• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //    http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "Renderer.hpp"
16 
17 #include "Clipper.hpp"
18 #include "Polygon.hpp"
19 #include "Primitive.hpp"
20 #include "Vertex.hpp"
21 #include "Pipeline/Constants.hpp"
22 #include "Pipeline/SpirvShader.hpp"
23 #include "Reactor/Reactor.hpp"
24 #include "System/Debug.hpp"
25 #include "System/Half.hpp"
26 #include "System/Math.hpp"
27 #include "System/Memory.hpp"
28 #include "System/Timer.hpp"
29 #include "Vulkan/VkConfig.hpp"
30 #include "Vulkan/VkDescriptorSet.hpp"
31 #include "Vulkan/VkDevice.hpp"
32 #include "Vulkan/VkFence.hpp"
33 #include "Vulkan/VkImageView.hpp"
34 #include "Vulkan/VkPipelineLayout.hpp"
35 #include "Vulkan/VkQueryPool.hpp"
36 
37 #include "marl/containers.h"
38 #include "marl/defer.h"
39 #include "marl/trace.h"
40 
41 #undef max
42 
43 #ifndef NDEBUG
44 unsigned int minPrimitives = 1;
45 unsigned int maxPrimitives = 1 << 21;
46 #endif
47 
48 namespace sw {
49 
50 template<typename T>
setBatchIndices(unsigned int batch[128][3],VkPrimitiveTopology topology,VkProvokingVertexModeEXT provokingVertexMode,T indices,unsigned int start,unsigned int triangleCount)51 inline bool setBatchIndices(unsigned int batch[128][3], VkPrimitiveTopology topology, VkProvokingVertexModeEXT provokingVertexMode, T indices, unsigned int start, unsigned int triangleCount)
52 {
53 	bool provokeFirst = (provokingVertexMode == VK_PROVOKING_VERTEX_MODE_FIRST_VERTEX_EXT);
54 
55 	switch(topology)
56 	{
57 	case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
58 		{
59 			auto index = start;
60 			auto pointBatch = &(batch[0][0]);
61 			for(unsigned int i = 0; i < triangleCount; i++)
62 			{
63 				*pointBatch++ = indices[index++];
64 			}
65 
66 			// Repeat the last index to allow for SIMD width overrun.
67 			index--;
68 			for(unsigned int i = 0; i < 3; i++)
69 			{
70 				*pointBatch++ = indices[index];
71 			}
72 		}
73 		break;
74 	case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
75 		{
76 			auto index = 2 * start;
77 			for(unsigned int i = 0; i < triangleCount; i++)
78 			{
79 				batch[i][0] = indices[index + (provokeFirst ? 0 : 1)];
80 				batch[i][1] = indices[index + (provokeFirst ? 1 : 0)];
81 				batch[i][2] = indices[index + 1];
82 
83 				index += 2;
84 			}
85 		}
86 		break;
87 	case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
88 		{
89 			auto index = start;
90 			for(unsigned int i = 0; i < triangleCount; i++)
91 			{
92 				batch[i][0] = indices[index + (provokeFirst ? 0 : 1)];
93 				batch[i][1] = indices[index + (provokeFirst ? 1 : 0)];
94 				batch[i][2] = indices[index + 1];
95 
96 				index += 1;
97 			}
98 		}
99 		break;
100 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
101 		{
102 			auto index = 3 * start;
103 			for(unsigned int i = 0; i < triangleCount; i++)
104 			{
105 				batch[i][0] = indices[index + (provokeFirst ? 0 : 2)];
106 				batch[i][1] = indices[index + (provokeFirst ? 1 : 0)];
107 				batch[i][2] = indices[index + (provokeFirst ? 2 : 1)];
108 
109 				index += 3;
110 			}
111 		}
112 		break;
113 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
114 		{
115 			auto index = start;
116 			for(unsigned int i = 0; i < triangleCount; i++)
117 			{
118 				batch[i][0] = indices[index + (provokeFirst ? 0 : 2)];
119 				batch[i][1] = indices[index + ((start + i) & 1) + (provokeFirst ? 1 : 0)];
120 				batch[i][2] = indices[index + (~(start + i) & 1) + (provokeFirst ? 1 : 0)];
121 
122 				index += 1;
123 			}
124 		}
125 		break;
126 	case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
127 		{
128 			auto index = start + 1;
129 			for(unsigned int i = 0; i < triangleCount; i++)
130 			{
131 				batch[i][provokeFirst ? 0 : 2] = indices[index + 0];
132 				batch[i][provokeFirst ? 1 : 0] = indices[index + 1];
133 				batch[i][provokeFirst ? 2 : 1] = indices[0];
134 
135 				index += 1;
136 			}
137 		}
138 		break;
139 	default:
140 		ASSERT(false);
141 		return false;
142 	}
143 
144 	return true;
145 }
146 
DrawCall()147 DrawCall::DrawCall()
148 {
149 	// TODO(b/140991626): Use allocateUninitialized() instead of allocateZeroOrPoison() to improve startup peformance.
