1 /*
2 * Copyright 2014 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef GrFragmentProcessor_DEFINED
9 #define GrFragmentProcessor_DEFINED
10
11 #include "include/private/SkColorData.h"
12 #include "include/private/SkSLSampleUsage.h"
13 #include "include/private/SkSLString.h"
14 #include "include/private/base/SkMacros.h"
15 #include "src/gpu/ganesh/GrProcessor.h"
16 #include "src/gpu/ganesh/glsl/GrGLSLUniformHandler.h"
17
18 #include <tuple>
19
20 class GrGLSLFPFragmentBuilder;
21 class GrGLSLProgramDataManager;
22 class GrPaint;
23 class GrPipeline;
24 struct GrShaderCaps;
25 class GrTextureEffect;
26
27 namespace skgpu {
28 class KeyBuilder;
29 class Swizzle;
30 }
31
32 /**
33 * Some fragment-processor creation methods have preconditions that might not be satisfied by the
34 * calling code. Those methods can return a `GrFPResult` from their factory methods. If creation
35 * succeeds, the new fragment processor is created and `success` is true. If a precondition is not
36 * met, `success` is set to false and the input FP is returned unchanged.
37 */
38 class GrFragmentProcessor;
39 using GrFPResult = std::tuple<bool /*success*/, std::unique_ptr<GrFragmentProcessor>>;
40
41 /** Provides custom fragment shader code. Fragment processors receive an input position and
42 produce an output color. They may contain uniforms and may have children fragment processors
43 that are sampled.
44 */
45 class GrFragmentProcessor : public GrProcessor {
46 public:
47 /**
48 * Every GrFragmentProcessor must be capable of creating a subclass of ProgramImpl. The
49 * ProgramImpl emits the fragment shader code that implements the GrFragmentProcessor, is
50 * attached to the generated backend API pipeline/program and used to extract uniform data from
51 * GrFragmentProcessor instances.
52 */
53 class ProgramImpl;
54
55 /** Always returns 'color'. */
56 static std::unique_ptr<GrFragmentProcessor> MakeColor(SkPMColor4f color);
57
58 /**
59 * Returns the input color, modulated by the child's alpha.
60 *
61 * output = input * child.a
62 */
63 static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha(
64 std::unique_ptr<GrFragmentProcessor> child);
65
66 /**
67 * Invokes child with an opaque version of the input color, then applies the input alpha to
68 * the result. Used to incorporate paint alpha to the evaluation of an SkShader tree FP.
69 */
70 static std::unique_ptr<GrFragmentProcessor> ApplyPaintAlpha(
71 std::unique_ptr<GrFragmentProcessor> child);
72
73 /**
74 * Returns a fragment processor that generates the passed-in color, modulated by the child's
75 * RGBA color. The child's input color will be the parent's fInputColor. (Pass a null FP to use
76 * the color from fInputColor instead of a child FP.)
77 */
78 static std::unique_ptr<GrFragmentProcessor> ModulateRGBA(
79 std::unique_ptr<GrFragmentProcessor> child, const SkPMColor4f& color);
80
81 /**
82 * Returns a parent fragment processor that adopts the passed fragment processor as a child.
83 * The parent will ignore its input color and instead feed the passed in color as input to the
84 * child.
85 */
86 static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>,
87 const SkPMColor4f&);
88
89 /**
90 * Returns a parent fragment processor that adopts the passed fragment processor as a child.
91 * The parent will simply return the child's color, but disable the coverage-as-alpha
92 * optimization.
93 */
94 static std::unique_ptr<GrFragmentProcessor> DisableCoverageAsAlpha(
95 std::unique_ptr<GrFragmentProcessor>);
96
97 /**
98 * Returns a fragment processor which returns `args.fDestColor`. This is only meaningful in
99 * contexts like blenders, which use a source and dest color.)
100 */
101 static std::unique_ptr<GrFragmentProcessor> DestColor();
102
103 /**
104 * Returns a fragment processor that calls the passed in fragment processor, and then swizzles
105 * the output.
