frame_type == ALTREF_FRAME;
6270 
6271     /* prediction (compound, single or hybrid) mode selection */
6272     if (is_alt_ref || !cpi->allow_comp_inter_inter)
6273       cm->reference_mode = SINGLE_REFERENCE;
6274     else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
6275              mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
6276              check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
6277       cm->reference_mode = COMPOUND_REFERENCE;
6278     else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
6279       cm->reference_mode = SINGLE_REFERENCE;
6280     else
6281       cm->reference_mode = REFERENCE_MODE_SELECT;
6282 
6283     if (cm->interp_filter == SWITCHABLE)
6284       cm->interp_filter = get_interp_filter(filter_thrs, is_alt_ref);
6285 
6286     encode_frame_internal(cpi);
6287 
6288     for (i = 0; i < REFERENCE_MODES; ++i)
6289       mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
6290 
6291     for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i)
6292       filter_thrs[i] = (filter_thrs[i] + rdc->filter_diff[i] / cm->MBs) / 2;
6293 
6294     if (cm->reference_mode == REFERENCE_MODE_SELECT) {
6295       int single_count_zero = 0;
6296       int comp_count_zero = 0;
6297 
6298       for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
6299         single_count_zero += counts->comp_inter[i][0];
6300         comp_count_zero += counts->comp_inter[i][1];
6301       }
6302 
6303       if (comp_count_zero == 0) {
6304         cm->reference_mode = SINGLE_REFERENCE;
6305         vp9_zero(counts->comp_inter);
6306       } else if (single_count_zero == 0) {
6307         cm->reference_mode = COMPOUND_REFERENCE;
6308         vp9_zero(counts->comp_inter);
6309       }
6310     }
6311 
6312     if (cm->tx_mode == TX_MODE_SELECT) {
6313       int count4x4 = 0;
6314       int count8x8_lp = 0, count8x8_8x8p = 0;
6315       int count16x16_16x16p = 0, count16x16_lp = 0;
6316       int count32x32 = 0;
6317 
6318       for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
6319         count4x4 += counts->tx.p32x32[i][TX_4X4];
6320         count4x4 += counts->tx.p16x16[i][TX_4X4];
6321         count4x4 += counts->tx.p8x8[i][TX_4X4];
6322 
6323         count8x8_lp += counts->tx.p32x32[i][TX_8X8];
6324         count8x8_lp += counts->tx.p16x16[i][TX_8X8];
6325         count8x8_8x8p += counts->tx.p8x8[i][TX_8X8];
6326 
6327         count16x16_16x16p += counts->tx.p16x16[i][TX_16X16];
6328         count16x16_lp += counts->tx.p32x32[i][TX_16X16];
6329         count32x32 += counts->tx.p32x32[i][TX_32X32];
6330       }
6331       if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
6332           count32x32 == 0) {
6333         cm->tx_mode = ALLOW_8X8;
6334         reset_skip_tx_size(cm, TX_8X8);
6335       } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
6336                  count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
6337         cm->tx_mode = ONLY_4X4;
6338         reset_skip_tx_size(cm, TX_4X4);
6339       } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
6340         cm->tx_mode = ALLOW_32X32;
6341       } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
6342         cm->tx_mode = ALLOW_16X16;
6343         reset_skip_tx_size(cm, TX_16X16);
6344       }
6345     }
6346   } else {
6347     FRAME_COUNTS *counts = cpi->td.counts;
6348     cm->reference_mode = SINGLE_REFERENCE;
6349     if (cpi->allow_comp_inter_inter && cpi->sf.use_compound_nonrd_pickmode &&
6350         cpi->rc.alt_ref_gf_group && !cpi->rc.is_src_frame_alt_ref &&
6351         cm->frame_type != KEY_FRAME)
6352       cm->reference_mode = REFERENCE_MODE_SELECT;
6353 
6354     encode_frame_internal(cpi);
6355 
6356     if (cm->reference_mode == REFERENCE_MODE_SELECT) {
6357       int single_count_zero = 0;
6358       int comp_count_zero = 0;
6359       int i;
6360       for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
6361         single_count_zero += counts->comp_inter[i][0];
6362         comp_count_zero += counts->comp_inter[i][1];
6363       }
6364       if (comp_count_zero == 0) {
6365         cm->reference_mode = SINGLE_REFERENCE;
6366         vp9_zero(counts->comp_inter);
6367       } else if (single_count_zero == 0) {
6368         cm->reference_mode = COMPOUND_REFERENCE;
6369         vp9_zero(counts->comp_inter);
6370       }
6371     }
6372   }
6373 
6374   // If segmented AQ is enabled compute the average AQ weighting.
