• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkShader.h"
9 #include "include/private/base/SkTPin.h"
10 #include "include/private/base/SkTo.h"
11 #include "src/core/SkBitmapProcState.h"
12 #include "src/core/SkOpts.h"
13 
14 /*
15  *  The decal_ functions require that
16  *  1. dx > 0
17  *  2. [fx, fx+dx, fx+2dx, fx+3dx, ... fx+(count-1)dx] are all <= maxX
18  *
19  *  In addition, we use SkFractionalInt to keep more fractional precision than
20  *  just SkFixed, so we will abort the decal_ call if dx is very small, since
21  *  the decal_ function just operates on SkFixed. If that were changed, we could
22  *  skip the very_small test here.
23  */
can_truncate_to_fixed_for_decal(SkFixed fx,SkFixed dx,int count,unsigned max)24 static inline bool can_truncate_to_fixed_for_decal(SkFixed fx,
25                                                    SkFixed dx,
26                                                    int count, unsigned max) {
27     SkASSERT(count > 0);
28 
29     // if decal_ kept SkFractionalInt precision, this would just be dx <= 0
30     // I just made up the 1/256. Just don't want to perceive accumulated error
31     // if we truncate frDx and lose its low bits.
32     if (dx <= SK_Fixed1 / 256) {
33         return false;
34     }
35 
36     // Note: it seems the test should be (fx <= max && lastFx <= max); but
37     // historically it's been a strict inequality check, and changing produces
38     // unexpected diffs.  Further investigation is needed.
39 
40     // We cast to unsigned so we don't have to check for negative values, which
41     // will now appear as very large positive values, and thus fail our test!
42     if ((unsigned)SkFixedFloorToInt(fx) >= max) {
43         return false;
44     }
45 
46     // Promote to 64bit (48.16) to avoid overflow.
47     const uint64_t lastFx = fx + sk_64_mul(dx, count - 1);
48 
49     return SkTFitsIn<int32_t>(lastFx) && (unsigned)SkFixedFloorToInt(SkTo<int32_t>(lastFx)) < max;
50 }
51 
52 // When not filtering, we store 32-bit y, 16-bit x, 16-bit x, 16-bit x, ...
53 // When filtering we write out 32-bit encodings, pairing 14.4 x0 with 14-bit x1.
54 
55 // The clamp routines may try to fall into one of these unclamped decal fast-paths.
56 // (Only clamp works in the right coordinate space to check for decal.)
decal_nofilter_scale(uint32_t dst[],SkFixed fx,SkFixed dx,int count)57 static void decal_nofilter_scale(uint32_t dst[], SkFixed fx, SkFixed dx, int count) {
58     // can_truncate_to_fixed_for_decal() checked only that stepping fx+=dx count-1
59     // times doesn't overflow fx, so we take unusual care not to step count times.
60     for (; count > 2; count -= 2) {
61         *dst++ = pack_two_shorts( (fx +  0) >> 16,
62                                   (fx + dx) >> 16);
63         fx += dx+dx;
64     }
65 
66     SkASSERT(count <= 2);
67     switch (count) {
68         case 2: ((uint16_t*)dst)[1] = SkToU16((fx + dx) >> 16); [[fallthrough]];
69         case 1: ((uint16_t*)dst)[0] = SkToU16((fx +  0) >> 16);
70     }
71 }
72 
73 // A generic implementation for unfiltered scale+translate, templated on tiling method.
74 template <unsigned (*tilex)(SkFixed, int), unsigned (*tiley)(SkFixed, int), bool tryDecal>
nofilter_scale(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)75 static void nofilter_scale(const SkBitmapProcState& s,
76                            uint32_t xy[], int count, int x, int y) {
77     SkASSERT(s.fInvMatrix.isScaleTranslate());
78 
79     // Write out our 32-bit y, and get our intial fx.
