• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/ganesh/geometry/GrPathUtils.h"
9 
10 #include "include/gpu/GrTypes.h"
11 #include "src/base/SkMathPriv.h"
12 #include "src/base/SkUtils.h"
13 #include "src/core/SkPointPriv.h"
14 #include "src/gpu/tessellate/WangsFormula.h"
15 
16 static const SkScalar kMinCurveTol = 0.0001f;
17 
tolerance_to_wangs_precision(float srcTol)18 static float tolerance_to_wangs_precision(float srcTol) {
19     // You should have called scaleToleranceToSrc, which guarantees this
20     SkASSERT(srcTol >= kMinCurveTol);
21 
22     // The GrPathUtil API defines tolerance as the max distance the linear segment can be from
23     // the real curve. Wang's formula guarantees the linear segments will be within 1/precision
24     // of the true curve, so precision = 1/srcTol
25     return 1.f / srcTol;
26 }
27 
max_bezier_vertices(uint32_t chopCount)28 uint32_t max_bezier_vertices(uint32_t chopCount) {
29     static constexpr uint32_t kMaxChopsPerCurve = 10;
30     static_assert((1 << kMaxChopsPerCurve) == GrPathUtils::kMaxPointsPerCurve);
31     return 1 << std::min(chopCount, kMaxChopsPerCurve);
32 }
33 
scaleToleranceToSrc(SkScalar devTol,const SkMatrix & viewM,const SkRect & pathBounds)34 SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
35                                           const SkMatrix& viewM,
36                                           const SkRect& pathBounds) {
37     // In order to tesselate the path we get a bound on how much the matrix can
38     // scale when mapping to screen coordinates.
39     SkScalar stretch = viewM.getMaxScale();
40 
41     if (stretch < 0) {
42         // take worst case mapRadius amoung four corners.
43         // (less than perfect)
44         for (int i = 0; i < 4; ++i) {
45             SkMatrix mat;
46             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
47                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
48             mat.postConcat(viewM);
49             stretch = std::max(stretch, mat.mapRadius(SK_Scalar1));
50         }
51     }
52     SkScalar srcTol = 0;
53     if (stretch <= 0) {
54         // We have degenerate bounds or some degenerate matrix. Thus we set the tolerance to be the
55         // max of the path pathBounds width and height.
56         srcTol = std::max(pathBounds.width(), pathBounds.height());
57     } else {
58         srcTol = devTol / stretch;
59     }
60     if (srcTol < kMinCurveTol) {
61         srcTol = kMinCurveTol;
62     }
63     return srcTol;
64 }
65 
quadraticPointCount(const SkPoint points[],SkScalar tol)66 uint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
67     return max_bezier_vertices(skgpu::wangs_formula::quadratic_log2(
68             tolerance_to_wangs_precision(tol), points));
69 }
70 
generateQuadraticPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)71 uint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
72                                               const SkPoint& p1,
73                                               const SkPoint& p2,
74                                               SkScalar tolSqd,
75                                               SkPoint** points,
76                                               uint32_t pointsLeft) {
77     if (pointsLeft < 2 ||
78         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) {
79         (*points)[0] = p2;
80         *points += 1;
81         return 1;
82     }
83 
84     SkPoint q[] = {
85         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
86         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
87     };
88     SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
89 
90     pointsLeft >>= 1;
91     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
92     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
93     return a + b;
94 }
95 
cubicPointCount(const SkPoint points[],SkScalar tol)96 uint32_t GrPathUtils::cubicPointCount(const SkPoint points[], SkScalar tol) {
97     return max_bezier_vertices(skgpu::wangs_formula::cubic_log2(
98             tolerance_to_wangs_precision(tol), points));
99 }
100 
generateCubicPoints(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2,const SkPoint & p3,SkScalar tolSqd,SkPoint ** points,uint32_t pointsLeft)101 uint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
102                                           const SkPoint& p1,
103                                           const SkPoint& p2,
104                                           const SkPoint& p3,
105                                           SkScalar tolSqd,
106                                           SkPoint** points,
107                                           uint32_t pointsLeft) {
108     if (pointsLeft < 2 ||
109         (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd &&
110          SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) {
111         (*points)[0] = p3;
112         *points += 1;
113         return 1;
114     }
115     SkPoint q[] = {
116         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
117         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
118         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
119     };
120     SkPoint r[] = {
121         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
122         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
123     };
124     SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
125     pointsLeft >>= 1;
126     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
127     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
128     return a + b;
129 }
130 
set(const SkPoint qPts[3])131 void GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
132     // We want M such that M * xy_pt = uv_pt
133     // We know M * control_pts = [0  1/2 1]
134     //                           [0  0   1]
135     //                           [1  1   1]
136     // And control_pts = [x0 x1 x2]
137     //                   [y0 y1 y2]
138     //                   [1  1  1 ]
139     // We invert the control pt matrix and post concat to both sides to get M.