106 */
107 static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>,
108 const skgpu::Swizzle&);
109
110 /**
111 * Returns a fragment processor that calls the passed in fragment processor, and then clamps
112 * the output to [0, 1].
113 */
114 static std::unique_ptr<GrFragmentProcessor> ClampOutput(std::unique_ptr<GrFragmentProcessor>);
115
116 /**
117 * Returns a fragment processor that composes two fragment processors `f` and `g` into f(g(x)).
118 * This is equivalent to running them in series (`g`, then `f`). This is not the same as
119 * transfer-mode composition; there is no blending step.
120 */
121 static std::unique_ptr<GrFragmentProcessor> Compose(std::unique_ptr<GrFragmentProcessor> f,
122 std::unique_ptr<GrFragmentProcessor> g);
123
124 /*
125 * Returns a fragment processor that calls the passed in fragment processor, then runs the
126 * resulting color through the supplied color matrix.
127 */
128 static std::unique_ptr<GrFragmentProcessor> ColorMatrix(
129 std::unique_ptr<GrFragmentProcessor> child,
130 const float matrix[20],
131 bool unpremulInput,
132 bool clampRGBOutput,
133 bool premulOutput);
134
135 /**
136 * Returns a fragment processor that reads back the color on the surface being painted; that is,
137 * sampling this will return the color of the pixel that is currently being painted over.
138 */
139 static std::unique_ptr<GrFragmentProcessor> SurfaceColor();
140
141 /**
142 * Returns a fragment processor that calls the passed in fragment processor, but evaluates it
143 * in device-space (rather than local space).
144 */
145 static std::unique_ptr<GrFragmentProcessor> DeviceSpace(std::unique_ptr<GrFragmentProcessor>);
146
147 /**
148 * "Shape" FPs, often used for clipping. Each one evaluates a particular kind of shape (rect,
149 * circle, ellipse), and modulates the coverage of that shape against the results of the input
150 * FP. GrClipEdgeType is used to select inverse/normal fill, and AA or non-AA edges.
151 */
152 static std::unique_ptr<GrFragmentProcessor> Rect(std::unique_ptr<GrFragmentProcessor>,
153 GrClipEdgeType,
154 SkRect);
155
156 static GrFPResult Circle(std::unique_ptr<GrFragmentProcessor>,
157 GrClipEdgeType,
158 SkPoint center,
159 float radius);
160
161 static GrFPResult Ellipse(std::unique_ptr<GrFragmentProcessor>,
162 GrClipEdgeType,
163 SkPoint center,
164 SkPoint radii,
165 const GrShaderCaps&);
166
167 /**
168 * Returns a fragment processor that calls the passed in fragment processor, but ensures the
169 * entire program is compiled with high-precision types.
170 */
171 static std::unique_ptr<GrFragmentProcessor> HighPrecision(std::unique_ptr<GrFragmentProcessor>);
172
173 /**
174 * Makes a copy of this fragment processor that draws equivalently to the original.
175 * If the processor has child processors they are cloned as well.
176 */
177 virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0;
178
179 // The FP this was registered with as a child function. This will be null if this is a root.
parent()180 const GrFragmentProcessor* parent() const { return fParent; }
181
182 std::unique_ptr<ProgramImpl> makeProgramImpl() const;
183
addToKey(const GrShaderCaps & caps,skgpu::KeyBuilder * b)184 void addToKey(const GrShaderCaps& caps, skgpu::KeyBuilder* b) const {
185 this->onAddToKey(caps, b);
186 for (const auto& child : fChildProcessors) {
187 if (child) {
188 child->addToKey(caps, b);
189 }
190 }
191 }
192
numChildProcessors()193 int numChildProcessors() const { return fChildProcessors.size(); }
194 int numNonNullChildProcessors() const;
195
childProcessor(int index)196 GrFragmentProcessor* childProcessor(int index) { return fChildProcessors[index].get(); }
childProcessor(int index)197 const GrFragmentProcessor* childProcessor(int index) const {
198 return fChildProcessors[index].get();
199 }
200
SkDEBUGCODE(bool isInstantiated ()const;)201 SkDEBUGCODE(bool isInstantiated() const;)
202
203 /** Do any of the FPs in this tree read back the color from the destination surface? */
204 bool willReadDstColor() const {
205 return SkToBool(fFlags & kWillReadDstColor_Flag);
206 }
207
208 /** Does the SkSL for this FP take two colors as its input arguments? */
isBlendFunction()209 bool isBlendFunction() const {
210 return SkToBool(fFlags & kIsBlendFunction_Flag);
211 }
212
213 /**
214 * True if this FP refers directly to the sample coordinate parameter of its function
215 * (e.g. uses EmitArgs::fSampleCoord in emitCode()). This is decided at FP-tree construction
216 * time and is not affected by lifting coords to varyings.