150 	data = (DrawData *)sw::allocateZeroOrPoison(sizeof(DrawData));
151 }
152 
~DrawCall()153 DrawCall::~DrawCall()
154 {
155 	sw::freeMemory(data);
156 }
157 
Renderer(vk::Device * device)158 Renderer::Renderer(vk::Device *device)
159     : device(device)
160 {
161 	vertexProcessor.setRoutineCacheSize(1024);
162 	pixelProcessor.setRoutineCacheSize(1024);
163 	setupProcessor.setRoutineCacheSize(1024);
164 }
165 
~Renderer()166 Renderer::~Renderer()
167 {
168 	drawTickets.take().wait();
169 }
170 
171 // Renderer objects have to be mem aligned to the alignment provided in the class declaration
operator new(size_t size)172 void *Renderer::operator new(size_t size)
173 {
174 	ASSERT(size == sizeof(Renderer));  // This operator can't be called from a derived class
175 	return vk::allocateHostMemory(sizeof(Renderer), alignof(Renderer), vk::NULL_ALLOCATION_CALLBACKS, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
176 }
177 
operator delete(void * mem)178 void Renderer::operator delete(void *mem)
179 {
180 	vk::freeHostMemory(mem, vk::NULL_ALLOCATION_CALLBACKS);
181 }
182 
draw(const vk::GraphicsPipeline * pipeline,const vk::DynamicState & dynamicState,unsigned int count,int baseVertex,CountedEvent * events,int instanceID,int layer,void * indexBuffer,const VkRect2D & renderArea,const vk::Pipeline::PushConstantStorage & pushConstants,bool update)183 void Renderer::draw(const vk::GraphicsPipeline *pipeline, const vk::DynamicState &dynamicState, unsigned int count, int baseVertex,
184                     CountedEvent *events, int instanceID, int layer, void *indexBuffer, const VkRect2D &renderArea,
185                     const vk::Pipeline::PushConstantStorage &pushConstants, bool update)
186 {
187 	if(count == 0) { return; }
188 
189 	auto id = nextDrawID++;
190 	MARL_SCOPED_EVENT("draw %d", id);
191 
192 	marl::Pool<sw::DrawCall>::Loan draw;
193 	{
194 		MARL_SCOPED_EVENT("drawCallPool.borrow()");
195 		draw = drawCallPool.borrow();
196 	}
197 	draw->id = id;
198 
199 	const vk::GraphicsState &pipelineState = pipeline->getCombinedState(dynamicState);
200 
201 	// A graphics pipeline must always be "complete" before it can be used for drawing.  A
202 	// complete graphics pipeline always includes the vertex input interface and
203 	// pre-rasterization subsets, but only includes fragment and fragment output interface
204 	// subsets if rasterizer discard is not enabled.
205 	//
206 	// Note that in the following, the setupPrimitives, setupRoutine and pixelRoutine functions
207 	// are only called when rasterizer discard is not enabled.  If rasterizer discard is
208 	// enabled, these functions and state for the latter two states are not set.
209 	const vk::VertexInputInterfaceState &vertexInputInterfaceState = pipelineState.getVertexInputInterfaceState();
210 	const vk::PreRasterizationState &preRasterizationState = pipelineState.getPreRasterizationState();
211 	const vk::FragmentState *fragmentState = nullptr;
212 	const vk::FragmentOutputInterfaceState *fragmentOutputInterfaceState = nullptr;
213 
214 	const bool hasRasterizerDiscard = preRasterizationState.hasRasterizerDiscard();
215 	if(!hasRasterizerDiscard)
216 	{
217 		fragmentState = &pipelineState.getFragmentState();
218 		fragmentOutputInterfaceState = &pipelineState.getFragmentOutputInterfaceState();
219 
220 		pixelProcessor.setBlendConstant(fragmentOutputInterfaceState->getBlendConstants());
221 	}
222 
223 	const vk::Inputs &inputs = pipeline->getInputs();
224 
225 	if(update)
226 	{
227 		MARL_SCOPED_EVENT("update");
228 
229 		const sw::SpirvShader *fragmentShader = pipeline->getShader(VK_SHADER_STAGE_FRAGMENT_BIT).get();
230 		const sw::SpirvShader *vertexShader = pipeline->getShader(VK_SHADER_STAGE_VERTEX_BIT).get();
231 
232 		const vk::Attachments attachments = pipeline->getAttachments();
233 
234 		vertexState = vertexProcessor.update(pipelineState, vertexShader, inputs);
235 		vertexRoutine = vertexProcessor.routine(vertexState, preRasterizationState.getPipelineLayout(), vertexShader, inputs.getDescriptorSets());
236 
237 		if(!hasRasterizerDiscard)
238 		{
239 			setupState = setupProcessor.update(pipelineState, fragmentShader, vertexShader, attachments);
240 			setupRoutine = setupProcessor.routine(setupState);
241 
242 			pixelState = pixelProcessor.update(pipelineState, fragmentShader, vertexShader, attachments, hasOcclusionQuery());
243 			pixelRoutine = pixelProcessor.routine(pixelState, fragmentState->getPipelineLayout(), fragmentShader, inputs.getDescriptorSets());
244 		}
245 	}
246 
247 	draw->preRasterizationContainsImageWrite = pipeline->preRasterizationContainsImageWrite();
248 	draw->fragmentContainsImageWrite = pipeline->fragmentContainsImageWrite();
249 
250 	// The sample count affects the batch size even if rasterization is disabled.
251 	// TODO(b/147812380): Eliminate the dependency between multisampling and batch size.