140     // Using the known form of the control point matrix and the result, we can
141     // optimize and improve precision.
142 
143     double x0 = qPts[0].fX;
144     double y0 = qPts[0].fY;
145     double x1 = qPts[1].fX;
146     double y1 = qPts[1].fY;
147     double x2 = qPts[2].fX;
148     double y2 = qPts[2].fY;
149 
150     // pre-calculate some adjugate matrix factors for determinant
151     double a2 = x1*y2-x2*y1;
152     double a5 = x2*y0-x0*y2;
153     double a8 = x0*y1-x1*y0;
154     double det = a2 + a5 + a8;
155 
156     if (!sk_float_isfinite(det)
157         || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
158         // The quad is degenerate. Hopefully this is rare. Find the pts that are
159         // farthest apart to compute a line (unless it is really a pt).
160         SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]);
161         int maxEdge = 0;
162         SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]);
163         if (d > maxD) {
164             maxD = d;
165             maxEdge = 1;
166         }
167         d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]);
168         if (d > maxD) {
169             maxD = d;
170             maxEdge = 2;
171         }
172         // We could have a tolerance here, not sure if it would improve anything
173         if (maxD > 0) {
174             // Set the matrix to give (u = 0, v = distance_to_line)
175             SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
176             // when looking from the point 0 down the line we want positive
177             // distances to be to the left. This matches the non-degenerate
178             // case.
179             lineVec = SkPointPriv::MakeOrthog(lineVec, SkPointPriv::kLeft_Side);
180             // first row
181             fM[0] = 0;
182             fM[1] = 0;
183             fM[2] = 0;
184             // second row
185             fM[3] = lineVec.fX;
186             fM[4] = lineVec.fY;
187             fM[5] = -lineVec.dot(qPts[maxEdge]);
188         } else {
189             // It's a point. It should cover zero area. Just set the matrix such
190             // that (u, v) will always be far away from the quad.