217 */
usesSampleCoordsDirectly()218 bool usesSampleCoordsDirectly() const {
219 return SkToBool(fFlags & kUsesSampleCoordsDirectly_Flag);
220 }
221
222 /**
223 * True if this FP uses its input coordinates or if any descendant FP uses them through a chain
224 * of non-explicit sample usages. (e.g. uses EmitArgs::fSampleCoord in emitCode()). This is
225 * decided at FP-tree construction time and is not affected by lifting coords to varyings.
226 */
usesSampleCoords()227 bool usesSampleCoords() const {
228 return SkToBool(fFlags & (kUsesSampleCoordsDirectly_Flag |
229 kUsesSampleCoordsIndirectly_Flag));
230 }
231
232 // The SampleUsage describing how this FP is invoked by its parent. This only reflects the
233 // immediate sampling from parent to this FP.
sampleUsage()234 const SkSL::SampleUsage& sampleUsage() const {
235 return fUsage;
236 }
237
238 /**
239 * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color
240 * output under the following scenario:
241 * * all the color fragment processors report true to this query,
242 * * all the coverage fragment processors report true to this query,
243 * * the blend mode arithmetic allows for it it.
244 * To be compatible a fragment processor's output must be a modulation of its input color or
245 * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color
246 * or alpha that is modulated against the input cannot depend on the input's alpha. The computed
247 * value cannot depend on the input's color channels unless it unpremultiplies the input color
248 * channels by the input alpha.
249 */
compatibleWithCoverageAsAlpha()250 bool compatibleWithCoverageAsAlpha() const {
251 return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag);
252 }
253
254 /**
255 * If this is true then all opaque input colors to the processor produce opaque output colors.
256 */
preservesOpaqueInput()257 bool preservesOpaqueInput() const {
258 return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag);
259 }
260
261 /**
262 * Tests whether given a constant input color the processor produces a constant output color
263 * (for all fragments). If true outputColor will contain the constant color produces for
264 * inputColor.
265 */
hasConstantOutputForConstantInput(SkPMColor4f inputColor,SkPMColor4f * outputColor)266 bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const {
267 if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) {
268 *outputColor = this->constantOutputForConstantInput(inputColor);
269 return true;
270 }
271 return false;
272 }
hasConstantOutputForConstantInput()273 bool hasConstantOutputForConstantInput() const {
274 return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag);
275 }
276
277 /** Returns true if this and other processor conservatively draw identically. It can only return
278 true when the two processor are of the same subclass (i.e. they return the same object from
279 from getFactory()).
280
281 A return value of true from isEqual() should not be used to test whether the processor would
282 generate the same shader code. To test for identical code generation use addToKey.
283 */
284 bool isEqual(const GrFragmentProcessor& that) const;
285
286 void visitProxies(const GrVisitProxyFunc&) const;
287
288 void visitTextureEffects(const std::function<void(const GrTextureEffect&)>&) const;
289
290 void visitWithImpls(const std::function<void(const GrFragmentProcessor&, ProgramImpl&)>&,
291 ProgramImpl&) const;
292
293 GrTextureEffect* asTextureEffect();
294 const GrTextureEffect* asTextureEffect() const;
295
296 #if GR_TEST_UTILS
297 // Generates debug info for this processor tree by recursively calling dumpInfo() on this
298 // processor and its children.