6375   if (cm->seg.enabled && (cpi->oxcf.aq_mode != NO_AQ) &&
6376       (cm->seg.update_map || cm->seg.update_data)) {
6377     cm->seg.aq_av_offset = compute_frame_aq_offset(cpi);
6378   }
6379 }
6380 
sum_intra_stats(FRAME_COUNTS * counts,const MODE_INFO * mi)6381 static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
6382   const PREDICTION_MODE y_mode = mi->mode;
6383   const PREDICTION_MODE uv_mode = mi->uv_mode;
6384   const BLOCK_SIZE bsize = mi->sb_type;
6385 
6386   if (bsize < BLOCK_8X8) {
6387     int idx, idy;
6388     const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
6389     const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
6390     for (idy = 0; idy < 2; idy += num_4x4_h)
6391       for (idx = 0; idx < 2; idx += num_4x4_w)
6392         ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
6393   } else {
6394     ++counts->y_mode[size_group_lookup[bsize]][y_mode];
6395   }
6396 
6397   ++counts->uv_mode[y_mode][uv_mode];
6398 }
6399 
update_zeromv_cnt(VP9_COMP * const cpi,const MODE_INFO * const mi,int mi_row,int mi_col,BLOCK_SIZE bsize)6400 static void update_zeromv_cnt(VP9_COMP *const cpi, const MODE_INFO *const mi,
6401                               int mi_row, int mi_col, BLOCK_SIZE bsize) {
6402   const VP9_COMMON *const cm = &cpi->common;
6403   MV mv = mi->mv[0].as_mv;
6404   const int bw = num_8x8_blocks_wide_lookup[bsize];
6405   const int bh = num_8x8_blocks_high_lookup[bsize];
6406   const int xmis = VPXMIN(cm->mi_cols - mi_col, bw);
6407   const int ymis = VPXMIN(cm->mi_rows - mi_row, bh);
6408   const int block_index = mi_row * cm->mi_cols + mi_col;
6409   int x, y;
6410   for (y = 0; y < ymis; y++)
6411     for (x = 0; x < xmis; x++) {
6412       int map_offset = block_index + y * cm->mi_cols + x;
6413       if (mi->ref_frame[0] == LAST_FRAME && is_inter_block(mi) &&
6414           mi->segment_id <= CR_SEGMENT_ID_BOOST2) {
6415         if (abs(mv.row) < 8 && abs(mv.col) < 8) {
6416           if (cpi->consec_zero_mv[map_offset] < 255)
6417             cpi->consec_zero_mv[map_offset]++;
6418         } else {
6419           cpi->consec_zero_mv[map_offset] = 0;
6420         }
6421       }
6422     }
6423 }
6424 
encode_superblock(VP9_COMP * cpi,ThreadData * td,TOKENEXTRA ** t,int output_enabled,int mi_row,int mi_col,BLOCK_SIZE bsize,PICK_MODE_CONTEXT * ctx)6425 static void encode_superblock(VP9_COMP *cpi, ThreadData *td, TOKENEXTRA **t,
6426                               int output_enabled, int mi_row, int mi_col,
6427                               BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) {
6428   VP9_COMMON *const cm = &cpi->common;
6429   MACROBLOCK *const x = &td->mb;
6430   MACROBLOCKD *const xd = &x->e_mbd;
6431   MODE_INFO *mi = xd->mi[0];
6432   const int seg_skip =
6433       segfeature_active(&cm->seg, mi->segment_id, SEG_LVL_SKIP);
6434   x->skip_recode = !x->select_tx_size && mi->sb_type >= BLOCK_8X8 &&
6435                    cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
6436                    cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ &&
6437                    cpi->sf.allow_skip_recode;
6438 
6439   if (!x->skip_recode && !cpi->sf.use_nonrd_pick_mode)
6440     memset(x->skip_txfm, 0, sizeof(x->skip_txfm));
6441 
6442   x->skip_optimize = ctx->is_coded;
6443   ctx->is_coded = 1;
6444   x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
6445   x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
6446                     x->q_index < QIDX_SKIP_THRESH);
6447 
6448   if (x->skip_encode) return;
6449 
6450   if (!is_inter_block(mi)) {
6451     int plane;
6452 #if CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
6453     if ((xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) &&
6454         (xd->above_mi == NULL || xd->left_mi == NULL) &&
6455         need_top_left[mi->uv_mode])
