• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkRegionPriv_DEFINED
9 #define SkRegionPriv_DEFINED
10 
11 #include "include/core/SkRegion.h"
12 #include "include/private/base/SkMath.h"
13 #include "include/private/base/SkMalloc.h"
14 #include "include/private/base/SkTo.h"
15 
16 #include <atomic>
17 #include <functional>
18 
19 class SkRegionPriv {
20 public:
21     inline static constexpr int kRunTypeSentinel = 0x7FFFFFFF;
22     typedef SkRegion::RunType RunType;
23     typedef SkRegion::RunHead RunHead;
24 
25     // Call the function with each span, in Y -> X ascending order.
26     // We pass a rect, but we will still ensure the span Y->X ordering, so often the height
27     // of the rect may be 1. It should never be empty.
28     static void VisitSpans(const SkRegion& rgn, const std::function<void(const SkIRect&)>&);
29 
30 #ifdef SK_DEBUG
31     static void Validate(const SkRegion& rgn);
32 #endif
33 };
34 
35 static constexpr int SkRegion_kRunTypeSentinel = 0x7FFFFFFF;
36 
SkRegionValueIsSentinel(int32_t value)37 inline bool SkRegionValueIsSentinel(int32_t value) {
38     return value == (int32_t)SkRegion_kRunTypeSentinel;
39 }
40 
41 #define assert_sentinel(value, isSentinel) \
42     SkASSERT(SkRegionValueIsSentinel(value) == isSentinel)
43 
44 #ifdef SK_DEBUG
45 // Given the first interval (just past the interval-count), compute the
46 // interval count, by search for the x-sentinel
47 //
compute_intervalcount(const SkRegionPriv::RunType runs[])48 static int compute_intervalcount(const SkRegionPriv::RunType runs[]) {
49     const SkRegionPriv::RunType* curr = runs;
50     while (*curr < SkRegion_kRunTypeSentinel) {
51         SkASSERT(curr[0] < curr[1]);
52         SkASSERT(curr[1] < SkRegion_kRunTypeSentinel);
53         curr += 2;
54     }
55     return SkToInt((curr - runs) >> 1);
56 }
57 #endif
58 
59 struct SkRegion::RunHead {
60 private:
61 
62 public:
63     std::atomic<int32_t> fRefCnt;
64     int32_t fRunCount;
65 
66     /**
67      *  Number of spans with different Y values. This does not count the initial
68      *  Top value, nor does it count the final Y-Sentinel value. In the logical
69      *  case of a rectangle, this would return 1, and an empty region would
70      *  return 0.
71      */
getYSpanCountRunHead72     int getYSpanCount() const {
73         return fYSpanCount;
74     }
75 
76     /**
77      *  Number of intervals in the entire region. This equals the number of
78      *  rects that would be returned by the Iterator. In the logical case of
79      *  a rect, this would return 1, and an empty region would return 0.
80      */
getIntervalCountRunHead81     int getIntervalCount() const {
82         return fIntervalCount;
83     }
84 
AllocRunHead85     static RunHead* Alloc(int count) {
86         if (count < SkRegion::kRectRegionRuns) {
87             return nullptr;
88         }
89 
90         const int64_t size = sk_64_mul(count, sizeof(RunType)) + sizeof(RunHead);
91         if (count < 0 || !SkTFitsIn<int32_t>(size)) { SK_ABORT("Invalid Size"); }
92 
93         RunHead* head = (RunHead*)sk_malloc_throw(size);
94         head->fRefCnt = 1;
95         head->fRunCount = count;
96         // these must be filled in later, otherwise we will be invalid
97         head->fYSpanCount = 0;
98         head->fIntervalCount = 0;
99         return head;
100     }
101 
AllocRunHead102     static RunHead* Alloc(int count, int yspancount, int intervalCount) {
103         if (yspancount <= 0 || intervalCount <= 1) {
104             return nullptr;
105         }
106 
107         RunHead* head = Alloc(count);
108         if (!head) {
109             return nullptr;
110         }
111         head->fYSpanCount = yspancount;
112         head->fIntervalCount = intervalCount;
113         return head;
114     }
115 
writable_runsRunHead116     SkRegion::RunType* writable_runs() {
117         SkASSERT(fRefCnt == 1);
118         return (SkRegion::RunType*)(this + 1);
119     }
120 
readonly_runsRunHead121     const SkRegion::RunType* readonly_runs() const {
122         return (const SkRegion::RunType*)(this + 1);
123     }
124 
ensureWritableRunHead125     RunHead* ensureWritable() {
126         RunHead* writable = this;
127         if (fRefCnt > 1) {
128             // We need to alloc & copy the current region before decrease
129             // the refcount because it could be freed in the meantime.