252 	int ms = hasRasterizerDiscard ? 1 : fragmentOutputInterfaceState->getSampleCount();
253 	ASSERT(ms > 0);
254 
255 	unsigned int numPrimitivesPerBatch = MaxBatchSize / ms;
256 
257 	DrawData *data = draw->data;
258 	draw->occlusionQuery = occlusionQuery;
259 	draw->batchDataPool = &batchDataPool;
260 	draw->numPrimitives = count;
261 	draw->numPrimitivesPerBatch = numPrimitivesPerBatch;
262 	draw->numBatches = (count + draw->numPrimitivesPerBatch - 1) / draw->numPrimitivesPerBatch;
263 	draw->topology = vertexInputInterfaceState.getTopology();
264 	draw->provokingVertexMode = preRasterizationState.getProvokingVertexMode();
265 	draw->lineRasterizationMode = preRasterizationState.getLineRasterizationMode();
266 	draw->descriptorSetObjects = inputs.getDescriptorSetObjects();
267 	draw->preRasterizationPipelineLayout = preRasterizationState.getPipelineLayout();
268 	draw->depthClipEnable = preRasterizationState.getDepthClipEnable();
269 	draw->depthClipNegativeOneToOne = preRasterizationState.getDepthClipNegativeOneToOne();
270 	data->lineWidth = preRasterizationState.getLineWidth();
271 	data->rasterizerDiscard = hasRasterizerDiscard;
272 
273 	data->descriptorSets = inputs.getDescriptorSets();
274 	data->descriptorDynamicOffsets = inputs.getDescriptorDynamicOffsets();
275 
276 	for(int i = 0; i < MAX_INTERFACE_COMPONENTS / 4; i++)
277 	{
278 		const sw::Stream &stream = inputs.getStream(i);
279 		data->input[i] = stream.buffer;
280 		data->robustnessSize[i] = stream.robustnessSize;
281 		data->stride[i] = inputs.getVertexStride(i, vertexInputInterfaceState.hasDynamicVertexStride());
282 	}
283 
284 	data->indices = indexBuffer;
285 	data->layer = layer;
286 	data->instanceID = instanceID;
287 	data->baseVertex = baseVertex;
288 
289 	if(indexBuffer)
290 	{
291 		draw->indexType = pipeline->getIndexBuffer().getIndexType();
292 	}
293 
294 	draw->vertexRoutine = vertexRoutine;
295 
296 	vk::DescriptorSet::PrepareForSampling(draw->descriptorSetObjects, draw->preRasterizationPipelineLayout, device);
297 
298 	// Viewport
299 	{
300 		const VkViewport &viewport = preRasterizationState.getViewport();
301 
302 		float W = 0.5f * viewport.width;
303 		float H = 0.5f * viewport.height;
304 		float X0 = viewport.x + W;
305 		float Y0 = viewport.y + H;
306 		float N = viewport.minDepth;
307 		float F = viewport.maxDepth;
308 		float Z = F - N;
309 		constexpr float subPixF = vk::SUBPIXEL_PRECISION_FACTOR;
310 
311 		data->WxF = W * subPixF;
312 		data->HxF = H * subPixF;
313 		data->X0xF = X0 * subPixF - subPixF / 2;
314 		data->Y0xF = Y0 * subPixF - subPixF / 2;
315 		data->halfPixelX = 0.5f / W;
316 		data->halfPixelY = 0.5f / H;
317 		data->depthRange = Z;
318 		data->depthNear = N;
319 		data->constantDepthBias = preRasterizationState.getConstantDepthBias();
320 		data->slopeDepthBias = preRasterizationState.getSlopeDepthBias();
321 		data->depthBiasClamp = preRasterizationState.getDepthBiasClamp();
322 
323 		// Adjust viewport transform based on the negativeOneToOne state.
324 		if(preRasterizationState.getDepthClipNegativeOneToOne())
325 		{
326 			data->depthRange = Z * 0.5f;
327 			data->depthNear = (F + N) * 0.5f;
328 		}
329 	}
330 
331 	// Scissor
332 	{
333 		const VkRect2D &scissor = preRasterizationState.getScissor();
334 
335 		int x0 = renderArea.offset.x;
336 		int y0 = renderArea.offset.y;
337 		int x1 = x0 + renderArea.extent.width;
338 		int y1 = y0 + renderArea.extent.height;
339 		data->scissorX0 = clamp<int>(scissor.offset.x, x0, x1);
340 		data->scissorX1 = clamp<int>(scissor.offset.x + scissor.extent.width, x0, x1);
341 		data->scissorY0 = clamp<int>(scissor.offset.y, y0, y1);
342 		data->scissorY1 = clamp<int>(scissor.offset.y + scissor.extent.height, y0, y1);
343 	}
344 
345 	if(!hasRasterizerDiscard)
346 	{
347 		const VkPolygonMode polygonMode = preRasterizationState.getPolygonMode();
348 
349 		DrawCall::SetupFunction setupPrimitives = nullptr;
350 		if(vertexInputInterfaceState.isDrawTriangle(false, polygonMode))
351 		{
352 			switch(preRasterizationState.getPolygonMode())
353 			{
354 			case VK_POLYGON_MODE_FILL:
355 				setupPrimitives = &DrawCall::setupSolidTriangles;
356 				break;
357 			case VK_POLYGON_MODE_LINE:
358 				setupPrimitives = &DrawCall::setupWireframeTriangles;
359 				numPrimitivesPerBatch /= 3;
360 				break;
361 			case VK_POLYGON_MODE_POINT:
362 				setupPrimitives = &DrawCall::setupPointTriangles;
363 				numPrimitivesPerBatch /= 3;
364 				break;
365 			default:
366 				UNSUPPORTED("polygon mode: %d", int(preRasterizationState.getPolygonMode()));
367 				return;
368 			}
369 		}
370 		else if(vertexInputInterfaceState.isDrawLine(false, polygonMode))
371 		{
372 			setupPrimitives = &DrawCall::setupLines;
373 		}
374 		else  // Point primitive topology
375 		{
376 			setupPrimitives = &DrawCall::setupPoints;
377 		}
378 
379 		draw->setupState = setupState;
380 		draw->setupRoutine = setupRoutine;
381 		draw->pixelRoutine = pixelRoutine;
382 		draw->setupPrimitives = setupPrimitives;
383 		draw->fragmentPipelineLayout = fragmentState->getPipelineLayout();
384 
385 		if(pixelState.stencilActive)
386 		{
387 			data->stencil[0].set(fragmentState->getFrontStencil().reference, fragmentState->getFrontStencil().compareMask, fragmentState->getFrontStencil().writeMask);
388 			data->stencil[1].set(fragmentState->getBackStencil().reference, fragmentState->getBackStencil().compareMask, fragmentState->getBackStencil().writeMask);
389 		}
390 
391 		data->factor = pixelProcessor.factor;
392 
393 		if(pixelState.alphaToCoverage)
394 		{
395 			if(ms == 4)
396 			{
397 				data->a2c0 = 0.2f;
398 				data->a2c1 = 0.4f;
399 				data->a2c2 = 0.6f;
400 				data->a2c3 = 0.8f;
401 			}
402 			else if(ms == 2)
403 			{
404 				data->a2c0 = 0.25f;
405 				data->a2c1 = 0.75f;
406 			}
407 			else if(ms == 1)
408 			{
409 				data->a2c0 = 0.5f;
410 			}
411 			else
412 				ASSERT(false);
413 		}
414 
415 		if(pixelState.occlusionEnabled)
416 		{
417 			for(int cluster = 0; cluster < MaxClusterCount; cluster++)
418 			{
419 				data->occlusion[cluster] = 0;
420 			}
421 		}
422 
423 		// Viewport
424 		{
425 			const vk::Attachments attachments = pipeline->getAttachments();
426 			if(attachments.depthBuffer)
427 			{
428 				switch(attachments.depthBuffer->getFormat(VK_IMAGE_ASPECT_DEPTH_BIT))
429 				{
430 				case VK_FORMAT_D16_UNORM:
431 					// Minimum is 1 unit, but account for potential floating-point rounding errors
432 					data->minimumResolvableDepthDifference = 1.01f / 0xFFFF;
433 					break;
434 				case VK_FORMAT_D32_SFLOAT:
435 					// The minimum resolvable depth difference is determined per-polygon for floating-point depth
436 					// buffers. DrawData::minimumResolvableDepthDifference is unused.