6456       assert(0);
6457 #endif  // CONFIG_BETTER_HW_COMPATIBILITY && CONFIG_VP9_HIGHBITDEPTH
6458     mi->skip = 1;
6459     for (plane = 0; plane < MAX_MB_PLANE; ++plane)
6460       vp9_encode_intra_block_plane(x, VPXMAX(bsize, BLOCK_8X8), plane, 1);
6461     if (output_enabled) sum_intra_stats(td->counts, mi);
6462     vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
6463                     VPXMAX(bsize, BLOCK_8X8));
6464   } else {
6465     int ref;
6466     const int is_compound = has_second_ref(mi);
6467     set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
6468     for (ref = 0; ref < 1 + is_compound; ++ref) {
6469       YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mi->ref_frame[ref]);
6470       assert(cfg != NULL);
6471       vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
6472                            &xd->block_refs[ref]->sf);
6473     }
6474     if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
6475       vp9_build_inter_predictors_sby(xd, mi_row, mi_col,
6476                                      VPXMAX(bsize, BLOCK_8X8));
6477 
6478     vp9_build_inter_predictors_sbuv(xd, mi_row, mi_col,
6479                                     VPXMAX(bsize, BLOCK_8X8));
6480 
6481 #if CONFIG_MISMATCH_DEBUG
6482     if (output_enabled) {
6483       int plane;
6484       for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
6485         const struct macroblockd_plane *pd = &xd->plane[plane];
6486         int pixel_c, pixel_r;
6487         const BLOCK_SIZE plane_bsize =
6488             get_plane_block_size(VPXMAX(bsize, BLOCK_8X8), &xd->plane[plane]);
6489         const int bw = get_block_width(plane_bsize);
6490         const int bh = get_block_height(plane_bsize);
6491         mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
6492                         pd->subsampling_x, pd->subsampling_y);
6493 
6494         mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, plane, pixel_c,
6495                                   pixel_r, bw, bh,
6496                                   xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
6497       }
6498     }
6499 #endif
6500 
6501     vp9_encode_sb(x, VPXMAX(bsize, BLOCK_8X8), mi_row, mi_col, output_enabled);
6502     vp9_tokenize_sb(cpi, td, t, !output_enabled, seg_skip,
6503                     VPXMAX(bsize, BLOCK_8X8));
6504   }
6505 
6506   if (seg_skip) {
6507     assert(mi->skip);
6508   }
6509 
6510   if (output_enabled) {
6511     if (cm->tx_mode == TX_MODE_SELECT && mi->sb_type >= BLOCK_8X8 &&
6512         !(is_inter_block(mi) && mi->skip)) {
6513       ++get_tx_counts(max_txsize_lookup[bsize], get_tx_size_context(xd),
6514                       &td->counts->tx)[mi->tx_size];
6515     } else {
6516       // The new intra coding scheme requires no change of transform size
6517       if (is_inter_block(mi)) {
6518         mi->tx_size = VPXMIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
6519                              max_txsize_lookup[bsize]);
6520       } else {
6521         mi->tx_size = (bsize >= BLOCK_8X8) ? mi->tx_size : TX_4X4;
6522       }
6523     }
6524 
6525     ++td->counts->tx.tx_totals[mi->tx_size];
6526     ++td->counts->tx.tx_totals[get_uv_tx_size(mi, &xd->plane[1])];
6527     if (cm->seg.enabled && cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ &&
6528         cpi->cyclic_refresh->content_mode)
6529       vp9_cyclic_refresh_update_sb_postencode(cpi, mi, mi_row, mi_col, bsize);
6530     if (cpi->oxcf.pass == 0 && cpi->svc.temporal_layer_id == 0 &&
6531         (!cpi->use_svc ||
6532          (cpi->use_svc &&
6533           !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame &&
6534           cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1)))
6535       update_zeromv_cnt(cpi, mi, mi_row, mi_col, bsize);
6536   }
6537 }
6538