299 SkString dumpTreeInfo() const;
300 #endif
301
302 protected:
303 enum OptimizationFlags : uint32_t {
304 kNone_OptimizationFlags,
305 kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1,
306 kPreservesOpaqueInput_OptimizationFlag = 0x2,
307 kConstantOutputForConstantInput_OptimizationFlag = 0x4,
308 kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag |
309 kPreservesOpaqueInput_OptimizationFlag |
310 kConstantOutputForConstantInput_OptimizationFlag
311 };
SK_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags)312 SK_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags)
313
314 /**
315 * Can be used as a helper to decide which fragment processor OptimizationFlags should be set.
316 * This assumes that the subclass output color will be a modulation of the input color with a
317 * value read from a texture of the passed color type and that the texture contains
318 * premultiplied color or alpha values that are in range.
319 *
320 * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped,
321 * callers must determine on their own if the sampling uses a decal strategy in any way, in
322 * which case the texture may become transparent regardless of the color type.
323 */
324 static OptimizationFlags ModulateForSamplerOptFlags(SkAlphaType alphaType, bool samplingDecal) {
325 if (samplingDecal) {
326 return kCompatibleWithCoverageAsAlpha_OptimizationFlag;
327 } else {
328 return ModulateForClampedSamplerOptFlags(alphaType);
329 }
330 }
331
332 // As above, but callers should somehow ensure or assert their sampler still uses clamping
ModulateForClampedSamplerOptFlags(SkAlphaType alphaType)333 static OptimizationFlags ModulateForClampedSamplerOptFlags(SkAlphaType alphaType) {
334 if (alphaType == kOpaque_SkAlphaType) {
335 return kCompatibleWithCoverageAsAlpha_OptimizationFlag |
336 kPreservesOpaqueInput_OptimizationFlag;
337 } else {
338 return kCompatibleWithCoverageAsAlpha_OptimizationFlag;
339 }
340 }
341
GrFragmentProcessor(ClassID classID,OptimizationFlags optimizationFlags)342 GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags)
343 : INHERITED(classID), fFlags(optimizationFlags) {
344 SkASSERT((optimizationFlags & ~kAll_OptimizationFlags) == 0);
345 }
346
GrFragmentProcessor(const GrFragmentProcessor & src)347 explicit GrFragmentProcessor(const GrFragmentProcessor& src)
348 : INHERITED(src.classID()), fFlags(src.fFlags) {
349 this->cloneAndRegisterAllChildProcessors(src);
350 }
351
optimizationFlags()352 OptimizationFlags optimizationFlags() const {
353 return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags);
354 }
355
356 /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/
ProcessorOptimizationFlags(const GrFragmentProcessor * fp)357 static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) {
358 return fp ? fp->optimizationFlags() : kAll_OptimizationFlags;
359 }
360
361 /**
362 * This allows one subclass to access another subclass's implementation of
363 * constantOutputForConstantInput. It must only be called when
364 * hasConstantOutputForConstantInput() is known to be true.
365 */
ConstantOutputForConstantInput(const GrFragmentProcessor * fp,const SkPMColor4f & input)366 static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor* fp,
367 const SkPMColor4f& input) {
368 if (fp) {
369 SkASSERT(fp->hasConstantOutputForConstantInput());
370 return fp->constantOutputForConstantInput(input);
371 } else {
372 return input;
373 }
374 }
375
376 /**
377 * FragmentProcessor subclasses call this from their constructor to register any child
378 * FragmentProcessors they have. This must be called AFTER all texture accesses and coord
379 * transforms have been added.
380 * This is for processors whose shader code will be composed of nested processors whose output
381 * colors will be combined somehow to produce its output color. Registering these child
382 * processors will allow the ProgramBuilder to automatically handle their transformed coords and
383 * texture accesses and mangle their uniform and output color names.
384 *
385 * The SampleUsage parameter describes all of the ways that the child is sampled by the parent.
386 */
387 void registerChild(std::unique_ptr<GrFragmentProcessor> child,
388 SkSL::SampleUsage sampleUsage = SkSL::SampleUsage::PassThrough());
389
390 /**
391 * This method takes an existing fragment processor, clones all of its children, and registers
392 * the clones as children of this fragment processor.