437 					break;
438 				default:
439 					UNSUPPORTED("Depth format: %d", int(attachments.depthBuffer->getFormat(VK_IMAGE_ASPECT_DEPTH_BIT)));
440 				}
441 			}
442 		}
443 
444 		// Target
445 		{
446 			const vk::Attachments attachments = pipeline->getAttachments();
447 
448 			for(int index = 0; index < MAX_COLOR_BUFFERS; index++)
449 			{
450 				draw->colorBuffer[index] = attachments.colorBuffer[index];
451 
452 				if(draw->colorBuffer[index])
453 				{
454 					data->colorBuffer[index] = (unsigned int *)attachments.colorBuffer[index]->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_COLOR_BIT, 0, data->layer);
455 					data->colorPitchB[index] = attachments.colorBuffer[index]->rowPitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
456 					data->colorSliceB[index] = attachments.colorBuffer[index]->slicePitchBytes(VK_IMAGE_ASPECT_COLOR_BIT, 0);
457 				}
458 			}
459 
460 			draw->depthBuffer = attachments.depthBuffer;
461 			draw->stencilBuffer = attachments.stencilBuffer;
462 
463 			if(draw->depthBuffer)
464 			{
465 				data->depthBuffer = (float *)attachments.depthBuffer->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_DEPTH_BIT, 0, data->layer);
466 				data->depthPitchB = attachments.depthBuffer->rowPitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0);
467 				data->depthSliceB = attachments.depthBuffer->slicePitchBytes(VK_IMAGE_ASPECT_DEPTH_BIT, 0);
468 			}
469 
470 			if(draw->stencilBuffer)
471 			{
472 				data->stencilBuffer = (unsigned char *)attachments.stencilBuffer->getOffsetPointer({ 0, 0, 0 }, VK_IMAGE_ASPECT_STENCIL_BIT, 0, data->layer);
473 				data->stencilPitchB = attachments.stencilBuffer->rowPitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
474 				data->stencilSliceB = attachments.stencilBuffer->slicePitchBytes(VK_IMAGE_ASPECT_STENCIL_BIT, 0);
475 			}
476 		}
477 
478 		if(draw->fragmentPipelineLayout != draw->preRasterizationPipelineLayout)
479 		{
480 			vk::DescriptorSet::PrepareForSampling(draw->descriptorSetObjects, draw->fragmentPipelineLayout, device);
481 		}
482 	}
483 
484 	// Push constants
485 	{
486 		data->pushConstants = pushConstants;
487 	}
488 
489 	draw->events = events;
490 
491 	DrawCall::run(device, draw, &drawTickets, clusterQueues);
492 }
493 
setup()494 void DrawCall::setup()
495 {
496 	if(occlusionQuery != nullptr)
497 	{
498 		occlusionQuery->start();
499 	}
500 
501 	if(events)
502 	{
503 		events->add();
504 	}
505 }
506 
teardown(vk::Device * device)507 void DrawCall::teardown(vk::Device *device)
508 {
509 	if(events)
510 	{
511 		events->done();
512 		events = nullptr;
513 	}
514 
515 	vertexRoutine = {};
516 	setupRoutine = {};
517 	pixelRoutine = {};
518 
519 	if(preRasterizationContainsImageWrite)
520 	{
521 		vk::DescriptorSet::ContentsChanged(descriptorSetObjects, preRasterizationPipelineLayout, device);
522 	}
523 
524 	if(!data->rasterizerDiscard)
525 	{
526 		if(occlusionQuery != nullptr)
527 		{
528 			for(int cluster = 0; cluster < MaxClusterCount; cluster++)
529 			{
530 				occlusionQuery->add(data->occlusion[cluster]);
531 			}
532 			occlusionQuery->finish();
533 		}
534 
535 		for(auto *target : colorBuffer)
536 		{
537 			if(target)
538 			{
539 				target->contentsChanged(vk::Image::DIRECT_MEMORY_ACCESS);
540 			}
541 		}
542 
543 		// If pre-rasterization and fragment use the same pipeline, and pre-rasterization
544 		// also contains image writes, don't double-notify the descriptor set.