80     SkFractionalInt fx;
81     {
82         const SkBitmapProcStateAutoMapper mapper(s, x, y);
83         *xy++ = tiley(mapper.fixedY(), s.fPixmap.height() - 1);
84         fx = mapper.fractionalIntX();
85     }
86 
87     const unsigned maxX = s.fPixmap.width() - 1;
88     if (0 == maxX) {
89         // If width == 1, all the x-values must refer to that pixel, and must be zero.
90         memset(xy, 0, count * sizeof(uint16_t));
91         return;
92     }
93 
94     const SkFractionalInt dx = s.fInvSxFractionalInt;
95 
96     if (tryDecal) {
97         const SkFixed fixedFx = SkFractionalIntToFixed(fx);
98         const SkFixed fixedDx = SkFractionalIntToFixed(dx);
99 
100         if (can_truncate_to_fixed_for_decal(fixedFx, fixedDx, count, maxX)) {
101             decal_nofilter_scale(xy, fixedFx, fixedDx, count);
102             return;
103         }
104     }
105 
106     // Remember, each x-coordinate is 16-bit.
107     for (; count >= 2; count -= 2) {
108         *xy++ = pack_two_shorts(tilex(SkFractionalIntToFixed(fx     ), maxX),
109                                 tilex(SkFractionalIntToFixed(fx + dx), maxX));
110         fx += dx+dx;
111     }
112 
113     auto xx = (uint16_t*)xy;
114     while (count --> 0) {
115         *xx++ = tilex(SkFractionalIntToFixed(fx), maxX);
116         fx += dx;
117     }
118 }
119 
120 template <unsigned (*tilex)(SkFixed, int), unsigned (*tiley)(SkFixed, int)>
nofilter_affine(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)121 static void nofilter_affine(const SkBitmapProcState& s,
122                             uint32_t xy[], int count, int x, int y) {
123     SkASSERT(!s.fInvMatrix.hasPerspective());
124 
125     const SkBitmapProcStateAutoMapper mapper(s, x, y);
126 
127     SkFractionalInt fx = mapper.fractionalIntX(),
128                     fy = mapper.fractionalIntY(),
129                     dx = s.fInvSxFractionalInt,
130                     dy = s.fInvKyFractionalInt;
131     int maxX = s.fPixmap.width () - 1,
132         maxY = s.fPixmap.height() - 1;
133 
134     while (count --> 0) {
135         *xy++ = (tiley(SkFractionalIntToFixed(fy), maxY) << 16)
136               | (tilex(SkFractionalIntToFixed(fx), maxX)      );
137         fx += dx;
138         fy += dy;
139     }
140 }
141 
142 // used when both tilex and tiley are clamp
143 // Extract the high four fractional bits from fx, the lerp parameter when filtering.
extract_low_bits_clamp_clamp(SkFixed fx,int)144 static unsigned extract_low_bits_clamp_clamp(SkFixed fx, int /*max*/) {
145     // If we're already scaled up to by max like clamp/decal,
146     // just grab the high four fractional bits.
147     return (fx >> 12) & 0xf;
148 }
149 
150 //used when one of tilex and tiley is not clamp
extract_low_bits_general(SkFixed fx,int max)151 static unsigned extract_low_bits_general(SkFixed fx, int max) {
152     // In repeat or mirror fx is in [0,1], so scale up by max first.
153     // TODO: remove the +1 here and the -1 at the call sites...
154     return extract_low_bits_clamp_clamp((fx & 0xffff) * (max+1), max);
155 }
156 
157 // Takes a SkFixed number and packs it into a 32bit integer in the following schema:
158 // 14 bits to represent the low integer value (n)
159 // 4 bits to represent a linear distance between low and high (floored to nearest 1/16)
160 // 14 bits to represent the high integer value (n+1)
161 // If f is less than 0, then both integers will be 0. If f is greater than or equal to max, both
162 // integers will be that max value. In all cases, the middle 4 bits will represent the fractional
163 // part (to a resolution of 1/16). If the two integers are equal, doing any linear interpolation
164 // will result in the same integer, so the fractional part does not matter.
165 //
166 // The "one" parameter corresponds to the maximum distance between the high and low coordinate.