191             fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
192             fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
193         }
194     } else {
195         double scale = 1.0/det;
196 
197         // compute adjugate matrix
198         double a3, a4, a6, a7;
199         a3 = y2-y0;
200         a4 = x0-x2;
201 
202         a6 = y0-y1;
203         a7 = x1-x0;
204 
205         // this performs the uv_pts*adjugate(control_pts) multiply,
206         // then does the scale by 1/det afterwards to improve precision
207         fM[0] = (float)((0.5*a3 + a6)*scale);
208         fM[1] = (float)((0.5*a4 + a7)*scale);
209         fM[2] = (float)((0.5*a5 + a8)*scale);
210         fM[3] = (float)(a6*scale);
211         fM[4] = (float)(a7*scale);
212         fM[5] = (float)(a8*scale);
213     }
214 }
215 
216 ////////////////////////////////////////////////////////////////////////////////
217 
218 // k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
219 // l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
220 // m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
getConicKLM(const SkPoint p[3],const SkScalar weight,SkMatrix * out)221 void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
222     SkMatrix& klm = *out;
223     const SkScalar w2 = 2.f * weight;
224     klm[0] = p[2].fY - p[0].fY;
225     klm[1] = p[0].fX - p[2].fX;
226     klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
227 
228     klm[3] = w2 * (p[1].fY - p[0].fY);
229     klm[4] = w2 * (p[0].fX - p[1].fX);
230     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
231 
232     klm[6] = w2 * (p[2].fY - p[1].fY);
233     klm[7] = w2 * (p[1].fX - p[2].fX);
234     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
235 
236     // scale the max absolute value of coeffs to 10
237     SkScalar scale = 0.f;
238     for (int i = 0; i < 9; ++i) {
239        scale = std::max(scale, SkScalarAbs(klm[i]));
240     }
241     SkASSERT(scale > 0.f);
242     scale = 10.f / scale;
243     for (int i = 0; i < 9; ++i) {
244         klm[i] *= scale;
245     }
246 }
247 
248 ////////////////////////////////////////////////////////////////////////////////
249 
250 namespace {
251 
252 // a is the first control point of the cubic.
253 // ab is the vector from a to the second control point.
254 // dc is the vector from the fourth to the third control point.
255 // d is the fourth control point.
256 // p is the candidate quadratic control point.
257 // this assumes that the cubic doesn't inflect and is simple
is_point_within_cubic_tangents(const SkPoint & a,const SkVector & ab,const SkVector & dc,const SkPoint & d,SkPathFirstDirection dir,const SkPoint p)258 bool is_point_within_cubic_tangents(const SkPoint& a,
259                                     const SkVector& ab,
260                                     const SkVector& dc,
261                                     const SkPoint& d,
262                                     SkPathFirstDirection dir,
263                                     const SkPoint p) {
264     SkVector ap = p - a;
265     SkScalar apXab = ap.cross(ab);
266     if (SkPathFirstDirection::kCW == dir) {
267         if (apXab > 0) {
268             return false;
269         }
270     } else {
271         SkASSERT(SkPathFirstDirection::kCCW == dir);
272         if (apXab < 0) {
273             return false;
274         }
275     }
276 
277     SkVector dp = p - d;
278     SkScalar dpXdc = dp.cross(dc);
279     if (SkPathFirstDirection::kCW == dir) {
280         if (dpXdc < 0) {
281             return false;
282         }
283     } else {
284         SkASSERT(SkPathFirstDirection::kCCW == dir);
285         if (dpXdc > 0) {
286             return false;
287         }
288     }
289     return true;
290 }
291 
convert_noninflect_cubic_to_quads(const SkPoint p[4],SkScalar toleranceSqd,SkTArray<SkPoint,true> * quads,int sublevel=0,bool preserveFirstTangent=true,bool preserveLastTangent=true)292 void convert_noninflect_cubic_to_quads(const SkPoint p[4],
293                                        SkScalar toleranceSqd,
294                                        SkTArray<SkPoint, true>* quads,
295                                        int sublevel = 0,
296                                        bool preserveFirstTangent = true,
297                                        bool preserveLastTangent = true) {
298     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
299     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
300     SkVector ab = p[1] - p[0];
301     SkVector dc = p[2] - p[3];
302 
303     if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
304         if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
305             SkPoint* degQuad = quads->push_back_n(3);
306             degQuad[0] = p[0];
307             degQuad[1] = p[0];
308             degQuad[2] = p[3];
309             return;
310         }
311         ab = p[2] - p[0];
312     }
313     if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
314         dc = p[1] - p[3];
315     }
316 
317     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
318     static const int kMaxSubdivs = 10;
319 
320     ab.scale(kLengthScale);
321     dc.scale(kLengthScale);
322 
323     // c0 and c1 are extrapolations along vectors ab and dc.