545 		const bool descSetAlreadyNotified = preRasterizationContainsImageWrite && fragmentPipelineLayout == preRasterizationPipelineLayout;
546 		if(fragmentContainsImageWrite && !descSetAlreadyNotified)
547 		{
548 			vk::DescriptorSet::ContentsChanged(descriptorSetObjects, fragmentPipelineLayout, device);
549 		}
550 	}
551 }
552 
run(vk::Device * device,const marl::Loan<DrawCall> & draw,marl::Ticket::Queue * tickets,marl::Ticket::Queue clusterQueues[MaxClusterCount])553 void DrawCall::run(vk::Device *device, const marl::Loan<DrawCall> &draw, marl::Ticket::Queue *tickets, marl::Ticket::Queue clusterQueues[MaxClusterCount])
554 {
555 	draw->setup();
556 
557 	const auto numPrimitives = draw->numPrimitives;
558 	const auto numPrimitivesPerBatch = draw->numPrimitivesPerBatch;
559 	const auto numBatches = draw->numBatches;
560 
561 	auto ticket = tickets->take();
562 	auto finally = marl::make_shared_finally([device, draw, ticket] {
563 		MARL_SCOPED_EVENT("FINISH draw %d", draw->id);
564 		draw->teardown(device);
565 		ticket.done();
566 	});
567 
568 	for(unsigned int batchId = 0; batchId < numBatches; batchId++)
569 	{
570 		auto batch = draw->batchDataPool->borrow();
571 		batch->id = batchId;
572 		batch->firstPrimitive = batch->id * numPrimitivesPerBatch;
573 		batch->numPrimitives = std::min(batch->firstPrimitive + numPrimitivesPerBatch, numPrimitives) - batch->firstPrimitive;
574 
575 		for(int cluster = 0; cluster < MaxClusterCount; cluster++)
576 		{
577 			batch->clusterTickets[cluster] = std::move(clusterQueues[cluster].take());
578 		}
579 
580 		marl::schedule([device, draw, batch, finally] {
581 			processVertices(device, draw.get(), batch.get());
582 
583 			if(!draw->data->rasterizerDiscard)
584 			{
585 				processPrimitives(device, draw.get(), batch.get());
586 
587 				if(batch->numVisible > 0)
588 				{
589 					processPixels(device, draw, batch, finally);
590 					return;
591 				}
592 			}
593 
594 			for(int cluster = 0; cluster < MaxClusterCount; cluster++)
595 			{
596 				batch->clusterTickets[cluster].done();
597 			}
598 		});
599 	}
600 }
601 
processVertices(vk::Device * device,DrawCall * draw,BatchData * batch)602 void DrawCall::processVertices(vk::Device *device, DrawCall *draw, BatchData *batch)
603 {
604 	MARL_SCOPED_EVENT("VERTEX draw %d, batch %d", draw->id, batch->id);
605 
606 	unsigned int triangleIndices[MaxBatchSize + 1][3];  // One extra for SIMD width overrun. TODO: Adjust to dynamic batch size.
607 	{
608 		MARL_SCOPED_EVENT("processPrimitiveVertices");
609 		processPrimitiveVertices(
610 		    triangleIndices,
611 		    draw->data->indices,
612 		    draw->indexType,
613 		    batch->firstPrimitive,
614 		    batch->numPrimitives,
615 		    draw->topology,
616 		    draw->provokingVertexMode);
617 	}
618 
619 	auto &vertexTask = batch->vertexTask;
620 	vertexTask.primitiveStart = batch->firstPrimitive;
621 	// We're only using batch compaction for points, not lines
622 	vertexTask.vertexCount = batch->numPrimitives * ((draw->topology == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) ? 1 : 3);
623 	if(vertexTask.vertexCache.drawCall != draw->id)
624 	{
625 		vertexTask.vertexCache.clear();
626 		vertexTask.vertexCache.drawCall = draw->id;
627 	}
628 
629 	draw->vertexRoutine(device, &batch->triangles.front().v0, &triangleIndices[0][0], &vertexTask, draw->data);
630 }
631 
processPrimitives(vk::Device * device,DrawCall * draw,BatchData * batch)632 void DrawCall::processPrimitives(vk::Device *device, DrawCall *draw, BatchData *batch)
633 {
634 	MARL_SCOPED_EVENT("PRIMITIVES draw %d batch %d", draw->id, batch->id);
635 	auto triangles = &batch->triangles[0];
636 	auto primitives = &batch->primitives[0];
637 	batch->numVisible = draw->setupPrimitives(device, triangles, primitives, draw, batch->numPrimitives);
638 }
639 
processPixels(vk::Device * device,const marl::Loan<DrawCall> & draw,const marl::Loan<BatchData> & batch,const std::shared_ptr<marl::Finally> & finally)640 void DrawCall::processPixels(vk::Device *device, const marl::Loan<DrawCall> &draw, const marl::Loan<BatchData> &batch, const std::shared_ptr<marl::Finally> &finally)
641 {
642 	struct Data
643 	{
644 		Data(const marl::Loan<DrawCall> &draw, const marl::Loan<BatchData> &batch, const std::shared_ptr<marl::Finally> &finally)
645 		    : draw(draw)
646 		    , batch(batch)
647 		    , finally(finally)
648 		{}
649 		marl::Loan<DrawCall> draw;
650 		marl::Loan<BatchData> batch;
651 		std::shared_ptr<marl::Finally> finally;
652 	};
653 	auto data = std::make_shared<Data>(draw, batch, finally);
654 	for(int cluster = 0; cluster < MaxClusterCount; cluster++)
655 	{
656 		batch->clusterTickets[cluster].onCall([device, data, cluster] {
657 			auto &draw = data->draw;
658 			auto &batch = data->batch;
659 			MARL_SCOPED_EVENT("PIXEL draw %d, batch %d, cluster %d", draw->id, batch->id, cluster);
660 			draw->pixelRoutine(device, &batch->primitives.front(), batch->numVisible, cluster, MaxClusterCount, draw->data);
661 			batch->clusterTickets[cluster].done();
662 		});
663 	}
664 }
665 
synchronize()666 void Renderer::synchronize()
667 {
668 	MARL_SCOPED_EVENT("synchronize");
669 	auto ticket = drawTickets.take();
670 	ticket.wait();
671 	device->updateSamplingRoutineSnapshotCache();
672 	ticket.done();
673 }
674 
processPrimitiveVertices(unsigned int triangleIndicesOut[MaxBatchSize+1][3],const void * primitiveIndices,VkIndexType indexType,unsigned int start,unsigned int triangleCount,VkPrimitiveTopology topology,VkProvokingVertexModeEXT provokingVertexMode)675 void DrawCall::processPrimitiveVertices(
676     unsigned int triangleIndicesOut[MaxBatchSize + 1][3],
677     const void *primitiveIndices,
678     VkIndexType indexType,
679     unsigned int start,
680     unsigned int triangleCount,
681     VkPrimitiveTopology topology,
682     VkProvokingVertexModeEXT provokingVertexMode)
683 {
684 	if(!primitiveIndices)
685 	{
686 		struct LinearIndex
687 		{
688 			unsigned int operator[](unsigned int i) { return i; }
689 		};
690 
691 		if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, LinearIndex(), start, triangleCount))
692 		{
693 			return;
694 		}
695 	}
696 	else
697 	{
698 		switch(indexType)
699 		{
700 		case VK_INDEX_TYPE_UINT16:
701 			if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, static_cast<const uint16_t *>(primitiveIndices), start, triangleCount))
702 			{
703 				return;
704 			}
705 			break;
706 		case VK_INDEX_TYPE_UINT32:
707 			if(!setBatchIndices(triangleIndicesOut, topology, provokingVertexMode, static_cast<const uint32_t *>(primitiveIndices), start, triangleCount))
708 			{
709 				return;
710 			}
711 			break;
712 			break;
713 		default:
714 			ASSERT(false);
715 			return;
716 		}
717 	}
718 
719 	// setBatchIndices() takes care of the point case, since it's different due to the compaction
720 	if(topology != VK_PRIMITIVE_TOPOLOGY_POINT_LIST)
721 	{
722 		// Repeat the last index to allow for SIMD width overrun.