167 // For the clamp operation, this is just SkFixed1, but for others it is 1 / pixmap width because the
168 // distances are already normalized to between 0 and 1.0.
169 //
170 // See also SK_OPTS_NS::decode_packed_coordinates_and_weight for unpacking this value.
171 template <unsigned (*tile)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int)>
172 SK_NO_SANITIZE("signed-integer-overflow")
pack(SkFixed f,unsigned max,SkFixed one)173 static uint32_t pack(SkFixed f, unsigned max, SkFixed one) {
174     uint32_t packed = tile(f, max);                      // low coordinate in high bits
175     packed = (packed <<  4) | extract_low_bits(f, max);  // (lerp weight _is_ coord fractional part)
176     packed = (packed << 14) | tile((f + one), max);      // high coordinate in low bits
177     return packed;
178 }
179 
180 template <unsigned (*tilex)(SkFixed, int), unsigned (*tiley)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int), bool tryDecal>
filter_scale(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)181 static void filter_scale(const SkBitmapProcState& s,
182                          uint32_t xy[], int count, int x, int y) {
183     SkASSERT(s.fInvMatrix.isScaleTranslate());
184 
185     const unsigned maxX = s.fPixmap.width() - 1;
186     const SkFractionalInt dx = s.fInvSxFractionalInt;
187     SkFractionalInt fx;
188     {
189         const SkBitmapProcStateAutoMapper mapper(s, x, y);
190         const unsigned maxY = s.fPixmap.height() - 1;
191         // compute our two Y values up front
192         *xy++ = pack<tiley, extract_low_bits>(mapper.fixedY(), maxY, s.fFilterOneY);
193         // now initialize fx
194         fx = mapper.fractionalIntX();
195     }
196 
197     // For historical reasons we check both ends are < maxX rather than <= maxX.
198     // TODO: try changing this?  See also can_truncate_to_fixed_for_decal().
199     if (tryDecal &&
200         (unsigned)SkFractionalIntToInt(fx               ) < maxX &&
201         (unsigned)SkFractionalIntToInt(fx + dx*(count-1)) < maxX) {
202         while (count --> 0) {
203             SkFixed fixedFx = SkFractionalIntToFixed(fx);
204             SkASSERT((fixedFx >> (16 + 14)) == 0);
205             *xy++ = (fixedFx >> 12 << 14) | ((fixedFx >> 16) + 1);
206             fx += dx;
207         }
208         return;
209     }
210 
211     while (count --> 0) {
212         *xy++ = pack<tilex, extract_low_bits>(SkFractionalIntToFixed(fx), maxX, s.fFilterOneX);
213         fx += dx;
214     }
215 }
216 
217 template <unsigned (*tilex)(SkFixed, int), unsigned (*tiley)(SkFixed, int), unsigned (*extract_low_bits)(SkFixed, int)>
filter_affine(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)218 static void filter_affine(const SkBitmapProcState& s,
219                           uint32_t xy[], int count, int x, int y) {
220     SkASSERT(!s.fInvMatrix.hasPerspective());
221 
222     const SkBitmapProcStateAutoMapper mapper(s, x, y);
223 
224     SkFixed oneX = s.fFilterOneX,
225             oneY = s.fFilterOneY;
226 
227     SkFractionalInt fx = mapper.fractionalIntX(),
228                     fy = mapper.fractionalIntY(),
229                     dx = s.fInvSxFractionalInt,
230                     dy = s.fInvKyFractionalInt;
231     unsigned maxX = s.fPixmap.width () - 1,
232              maxY = s.fPixmap.height() - 1;
233     while (count --> 0) {
234         *xy++ = pack<tiley, extract_low_bits>(SkFractionalIntToFixed(fy), maxY, oneY);
235         *xy++ = pack<tilex, extract_low_bits>(SkFractionalIntToFixed(fx), maxX, oneX);
236 
237         fy += dy;
238         fx += dx;
239     }
240 }
241 
242 // Helper to ensure that when we shift down, we do it w/o sign-extension
243 // so the caller doesn't have to manually mask off the top 16 bits.