324     SkPoint c0 = p[0] + ab;
325     SkPoint c1 = p[3] + dc;
326 
327     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
328     if (dSqd < toleranceSqd) {
329         SkPoint newC;
330         if (preserveFirstTangent == preserveLastTangent) {
331             // We used to force a split when both tangents need to be preserved and c0 != c1.
332             // This introduced a large performance regression for tiny paths for no noticeable
333             // quality improvement. However, we aren't quite fulfilling our contract of guaranteeing
334             // the two tangent vectors and this could introduce a missed pixel in
335             // AAHairlinePathRenderer.
336             newC = (c0 + c1) * 0.5f;
337         } else if (preserveFirstTangent) {
338             newC = c0;
339         } else {
340             newC = c1;
341         }
342 
343         SkPoint* pts = quads->push_back_n(3);
344         pts[0] = p[0];
345         pts[1] = newC;
346         pts[2] = p[3];
347         return;
348     }
349     SkPoint choppedPts[7];
350     SkChopCubicAtHalf(p, choppedPts);
351     convert_noninflect_cubic_to_quads(
352             choppedPts + 0, toleranceSqd, quads, sublevel + 1, preserveFirstTangent, false);
353     convert_noninflect_cubic_to_quads(
354             choppedPts + 3, toleranceSqd, quads, sublevel + 1, false, preserveLastTangent);
355 }
356 
convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4],SkScalar toleranceSqd,SkPathFirstDirection dir,SkTArray<SkPoint,true> * quads,int sublevel=0)357 void convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4],
358                                                        SkScalar toleranceSqd,
359                                                        SkPathFirstDirection dir,
360                                                        SkTArray<SkPoint, true>* quads,
361                                                        int sublevel = 0) {
362     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
363     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
364 
365     SkVector ab = p[1] - p[0];
366     SkVector dc = p[2] - p[3];
367 
368     if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
369         if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
370             SkPoint* degQuad = quads->push_back_n(3);
371             degQuad[0] = p[0];
372             degQuad[1] = p[0];
373             degQuad[2] = p[3];
374             return;
375         }
376         ab = p[2] - p[0];
377     }
378     if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
379         dc = p[1] - p[3];
380     }
381 
382     // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
383     // constraint that the quad point falls between the tangents becomes hard to enforce and we are
384     // likely to hit the max subdivision count. However, in this case the cubic is approaching a
385     // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
386     // control points are very close to the baseline vector. If so then we just pick quadratic
387     // points on the control polygon.
388 
389     SkVector da = p[0] - p[3];
390     bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero ||
391                    SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero;
392     if (!doQuads) {
393         SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da);
394         if (invDALengthSqd > SK_ScalarNearlyZero) {
395             invDALengthSqd = SkScalarInvert(invDALengthSqd);
396             // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
397             // same goes for point c using vector cd.
398             SkScalar detABSqd = ab.cross(da);
399             detABSqd = SkScalarSquare(detABSqd);
400             SkScalar detDCSqd = dc.cross(da);
401             detDCSqd = SkScalarSquare(detDCSqd);
402             if (detABSqd * invDALengthSqd < toleranceSqd &&
403                 detDCSqd * invDALengthSqd < toleranceSqd) {
404                 doQuads = true;
405             }
406         }
407     }
408     if (doQuads) {
409         SkPoint b = p[0] + ab;
410         SkPoint c = p[3] + dc;
411         SkPoint mid = b + c;
412         mid.scale(SK_ScalarHalf);
413         // Insert two quadratics to cover the case when ab points away from d and/or dc
414         // points away from a.