723 		triangleIndicesOut[triangleCount][0] = triangleIndicesOut[triangleCount - 1][2];
724 		triangleIndicesOut[triangleCount][1] = triangleIndicesOut[triangleCount - 1][2];
725 		triangleIndicesOut[triangleCount][2] = triangleIndicesOut[triangleCount - 1][2];
726 	}
727 }
728 
setupSolidTriangles(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)729 int DrawCall::setupSolidTriangles(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
730 {
731 	auto &state = drawCall->setupState;
732 
733 	int ms = state.multiSampleCount;
734 	const DrawData *data = drawCall->data;
735 	int visible = 0;
736 
737 	for(int i = 0; i < count; i++, triangles++)
738 	{
739 		Vertex &v0 = triangles->v0;
740 		Vertex &v1 = triangles->v1;
741 		Vertex &v2 = triangles->v2;
742 
743 		Polygon polygon(&v0.position, &v1.position, &v2.position);
744 
745 		if((v0.cullMask | v1.cullMask | v2.cullMask) == 0)
746 		{
747 			continue;
748 		}
749 
750 		if((v0.clipFlags & v1.clipFlags & v2.clipFlags) != Clipper::CLIP_FINITE)
751 		{
752 			continue;
753 		}
754 
755 		int clipFlagsOr = v0.clipFlags | v1.clipFlags | v2.clipFlags;
756 		if(clipFlagsOr != Clipper::CLIP_FINITE)
757 		{
758 			if(!Clipper::Clip(polygon, clipFlagsOr, *drawCall))
759 			{
760 				continue;
761 			}
762 		}
763 
764 		if(drawCall->setupRoutine(device, primitives, triangles, &polygon, data))
765 		{
766 			primitives += ms;
767 			visible++;
768 		}
769 	}
770 
771 	return visible;
772 }
773 
setupWireframeTriangles(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)774 int DrawCall::setupWireframeTriangles(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
775 {
776 	auto &state = drawCall->setupState;
777 
778 	int ms = state.multiSampleCount;
779 	int visible = 0;
780 
781 	for(int i = 0; i < count; i++)
782 	{
783 		const Vertex &v0 = triangles[i].v0;
784 		const Vertex &v1 = triangles[i].v1;
785 		const Vertex &v2 = triangles[i].v2;
786 
787 		float A = ((float)v0.projected.y - (float)v2.projected.y) * (float)v1.projected.x +
788 		          ((float)v2.projected.y - (float)v1.projected.y) * (float)v0.projected.x +
789 		          ((float)v1.projected.y - (float)v0.projected.y) * (float)v2.projected.x;  // Area
790 
791 		int w0w1w2 = bit_cast<int>(v0.w) ^
792 		             bit_cast<int>(v1.w) ^
793 		             bit_cast<int>(v2.w);
794 
795 		A = w0w1w2 < 0 ? -A : A;
796 
797 		bool frontFacing = (state.frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE) ? (A >= 0.0f) : (A <= 0.0f);
798 
799 		if(state.cullMode & VK_CULL_MODE_FRONT_BIT)
800 		{
801 			if(frontFacing) continue;
802 		}
803 		if(state.cullMode & VK_CULL_MODE_BACK_BIT)
804 		{
805 			if(!frontFacing) continue;
806 		}
807 
808 		Triangle lines[3];
809 		lines[0].v0 = v0;
810 		lines[0].v1 = v1;
811 		lines[1].v0 = v1;
812 		lines[1].v1 = v2;
813 		lines[2].v0 = v2;
814 		lines[2].v1 = v0;
815 
816 		for(int i = 0; i < 3; i++)
817 		{
818 			if(setupLine(device, *primitives, lines[i], *drawCall))
819 			{
820 				primitives += ms;
821 				visible++;
822 			}
823 		}
824 	}
825 
826 	return visible;
827 }
828 
setupPointTriangles(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)829 int DrawCall::setupPointTriangles(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
830 {
831 	auto &state = drawCall->setupState;
832 
833 	int ms = state.multiSampleCount;
834 	int visible = 0;
835 
836 	for(int i = 0; i < count; i++)
837 	{
838 		const Vertex &v0 = triangles[i].v0;
839 		const Vertex &v1 = triangles[i].v1;
840 		const Vertex &v2 = triangles[i].v2;
841 
842 		float d = (v0.y * v1.x - v0.x * v1.y) * v2.w +
843 		          (v0.x * v2.y - v0.y * v2.x) * v1.w +
844 		          (v2.x * v1.y - v1.x * v2.y) * v0.w;
845 
846 		bool frontFacing = (state.frontFace == VK_FRONT_FACE_COUNTER_CLOCKWISE) ? (d > 0) : (d < 0);
847 		if(state.cullMode & VK_CULL_MODE_FRONT_BIT)
848 		{
849 			if(frontFacing) continue;
850 		}
851 		if(state.cullMode & VK_CULL_MODE_BACK_BIT)
852 		{
853 			if(!frontFacing) continue;
854 		}
855 
856 		Triangle points[3];
857 		points[0].v0 = v0;
858 		points[1].v0 = v1;
859 		points[2].v0 = v2;
860 
861 		for(int i = 0; i < 3; i++)
862 		{
863 			if(setupPoint(device, *primitives, points[i], *drawCall))
864 			{
865 				primitives += ms;
866 				visible++;
867 			}
868 		}
869 	}
870 
871 	return visible;
872 }
873 
setupLines(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)874 int DrawCall::setupLines(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
875 {
876 	auto &state = drawCall->setupState;
877 
878 	int visible = 0;
879 	int ms = state.multiSampleCount;
880 
881 	for(int i = 0; i < count; i++)
882 	{
883 		if(setupLine(device, *primitives, *triangles, *drawCall))
884 		{
885 			primitives += ms;
886 			visible++;
887 		}
888 
889 		triangles++;
890 	}
891 
892 	return visible;