SK_USHIFT16(unsigned x)244 static inline unsigned SK_USHIFT16(unsigned x) {
245     return x >> 16;
246 }
247 
repeat(SkFixed fx,int max)248 static unsigned repeat(SkFixed fx, int max) {
249     SkASSERT(max < 65535);
250     return SK_USHIFT16((unsigned)(fx & 0xFFFF) * (max + 1));
251 }
mirror(SkFixed fx,int max)252 static unsigned mirror(SkFixed fx, int max) {
253     SkASSERT(max < 65535);
254     // s is 0xFFFFFFFF if we're on an odd interval, or 0 if an even interval
255     SkFixed s = SkLeftShift(fx, 15) >> 31;
256 
257     // This should be exactly the same as repeat(fx ^ s, max) from here on.
258     return SK_USHIFT16( ((fx ^ s) & 0xFFFF) * (max + 1) );
259 }
260 
clamp(SkFixed fx,int max)261 static unsigned clamp(SkFixed fx, int max) {
262     return SkTPin(fx >> 16, 0, max);
263 }
264 
265 static const SkBitmapProcState::MatrixProc ClampX_ClampY_Procs[] = {
266     nofilter_scale <clamp, clamp, true>, filter_scale <clamp, clamp, extract_low_bits_clamp_clamp, true>,
267     nofilter_affine<clamp, clamp>,       filter_affine<clamp, clamp, extract_low_bits_clamp_clamp>,
268 };
269 static const SkBitmapProcState::MatrixProc RepeatX_RepeatY_Procs[] = {
270     nofilter_scale <repeat, repeat, false>, filter_scale <repeat, repeat, extract_low_bits_general, false>,
271     nofilter_affine<repeat, repeat>,        filter_affine<repeat, repeat, extract_low_bits_general>
272 };
273 static const SkBitmapProcState::MatrixProc MirrorX_MirrorY_Procs[] = {
274     nofilter_scale <mirror, mirror,  false>, filter_scale <mirror, mirror, extract_low_bits_general, false>,
275     nofilter_affine<mirror, mirror>,         filter_affine<mirror, mirror, extract_low_bits_general>,
276 };
277 
278 
279 ///////////////////////////////////////////////////////////////////////////////
280 // This next chunk has some specializations for unfiltered translate-only matrices.
281 
int_clamp(int x,int n)282 static inline U16CPU int_clamp(int x, int n) {
283     if (x <  0) { x = 0; }
284     if (x >= n) { x = n - 1; }
285     return x;
286 }
287 
288 /*  returns 0...(n-1) given any x (positive or negative).
289 
290     As an example, if n (which is always positive) is 5...
291 
292           x: -8 -7 -6 -5 -4 -3 -2 -1  0  1  2  3  4  5  6  7  8
293     returns:  2  3  4  0  1  2  3  4  0  1  2  3  4  0  1  2  3
294  */
sk_int_mod(int x,int n)295 static inline int sk_int_mod(int x, int n) {
296     SkASSERT(n > 0);
297     if ((unsigned)x >= (unsigned)n) {
298         if (x < 0) {
299             x = n + ~(~x % n);
300         } else {
301             x = x % n;
302         }
303     }
304     return x;
305 }
306 
int_repeat(int x,int n)307 static inline U16CPU int_repeat(int x, int n) {
308     return sk_int_mod(x, n);
309 }
310 
int_mirror(int x,int n)311 static inline U16CPU int_mirror(int x, int n) {
312     x = sk_int_mod(x, 2 * n);
313     if (x >= n) {
314         x = n + ~(x - n);
315     }
316     return x;
317 }
318 
fill_sequential(uint16_t xptr[],int pos,int count)319 static void fill_sequential(uint16_t xptr[], int pos, int count) {
320     while (count --> 0) {
321         *xptr++ = pos++;
322     }
323 }
324 
fill_backwards(uint16_t xptr[],int pos,int count)325 static void fill_backwards(uint16_t xptr[], int pos, int count) {
326     while (count --> 0) {
327         SkASSERT(pos >= 0);
328         *xptr++ = pos--;
329     }
330 }
331 
332 template< U16CPU (tiley)(int x, int n) >
clampx_nofilter_trans(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)333 static void clampx_nofilter_trans(const SkBitmapProcState& s,
334                                   uint32_t xy[], int count, int x, int y) {
335     SkASSERT(s.fInvMatrix.isTranslate());
336 
337     const SkBitmapProcStateAutoMapper mapper(s, x, y);
338     *xy++ = tiley(mapper.intY(), s.fPixmap.height());
339     int xpos = mapper.intX();
340 
341     const int width = s.fPixmap.width();
342     if (1 == width) {
343         // all of the following X values must be 0
344         memset(xy, 0, count * sizeof(uint16_t));
345         return;
346     }
347 
348     uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
349     int n;