393 */
394 void cloneAndRegisterAllChildProcessors(const GrFragmentProcessor& src);
395
396 // FP implementations must call this function if their matching ProgramImpl's emitCode()
397 // function uses the EmitArgs::fSampleCoord variable in generated SkSL.
setUsesSampleCoordsDirectly()398 void setUsesSampleCoordsDirectly() {
399 fFlags |= kUsesSampleCoordsDirectly_Flag;
400 }
401
402 // FP implementations must set this flag if their ProgramImpl's emitCode() function calls
403 // dstColor() to read back the framebuffer.
setWillReadDstColor()404 void setWillReadDstColor() {
405 fFlags |= kWillReadDstColor_Flag;
406 }
407
408 // FP implementations must set this flag if their ProgramImpl's emitCode() function emits a
409 // blend function (taking two color inputs instead of just one).
setIsBlendFunction()410 void setIsBlendFunction() {
411 fFlags |= kIsBlendFunction_Flag;
412 }
413
mergeOptimizationFlags(OptimizationFlags flags)414 void mergeOptimizationFlags(OptimizationFlags flags) {
415 SkASSERT((flags & ~kAll_OptimizationFlags) == 0);
416 fFlags &= (flags | ~kAll_OptimizationFlags);
417 }
418
419 private:
constantOutputForConstantInput(const SkPMColor4f &)420 virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const {
421 SK_ABORT("Subclass must override this if advertising this optimization.");
422 }
423
424 /**
425 * Returns a new instance of the appropriate ProgramImpl subclass for the given
426 * GrFragmentProcessor. It will emit the appropriate code and live with the cached program
427 * to setup uniform data for each draw that uses the program.
428 */
429 virtual std::unique_ptr<ProgramImpl> onMakeProgramImpl() const = 0;
430
431 virtual void onAddToKey(const GrShaderCaps&, skgpu::KeyBuilder*) const = 0;
432
433 /**
434 * Subclass implements this to support isEqual(). It will only be called if it is known that
435 * the two processors are of the same subclass (i.e. have the same ClassID).
436 */
437 virtual bool onIsEqual(const GrFragmentProcessor&) const = 0;
438
439 enum PrivateFlags {
440 kFirstPrivateFlag = kAll_OptimizationFlags + 1,
441
442 // Propagates up the FP tree to either root or first explicit sample usage.
443 kUsesSampleCoordsIndirectly_Flag = kFirstPrivateFlag,
444
445 // Does not propagate at all. It means this FP uses its input sample coords in some way.
446 // Note passthrough and matrix sampling of children don't count as a usage of the coords.
447 // Because indirect sampling stops at an explicit sample usage it is imperative that a FP
448 // that calculates explicit coords for its children using its own sample coords sets this.
449 kUsesSampleCoordsDirectly_Flag = kFirstPrivateFlag << 1,
450
451 // Does not propagate at all.
452 kIsBlendFunction_Flag = kFirstPrivateFlag << 2,
453
454 // Propagates up the FP tree to the root.
455 kWillReadDstColor_Flag = kFirstPrivateFlag << 3,
456 };
457
458 SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors;
459 const GrFragmentProcessor* fParent = nullptr;
460 uint32_t fFlags = 0;
461 SkSL::SampleUsage fUsage;
462
463 using INHERITED = GrProcessor;
464 };
465
466 //////////////////////////////////////////////////////////////////////////////
467
468 class GrFragmentProcessor::ProgramImpl {
469 public:
470 ProgramImpl() = default;
471
472 virtual ~ProgramImpl() = default;
473
474 using UniformHandle = GrGLSLUniformHandler::UniformHandle;
475 using SamplerHandle = GrGLSLUniformHandler::SamplerHandle;
476
477 /** Called when the program stage should insert its code into the shaders. The code in each
478 shader will be in its own block ({}) and so locally scoped names will not collide across
479 stages.
480
481 @param fragBuilder Interface used to emit code in the shaders.