893 }
894 
setupPoints(vk::Device * device,Triangle * triangles,Primitive * primitives,const DrawCall * drawCall,int count)895 int DrawCall::setupPoints(vk::Device *device, Triangle *triangles, Primitive *primitives, const DrawCall *drawCall, int count)
896 {
897 	auto &state = drawCall->setupState;
898 
899 	int visible = 0;
900 	int ms = state.multiSampleCount;
901 
902 	for(int i = 0; i < count; i++)
903 	{
904 		if(setupPoint(device, *primitives, *triangles, *drawCall))
905 		{
906 			primitives += ms;
907 			visible++;
908 		}
909 
910 		triangles++;
911 	}
912 
913 	return visible;
914 }
915 
setupLine(vk::Device * device,Primitive & primitive,Triangle & triangle,const DrawCall & draw)916 bool DrawCall::setupLine(vk::Device *device, Primitive &primitive, Triangle &triangle, const DrawCall &draw)
917 {
918 	const Vertex &v0 = triangle.v0;
919 	const Vertex &v1 = triangle.v1;
920 
921 	if((v0.cullMask | v1.cullMask) == 0)
922 	{
923 		return false;
924 	}
925 
926 	const float4 &P0 = v0.position;
927 	const float4 &P1 = v1.position;
928 
929 	if(P0.w <= 0 && P1.w <= 0)
930 	{
931 		return false;
932 	}
933 
934 	const DrawData &data = *draw.data;
935 	const float lineWidth = data.lineWidth;
936 	const int clipFlags = draw.depthClipEnable ? Clipper::CLIP_FRUSTUM : Clipper::CLIP_SIDES;
937 	constexpr float subPixF = vk::SUBPIXEL_PRECISION_FACTOR;
938 
939 	const float W = data.WxF * (1.0f / subPixF);
940 	const float H = data.HxF * (1.0f / subPixF);
941 
942 	float dx = W * (P1.x / P1.w - P0.x / P0.w);
943 	float dy = H * (P1.y / P1.w - P0.y / P0.w);
944 
945 	if(dx == 0 && dy == 0)
946 	{
947 		return false;
948 	}
949 
950 	if(draw.lineRasterizationMode != VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT)
951 	{
952 		// Rectangle centered on the line segment
953 
954 		float4 P[4];
955 
956 		P[0] = P0;
957 		P[1] = P1;
958 		P[2] = P1;
959 		P[3] = P0;
960 
961 		float scale = lineWidth * 0.5f / sqrt(dx * dx + dy * dy);
962 
963 		dx *= scale;
964 		dy *= scale;
965 
966 		float dx0h = dx * P0.w / H;
967 		float dy0w = dy * P0.w / W;
968 
969 		float dx1h = dx * P1.w / H;
970 		float dy1w = dy * P1.w / W;
971 
972 		P[0].x += -dy0w;
973 		P[0].y += +dx0h;
974 
975 		P[1].x += -dy1w;
976 		P[1].y += +dx1h;
977 
978 		P[2].x += +dy1w;
979 		P[2].y += -dx1h;
980 
981 		P[3].x += +dy0w;
982 		P[3].y += -dx0h;
983 
984 		Polygon polygon(P, 4);
985 
986 		if(!Clipper::Clip(polygon, clipFlags, draw))
987 		{
988 			return false;
989 		}
990 
991 		return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data);
992 	}
993 	else if(false)  // TODO(b/80135519): Deprecate
994 	{
995 		// Connecting diamonds polygon
996 		// This shape satisfies the diamond test convention, except for the exit rule part.
997 		// Line segments with overlapping endpoints have duplicate fragments.
998 		// The ideal algorithm requires half-open line rasterization (b/80135519).
999 
1000 		float4 P[8];
1001 
1002 		P[0] = P0;
1003 		P[1] = P0;
1004 		P[2] = P0;
1005 		P[3] = P0;
1006 		P[4] = P1;
1007 		P[5] = P1;
1008 		P[6] = P1;
1009 		P[7] = P1;
1010 
1011 		float dx0 = lineWidth * 0.5f * P0.w / W;
1012 		float dy0 = lineWidth * 0.5f * P0.w / H;
1013 
1014 		float dx1 = lineWidth * 0.5f * P1.w / W;
1015 		float dy1 = lineWidth * 0.5f * P1.w / H;
1016 
1017 		P[0].x += -dx0;
1018 		P[1].y += +dy0;
1019 		P[2].x += +dx0;
1020 		P[3].y += -dy0;
1021 		P[4].x += -dx1;
1022 		P[5].y += +dy1;
1023 		P[6].x += +dx1;
1024 		P[7].y += -dy1;
1025 
1026 		float4 L[6];
1027 
1028 		if(dx > -dy)
1029 		{
1030 			if(dx > dy)  // Right
1031 			{
1032 				L[0] = P[0];
1033 				L[1] = P[1];
1034 				L[2] = P[5];
1035 				L[3] = P[6];
1036 				L[4] = P[7];
1037 				L[5] = P[3];
1038 			}
1039 			else  // Down
1040 			{
1041 				L[0] = P[0];
1042 				L[1] = P[4];
1043 				L[2] = P[5];
1044 				L[3] = P[6];
1045 				L[4] = P[2];
1046 				L[5] = P[3];
1047 			}
1048 		}
1049 		else
1050 		{
1051 			if(dx > dy)  // Up
1052 			{
1053 				L[0] = P[0];
1054 				L[1] = P[1];
1055 				L[2] = P[2];
1056 				L[3] = P[6];
1057 				L[4] = P[7];
1058 				L[5] = P[4];
1059 			}
1060 			else  // Left
1061 			{
1062 				L[0] = P[1];
1063 				L[1] = P[2];
1064 				L[2] = P[3];
1065 				L[3] = P[7];
1066 				L[4] = P[4];
1067 				L[5] = P[5];
1068 			}
1069 		}
1070 
1071 		Polygon polygon(L, 6);
1072 
1073 		if(!Clipper::Clip(polygon, clipFlags, draw))
1074 		{
1075 			return false;
1076 		}
1077 
1078 		return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data);
1079 	}
1080 	else
1081 	{
1082 		// Parallelogram approximating Bresenham line
1083 		// This algorithm does not satisfy the ideal diamond-exit rule, but does avoid the
1084 		// duplicate fragment rasterization problem and satisfies all of Vulkan's minimum
1085 		// requirements for Bresenham line segment rasterization.