350 
351     // fill before 0 as needed
352     if (xpos < 0) {
353         n = -xpos;
354         if (n > count) {
355             n = count;
356         }
357         memset(xptr, 0, n * sizeof(uint16_t));
358         count -= n;
359         if (0 == count) {
360             return;
361         }
362         xptr += n;
363         xpos = 0;
364     }
365 
366     // fill in 0..width-1 if needed
367     if (xpos < width) {
368         n = width - xpos;
369         if (n > count) {
370             n = count;
371         }
372         fill_sequential(xptr, xpos, n);
373         count -= n;
374         if (0 == count) {
375             return;
376         }
377         xptr += n;
378     }
379 
380     // fill the remaining with the max value
381     SkOpts::memset16(xptr, width - 1, count);
382 }
383 
384 template< U16CPU (tiley)(int x, int n) >
repeatx_nofilter_trans(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)385 static void repeatx_nofilter_trans(const SkBitmapProcState& s,
386                                    uint32_t xy[], int count, int x, int y) {
387     SkASSERT(s.fInvMatrix.isTranslate());
388 
389     const SkBitmapProcStateAutoMapper mapper(s, x, y);
390     *xy++ = tiley(mapper.intY(), s.fPixmap.height());
391     int xpos = mapper.intX();
392 
393     const int width = s.fPixmap.width();
394     if (1 == width) {
395         // all of the following X values must be 0
396         memset(xy, 0, count * sizeof(uint16_t));
397         return;
398     }
399 
400     uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
401     int start = sk_int_mod(xpos, width);
402     int n = width - start;
403     if (n > count) {
404         n = count;
405     }
406     fill_sequential(xptr, start, n);
407     xptr += n;
408     count -= n;
409 
410     while (count >= width) {
411         fill_sequential(xptr, 0, width);
412         xptr += width;
413         count -= width;
414     }
415 
416     if (count > 0) {
417         fill_sequential(xptr, 0, count);
418     }
419 }
420 
421 template< U16CPU (tiley)(int x, int n) >
mirrorx_nofilter_trans(const SkBitmapProcState & s,uint32_t xy[],int count,int x,int y)422 static void mirrorx_nofilter_trans(const SkBitmapProcState& s,
423                                    uint32_t xy[], int count, int x, int y) {
424     SkASSERT(s.fInvMatrix.isTranslate());
425 
426     const SkBitmapProcStateAutoMapper mapper(s, x, y);
427     *xy++ = tiley(mapper.intY(), s.fPixmap.height());
428     int xpos = mapper.intX();
429 
430     const int width = s.fPixmap.width();
431     if (1 == width) {
432         // all of the following X values must be 0
433         memset(xy, 0, count * sizeof(uint16_t));
434         return;
435     }
436 
437     uint16_t* xptr = reinterpret_cast<uint16_t*>(xy);
438     // need to know our start, and our initial phase (forward or backward)
439     bool forward;
440     int n;
441     int start = sk_int_mod(xpos, 2 * width);
442     if (start >= width) {
443         start = width + ~(start - width);
444         forward = false;
445         n = start + 1;  // [start .. 0]
446     } else {
447         forward = true;
448         n = width - start;  // [start .. width)
449     }
450     if (n > count) {
451         n = count;
452     }
453     if (forward) {
454         fill_sequential(xptr, start, n);
455     } else {
456         fill_backwards(xptr, start, n);
457     }
458     forward = !forward;
459     xptr += n;
460     count -= n;
461 
462     while (count >= width) {
463         if (forward) {
464             fill_sequential(xptr, 0, width);
465         } else {
466             fill_backwards(xptr, width - 1, width);
467         }
468         forward = !forward;
469         xptr += width;
470         count -= width;
471     }
472 
473     if (count > 0) {
474         if (forward) {
475             fill_sequential(xptr, 0, count);
476         } else {
477             fill_backwards(xptr, width - 1, count);
478         }
479     }
480 }
481 
482 
483 ///////////////////////////////////////////////////////////////////////////////
484 // The main entry point to the file, choosing between everything above.