415         if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab, da) > 0) {
416             SkPoint* qpts = quads->push_back_n(6);
417             qpts[0] = p[0];
418             qpts[1] = b;
419             qpts[2] = mid;
420             qpts[3] = mid;
421             qpts[4] = c;
422             qpts[5] = p[3];
423         } else {
424             SkPoint* qpts = quads->push_back_n(3);
425             qpts[0] = p[0];
426             qpts[1] = mid;
427             qpts[2] = p[3];
428         }
429         return;
430     }
431 
432     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
433     static const int kMaxSubdivs = 10;
434 
435     ab.scale(kLengthScale);
436     dc.scale(kLengthScale);
437 
438     // c0 and c1 are extrapolations along vectors ab and dc.
439     SkVector c0 = p[0] + ab;
440     SkVector c1 = p[3] + dc;
441 
442     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
443     if (dSqd < toleranceSqd) {
444         SkPoint cAvg = (c0 + c1) * 0.5f;
445         bool subdivide = false;
446 
447         if (!is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
448             // choose a new cAvg that is the intersection of the two tangent lines.
449             ab = SkPointPriv::MakeOrthog(ab);
450             SkScalar z0 = -ab.dot(p[0]);
451             dc = SkPointPriv::MakeOrthog(dc);
452             SkScalar z1 = -dc.dot(p[3]);
453             cAvg.fX = ab.fY * z1 - z0 * dc.fY;
454             cAvg.fY = z0 * dc.fX - ab.fX * z1;
455             SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
456             z = SkScalarInvert(z);
457             cAvg.fX *= z;
458             cAvg.fY *= z;
459             if (sublevel <= kMaxSubdivs) {
460                 SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg);
461                 SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg);
462                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
463                 // the distances and tolerance can't be negative.
464                 // (d0 + d1)^2 > toleranceSqd
465                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
466                 SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
467                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
468             }
469         }
470         if (!subdivide) {
471             SkPoint* pts = quads->push_back_n(3);
472             pts[0] = p[0];
473             pts[1] = cAvg;
474             pts[2] = p[3];
475             return;
476         }
477     }
478     SkPoint choppedPts[7];
479     SkChopCubicAtHalf(p, choppedPts);
480     convert_noninflect_cubic_to_quads_with_constraint(
481             choppedPts + 0, toleranceSqd, dir, quads, sublevel + 1);
482     convert_noninflect_cubic_to_quads_with_constraint(
483             choppedPts + 3, toleranceSqd, dir, quads, sublevel + 1);
484 }
485 }  // namespace
486 
convertCubicToQuads(const SkPoint p[4],SkScalar tolScale,SkTArray<SkPoint,true> * quads)487 void GrPathUtils::convertCubicToQuads(const SkPoint p[4],
488                                       SkScalar tolScale,
489                                       SkTArray<SkPoint, true>* quads) {
490     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
491         return;
492     }
493     if (!SkScalarIsFinite(tolScale)) {
494         return;
495     }
496     SkPoint chopped[10];
497     int count = SkChopCubicAtInflections(p, chopped);
498 
499     const SkScalar tolSqd = SkScalarSquare(tolScale);
500 
501     for (int i = 0; i < count; ++i) {
502         SkPoint* cubic = chopped + 3*i;
503         convert_noninflect_cubic_to_quads(cubic, tolSqd, quads);
504     }
505 }
506 
convertCubicToQuadsConstrainToTangents(const SkPoint p[4],SkScalar tolScale,SkPathFirstDirection dir,SkTArray<SkPoint,true> * quads)507 void GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
508                                                          SkScalar tolScale,
509                                                          SkPathFirstDirection dir,
510                                                          SkTArray<SkPoint, true>* quads) {
511     if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
512         return;
513     }
514     if (!SkScalarIsFinite(tolScale)) {
515         return;
516     }
517     SkPoint chopped[10];
518     int count = SkChopCubicAtInflections(p, chopped);
519 
520     const SkScalar tolSqd = SkScalarSquare(tolScale);
521 
522     for (int i = 0; i < count; ++i) {
523         SkPoint* cubic = chopped + 3*i;
524         convert_noninflect_cubic_to_quads_with_constraint(cubic, tolSqd, dir, quads);
525     }
526 }
527