130             writable = Alloc(fRunCount, fYSpanCount, fIntervalCount);
131             memcpy(writable->writable_runs(), this->readonly_runs(),
132                    fRunCount * sizeof(RunType));
133 
134             // fRefCount might have changed since we last checked.
135             // If we own the last reference at this point, we need to
136             // free the memory.
137             if (--fRefCnt == 0) {
138                 sk_free(this);
139             }
140         }
141         return writable;
142     }
143 
144     /**
145      *  Given a scanline (including its Bottom value at runs[0]), return the next
146      *  scanline. Asserts that there is one (i.e. runs[0] < Sentinel)
147      */
SkipEntireScanlineRunHead148     static SkRegion::RunType* SkipEntireScanline(const SkRegion::RunType runs[]) {
149         // we are not the Y Sentinel
150         SkASSERT(runs[0] < SkRegion_kRunTypeSentinel);
151 
152         const int intervals = runs[1];
153         SkASSERT(runs[2 + intervals * 2] == SkRegion_kRunTypeSentinel);
154 #ifdef SK_DEBUG
155         {
156             int n = compute_intervalcount(&runs[2]);
157             SkASSERT(n == intervals);
158         }
159 #endif
160 
161         // skip the entire line [B N [L R] S]
162         runs += 1 + 1 + intervals * 2 + 1;
163         return const_cast<SkRegion::RunType*>(runs);
164     }
165 
166 
167     /**
168      *  Return the scanline that contains the Y value. This requires that the Y
169      *  value is already known to be contained within the bounds of the region,
170      *  and so this routine never returns nullptr.
171      *
172      *  It returns the beginning of the scanline, starting with its Bottom value.
173      */
findScanlineRunHead174     SkRegion::RunType* findScanline(int y) const {
175         const RunType* runs = this->readonly_runs();
176 
177         // if the top-check fails, we didn't do a quick check on the bounds
178         SkASSERT(y >= runs[0]);
179 
180         runs += 1;  // skip top-Y
181         for (;;) {
182             int bottom = runs[0];
183             // If we hit this, we've walked off the region, and our bounds check
184             // failed.
185             SkASSERT(bottom < SkRegion_kRunTypeSentinel);
186             if (y < bottom) {
187                 break;
188             }
189             runs = SkipEntireScanline(runs);
190         }
191         return const_cast<SkRegion::RunType*>(runs);
192     }
193 
194     // Copy src runs into us, computing interval counts and bounds along the way
computeRunBoundsRunHead195     void computeRunBounds(SkIRect* bounds) {
196         RunType* runs = this->writable_runs();
197         bounds->fTop = *runs++;
198 
199         int bot;
200         int ySpanCount = 0;
201         int intervalCount = 0;
202         int left = SK_MaxS32;
203         int rite = SK_MinS32;
204 
205         do {
206             bot = *runs++;
207             SkASSERT(bot < SkRegion_kRunTypeSentinel);
208             ySpanCount += 1;
209 
210             const int intervals = *runs++;
211             SkASSERT(intervals >= 0);
212             SkASSERT(intervals < SkRegion_kRunTypeSentinel);
213 
214             if (intervals > 0) {
215 #ifdef SK_DEBUG
216                 {
217                     int n = compute_intervalcount(runs);
218                     SkASSERT(n == intervals);
219                 }
220 #endif
221                 RunType L = runs[0];
222                 SkASSERT(L < SkRegion_kRunTypeSentinel);
223                 if (left > L) {
224                     left = L;
225                 }
226 
227                 runs += intervals * 2;
228                 RunType R = runs[-1];
229                 SkASSERT(R < SkRegion_kRunTypeSentinel);
230                 if (rite < R) {
231                     rite = R;
232                 }
233 
234                 intervalCount += intervals;
235             }
236             SkASSERT(SkRegion_kRunTypeSentinel == *runs);
237             runs += 1;  // skip x-sentinel
238 
239             // test Y-sentinel
240         } while (SkRegion_kRunTypeSentinel > *runs);
241 
242 #ifdef SK_DEBUG
243         // +1 to skip the last Y-sentinel
244         int runCount = SkToInt(runs - this->writable_runs() + 1);
245         SkASSERT(runCount == fRunCount);
246 #endif
247 
248         fYSpanCount = ySpanCount;
249         fIntervalCount = intervalCount;
250 
251         bounds->fLeft = left;
252         bounds->fRight = rite;
253         bounds->fBottom = bot;
254     }
255 
256 private:
257     int32_t fYSpanCount;
258     int32_t fIntervalCount;
259 };
260 
261 #endif
262