1086 
1087 		float4 P[8];
1088 		P[0] = P0;
1089 		P[1] = P0;
1090 		P[2] = P0;
1091 		P[3] = P0;
1092 		P[4] = P1;
1093 		P[5] = P1;
1094 		P[6] = P1;
1095 		P[7] = P1;
1096 
1097 		float dx0 = lineWidth * 0.5f * P0.w / W;
1098 		float dy0 = lineWidth * 0.5f * P0.w / H;
1099 
1100 		float dx1 = lineWidth * 0.5f * P1.w / W;
1101 		float dy1 = lineWidth * 0.5f * P1.w / H;
1102 
1103 		P[0].x += -dx0;
1104 		P[1].y += +dy0;
1105 		P[2].x += +dx0;
1106 		P[3].y += -dy0;
1107 		P[4].x += -dx1;
1108 		P[5].y += +dy1;
1109 		P[6].x += +dx1;
1110 		P[7].y += -dy1;
1111 
1112 		float4 L[4];
1113 
1114 		if(dx > -dy)
1115 		{
1116 			if(dx > dy)  // Right
1117 			{
1118 				L[0] = P[1];
1119 				L[1] = P[5];
1120 				L[2] = P[7];
1121 				L[3] = P[3];
1122 			}
1123 			else  // Down
1124 			{
1125 				L[0] = P[0];
1126 				L[1] = P[4];
1127 				L[2] = P[6];
1128 				L[3] = P[2];
1129 			}
1130 		}
1131 		else
1132 		{
1133 			if(dx > dy)  // Up
1134 			{
1135 				L[0] = P[0];
1136 				L[1] = P[2];
1137 				L[2] = P[6];
1138 				L[3] = P[4];
1139 			}
1140 			else  // Left
1141 			{
1142 				L[0] = P[1];
1143 				L[1] = P[3];
1144 				L[2] = P[7];
1145 				L[3] = P[5];
1146 			}
1147 		}
1148 
1149 		Polygon polygon(L, 4);
1150 
1151 		if(!Clipper::Clip(polygon, clipFlags, draw))
1152 		{
1153 			return false;
1154 		}
1155 
1156 		return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data);
1157 	}
1158 
1159 	return false;
1160 }
1161 
setupPoint(vk::Device * device,Primitive & primitive,Triangle & triangle,const DrawCall & draw)1162 bool DrawCall::setupPoint(vk::Device *device, Primitive &primitive, Triangle &triangle, const DrawCall &draw)
1163 {
1164 	const Vertex &v = triangle.v0;
1165 
1166 	if(v.cullMask == 0)
1167 	{
1168 		return false;
1169 	}
1170 
1171 	const DrawData &data = *draw.data;
1172 	const int clipFlags = draw.depthClipEnable ? Clipper::CLIP_FRUSTUM : Clipper::CLIP_SIDES;
1173 
1174 	const float pSize = clamp(v.pointSize, 1.0f, static_cast<float>(vk::MAX_POINT_SIZE));
1175 	const float X = pSize * v.position.w * data.halfPixelX;
1176 	const float Y = pSize * v.position.w * data.halfPixelY;
1177 
1178 	float4 P[4];
1179 
1180 	P[0] = v.position;
1181 	P[0].x -= X;
1182 	P[0].y += Y;
1183 
1184 	P[1] = v.position;
1185 	P[1].x += X;
1186 	P[1].y += Y;
1187 
1188 	P[2] = v.position;
1189 	P[2].x += X;
1190 	P[2].y -= Y;
1191 
1192 	P[3] = v.position;
1193 	P[3].x -= X;
1194 	P[3].y -= Y;
1195 
1196 	Polygon polygon(P, 4);
1197 
1198 	if(!Clipper::Clip(polygon, clipFlags, draw))
1199 	{
1200 		return false;
1201 	}
1202 
1203 	primitive.pointSizeInv = 1.0f / pSize;
1204 
1205 	return draw.setupRoutine(device, &primitive, &triangle, &polygon, &data);
1206 }
1207 
addQuery(vk::Query * query)1208 void Renderer::addQuery(vk::Query *query)
1209 {
1210 	ASSERT(query->getType() == VK_QUERY_TYPE_OCCLUSION);
1211 	ASSERT(!occlusionQuery);
1212 
1213 	occlusionQuery = query;
1214 }
1215 
removeQuery(vk::Query * query)1216 void Renderer::removeQuery(vk::Query *query)
1217 {
1218 	ASSERT(query->getType() == VK_QUERY_TYPE_OCCLUSION);
1219 	ASSERT(occlusionQuery == query);
1220 
1221 	occlusionQuery = nullptr;
1222 }
1223 
1224 }  // namespace sw
1225