485 
chooseMatrixProc(bool translate_only_matrix)486 SkBitmapProcState::MatrixProc SkBitmapProcState::chooseMatrixProc(bool translate_only_matrix) {
487     SkASSERT(!fInvMatrix.hasPerspective());
488     SkASSERT(fTileModeX != SkTileMode::kDecal);
489 
490     if( fTileModeX == fTileModeY ) {
491         // Check for our special case translate methods when there is no scale/affine/perspective.
492         if (translate_only_matrix && !fBilerp) {
493             switch (fTileModeX) {
494                 default: SkASSERT(false); [[fallthrough]];
495                 case SkTileMode::kClamp:  return  clampx_nofilter_trans<int_clamp>;
496                 case SkTileMode::kRepeat: return repeatx_nofilter_trans<int_repeat>;
497                 case SkTileMode::kMirror: return mirrorx_nofilter_trans<int_mirror>;
498             }
499         }
500 
501         // The arrays are all [ nofilter, filter ].
502         int index = fBilerp ? 1 : 0;
503         if (!fInvMatrix.isScaleTranslate()) {
504             index |= 2;
505         }
506 
507         if (fTileModeX == SkTileMode::kClamp) {
508             // clamp gets special version of filterOne, working in non-normalized space (allowing decal)
509             fFilterOneX = SK_Fixed1;
510             fFilterOneY = SK_Fixed1;
511             return ClampX_ClampY_Procs[index];
512         }
513 
514         // all remaining procs use this form for filterOne, putting them into normalized space.
515         fFilterOneX = SK_Fixed1 / fPixmap.width();
516         fFilterOneY = SK_Fixed1 / fPixmap.height();
517 
518         if (fTileModeX == SkTileMode::kRepeat) {
519             return RepeatX_RepeatY_Procs[index];
520         }
521         return MirrorX_MirrorY_Procs[index];
522     }
523 
524     SkASSERT(fTileModeX == fTileModeY);
525     return nullptr;
526 }
527 
pack_clamp(SkFixed f,unsigned max)528 uint32_t sktests::pack_clamp(SkFixed f, unsigned max) {
529     // Based on ClampX_ClampY_Procs[1] (filter_scale)
530     return ::pack<clamp, extract_low_bits_clamp_clamp>(f, max, SK_Fixed1);
531 }
532 
pack_repeat(SkFixed f,unsigned max,size_t width)533 uint32_t sktests::pack_repeat(SkFixed f, unsigned max, size_t width) {
534     // Based on RepeatX_RepeatY_Procs[1] (filter_scale)
535     return ::pack<repeat, extract_low_bits_general>(f, max, SK_Fixed1 / width);
536 }
537 
pack_mirror(SkFixed f,unsigned max,size_t width)538 uint32_t sktests::pack_mirror(SkFixed f, unsigned max, size_t width) {
539     // Based on MirrorX_MirrorY_Procs[1] (filter_scale)
540     return ::pack<mirror, extract_low_bits_general>(f, max, SK_Fixed1 / width);
541 }
542