482 @param uniformHandler Interface used for accessing information about our uniforms
483 @param caps The capabilities of the GPU which will render this FP
484 @param fp The processor that generated this program stage.
485 @param inputColor A half4 that holds the input color to the stage in the FS (or the
486 source color, for blend processors). nullptr inputs are converted
487 to "half4(1.0)" (solid white) during construction.
488 TODO: Better system for communicating optimization info
489 (e.g. input color is solid white, trans black, known to be opaque,
490 etc.) that allows the processor to communicate back similar known
491 info about its output.
492 @param destColor A half4 that holds the dest color to the stage. Only meaningful
493 when the "is blend processor" FP flag is set.
494 @param sampleCoord The name of a local coord reference to a float2 variable. Only
495 meaningful when the "references sample coords" FP flag is set.
496 */
497 struct EmitArgs {
EmitArgsEmitArgs498 EmitArgs(GrGLSLFPFragmentBuilder* fragBuilder,
499 GrGLSLUniformHandler* uniformHandler,
500 const GrShaderCaps* caps,
501 const GrFragmentProcessor& fp,
502 const char* inputColor,
503 const char* destColor,
504 const char* sampleCoord)
505 : fFragBuilder(fragBuilder)
506 , fUniformHandler(uniformHandler)
507 , fShaderCaps(caps)
508 , fFp(fp)
509 , fInputColor(inputColor ? inputColor : "half4(1.0)")
510 , fDestColor(destColor)
511 , fSampleCoord(sampleCoord) {}
512 GrGLSLFPFragmentBuilder* fFragBuilder;
513 GrGLSLUniformHandler* fUniformHandler;
514 const GrShaderCaps* fShaderCaps;
515 const GrFragmentProcessor& fFp;
516 const char* fInputColor;
517 const char* fDestColor;
518 const char* fSampleCoord;
519 };
520
521 virtual void emitCode(EmitArgs&) = 0;
522
523 // This does not recurse to any attached child processors. Recursing the entire processor tree
524 // is the responsibility of the caller.
525 void setData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor);
526
numChildProcessors()527 int numChildProcessors() const { return fChildProcessors.size(); }
528
childProcessor(int index)529 ProgramImpl* childProcessor(int index) const { return fChildProcessors[index].get(); }
530
setFunctionName(SkString name)531 void setFunctionName(SkString name) {
532 SkASSERT(fFunctionName.isEmpty());
533 fFunctionName = std::move(name);
534 }
535
functionName()536 const char* functionName() const {
537 SkASSERT(!fFunctionName.isEmpty());
538 return fFunctionName.c_str();
539 }
540
541 // Invoke the child with the default input and destination colors (solid white)
542 inline SkString invokeChild(int childIndex,
543 EmitArgs& parentArgs,
544 std::string_view skslCoords = {}) {
545 return this->invokeChild(childIndex,
546 /*inputColor=*/nullptr,
547 /*destColor=*/nullptr,
548 parentArgs,
549 skslCoords);
550 }
551
invokeChildWithMatrix(int childIndex,EmitArgs & parentArgs)552 inline SkString invokeChildWithMatrix(int childIndex, EmitArgs& parentArgs) {
553 return this->invokeChildWithMatrix(childIndex,
554 /*inputColor=*/nullptr,
555 /*destColor=*/nullptr,
556 parentArgs);
557 }
558
559 // Invoke the child with the default destination color (solid white)
560 inline SkString invokeChild(int childIndex,
561 const char* inputColor,
562 EmitArgs& parentArgs,
563 std::string_view skslCoords = {}) {
564 return this->invokeChild(childIndex,
565 inputColor,
566 /*destColor=*/nullptr,
567 parentArgs,
568 skslCoords);
569 }
570
invokeChildWithMatrix(int childIndex,const char * inputColor,EmitArgs & parentArgs)571 inline SkString invokeChildWithMatrix(int childIndex,
572 const char* inputColor,
573 EmitArgs& parentArgs) {
574 return this->invokeChildWithMatrix(childIndex,
575 inputColor,
576 /*destColor=*/nullptr,
577 parentArgs);
578 }
579
580 /** Invokes a child proc in its own scope. Pass in the parent's EmitArgs and invokeChild will
581 * automatically extract the coords and samplers of that child and pass them on to the child's
582 * emitCode(). Also, any uniforms or functions emitted by the child will have their names
583 * mangled to prevent redefinitions. The returned string contains the output color (as a call
584 * to the child's helper function). It is legal to pass nullptr as inputColor, since all
585 * fragment processors are required to work without an input color.
586 *
587 * When skslCoords is empty, the child is invoked at the sample coordinates from parentArgs.
588 * When skslCoords is not empty, is must be an SkSL expression that evaluates to a float2.
589 * That expression is passed to the child's processor function as the "_coords" argument.
590 */
591 SkString invokeChild(int childIndex,
592 const char* inputColor,
593 const char* destColor,
594 EmitArgs& parentArgs,
595 std::string_view skslCoords = {});
596
597 /**
598 * As invokeChild, but transforms the coordinates according to the matrix expression attached
599 * to the child's SampleUsage object. This is only valid if the child is sampled with a
600 * const-uniform matrix.
601 */
602 SkString invokeChildWithMatrix(int childIndex,
603 const char* inputColor,
604 const char* destColor,
605 EmitArgs& parentArgs);
606
607 /**
608 * Pre-order traversal of a GLSLFP hierarchy, or of multiple trees with roots in an array of
609 * GLSLFPS. If initialized with an array color followed by coverage processors installed in a
610 * program thenthe iteration order will agree with a GrFragmentProcessor::Iter initialized with
611 * a GrPipeline that produces the same program key.
612 */
613 class Iter {
614 public:
615 Iter(std::unique_ptr<ProgramImpl> fps[], int cnt);
Iter(ProgramImpl & fp)616 Iter(ProgramImpl& fp) { fFPStack.push_back(&fp); }
617
618 ProgramImpl& operator*() const;
619 ProgramImpl* operator->() const;
620 Iter& operator++();
621 explicit operator bool() const { return !fFPStack.empty(); }
622
623 // Because each iterator carries a stack we want to avoid copies.
624 Iter(const Iter&) = delete;
625 Iter& operator=(const Iter&) = delete;
626
627 private:
628 SkSTArray<4, ProgramImpl*, true> fFPStack;
629 };
630
631 private:
632 /**
633 * A ProgramImpl instance can be reused with any GrFragmentProcessor that produces the same
634 * the same key; this function reads data from a GrFragmentProcessor and uploads any
635 * uniform variables required by the shaders created in emitCode(). The GrFragmentProcessor
636 * parameter is guaranteed to be of the same type that created this ProgramImpl and
637 * to have an identical key as the one that created this ProgramImpl.
638 */
onSetData(const GrGLSLProgramDataManager &,const GrFragmentProcessor &)639 virtual void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) {}
640
641 // The (mangled) name of our entry-point function
642 SkString fFunctionName;
643
644 SkTArray<std::unique_ptr<ProgramImpl>, true> fChildProcessors;
645
646 friend class GrFragmentProcessor;
647 };
648
649 //////////////////////////////////////////////////////////////////////////////
650
SK_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags)651 SK_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags)
652
653 static inline GrFPResult GrFPFailure(std::unique_ptr<GrFragmentProcessor> fp) {
654 return {false, std::move(fp)};
655 }
GrFPSuccess(std::unique_ptr<GrFragmentProcessor> fp)656 static inline GrFPResult GrFPSuccess(std::unique_ptr<GrFragmentProcessor> fp) {
657 SkASSERT(fp);
658 return {true, std::move(fp)};
659 }
660 // Equivalent to GrFPSuccess except it allows the returned fragment processor to be null.
GrFPNullableSuccess(std::unique_ptr<GrFragmentProcessor> fp)661 static inline GrFPResult GrFPNullableSuccess(std::unique_ptr<GrFragmentProcessor> fp) {
662 return {true, std::move(fp)};
663 }
664
665 #endif
666