1Target Independent Opportunities:
2
3//===---------------------------------------------------------------------===//
4
5We should recognized various "overflow detection" idioms and translate them into
6llvm.uadd.with.overflow and similar intrinsics. Here is a multiply idiom:
7
8unsigned int mul(unsigned int a,unsigned int b) {
9 if ((unsigned long long)a*b>0xffffffff)
10 exit(0);
11 return a*b;
12}
13
14The legalization code for mul-with-overflow needs to be made more robust before
15this can be implemented though.
16
17//===---------------------------------------------------------------------===//
18
19Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
20precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't
21safe in general, even on darwin. See the libm implementation of hypot for
22examples (which special case when x/y are exactly zero to get signed zeros etc
23right).
24
25//===---------------------------------------------------------------------===//
26
27On targets with expensive 64-bit multiply, we could LSR this:
28
29for (i = ...; ++i) {
30 x = 1ULL << i;
31
32into:
33 long long tmp = 1;
34 for (i = ...; ++i, tmp+=tmp)
35 x = tmp;
36
37This would be a win on ppc32, but not x86 or ppc64.
38
39//===---------------------------------------------------------------------===//
40
41Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
42
43//===---------------------------------------------------------------------===//
44
45Reassociate should turn things like:
46
47int factorial(int X) {
48 return X*X*X*X*X*X*X*X;
49}
50
51into llvm.powi calls, allowing the code generator to produce balanced
52multiplication trees.
53
54First, the intrinsic needs to be extended to support integers, and second the
55code generator needs to be enhanced to lower these to multiplication trees.
56
57//===---------------------------------------------------------------------===//
58
59Interesting? testcase for add/shift/mul reassoc:
60
61int bar(int x, int y) {
62 return x*x*x+y+x*x*x*x*x*y*y*y*y;
63}
64int foo(int z, int n) {
65 return bar(z, n) + bar(2*z, 2*n);
66}
67
68This is blocked on not handling X*X*X -> powi(X, 3) (see note above). The issue
69is that we end up getting t = 2*X s = t*t and don't turn this into 4*X*X,
70which is the same number of multiplies and is canonical, because the 2*X has
71multiple uses. Here's a simple example:
72
73define i32 @test15(i32 %X1) {
74 %B = mul i32 %X1, 47 ; X1*47
75 %C = mul i32 %B, %B
76 ret i32 %C
77}
78
79
80//===---------------------------------------------------------------------===//
81
82Reassociate should handle the example in GCC PR16157:
83
84extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4;
85void f () { /* this can be optimized to four additions... */
86 b4 = a4 + a3 + a2 + a1 + a0;
87 b3 = a3 + a2 + a1 + a0;
88 b2 = a2 + a1 + a0;
89 b1 = a1 + a0;
90}
91
92This requires reassociating to forms of expressions that are already available,
93something that reassoc doesn't think about yet.
94
95
96//===---------------------------------------------------------------------===//
97
98These two functions should generate the same code on big-endian systems:
99
100int g(int *j,int *l) { return memcmp(j,l,4); }
101int h(int *j, int *l) { return *j - *l; }
102
103this could be done in SelectionDAGISel.cpp, along with other special cases,
104for 1,2,4,8 bytes.
105
106//===---------------------------------------------------------------------===//
107
108It would be nice to revert this patch:
109http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
110
111And teach the dag combiner enough to simplify the code expanded before
112legalize. It seems plausible that this knowledge would let it simplify other
113stuff too.
114
115//===---------------------------------------------------------------------===//
116
117For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal
118to the type size. It works but can be overly conservative as the alignment of
119specific vector types are target dependent.
120
121//===---------------------------------------------------------------------===//
122
123We should produce an unaligned load from code like this:
124
125v4sf example(float *P) {
126 return (v4sf){P[0], P[1], P[2], P[3] };
127}
128
129//===---------------------------------------------------------------------===//
130
131Add support for conditional increments, and other related patterns. Instead
132of:
133
134 movl 136(%esp), %eax
135 cmpl $0, %eax
136 je LBB16_2 #cond_next
137LBB16_1: #cond_true
138 incl _foo
139LBB16_2: #cond_next
140
141emit:
142 movl _foo, %eax
143 cmpl $1, %edi
144 sbbl $-1, %eax
145 movl %eax, _foo
146
147//===---------------------------------------------------------------------===//
148
149Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
150
151Expand these to calls of sin/cos and stores:
152 double sincos(double x, double *sin, double *cos);
153 float sincosf(float x, float *sin, float *cos);
154 long double sincosl(long double x, long double *sin, long double *cos);
155
156Doing so could allow SROA of the destination pointers. See also:
157http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
158
159This is now easily doable with MRVs. We could even make an intrinsic for this
160if anyone cared enough about sincos.
161
162//===---------------------------------------------------------------------===//
163
164quantum_sigma_x in 462.libquantum contains the following loop:
165
166 for(i=0; i<reg->size; i++)
167 {
168 /* Flip the target bit of each basis state */
169 reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
170 }
171
172Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
173so cool to turn it into something like:
174
175 long long Res = ((MAX_UNSIGNED) 1 << target);
176 if (target < 32) {
177 for(i=0; i<reg->size; i++)
178 reg->node[i].state ^= Res & 0xFFFFFFFFULL;
179 } else {
180 for(i=0; i<reg->size; i++)
181 reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
182 }
183
184... which would only do one 32-bit XOR per loop iteration instead of two.
185
186It would also be nice to recognize the reg->size doesn't alias reg->node[i],
187but this requires TBAA.
188
189//===---------------------------------------------------------------------===//
190
191This isn't recognized as bswap by instcombine (yes, it really is bswap):
192
193unsigned long reverse(unsigned v) {
194 unsigned t;
195 t = v ^ ((v << 16) | (v >> 16));
196 t &= ~0xff0000;
197 v = (v << 24) | (v >> 8);
198 return v ^ (t >> 8);
199}
200
201//===---------------------------------------------------------------------===//
202
203[LOOP DELETION]
204
205We don't delete this output free loop, because trip count analysis doesn't
206realize that it is finite (if it were infinite, it would be undefined). Not
207having this blocks Loop Idiom from matching strlen and friends.
208
209void foo(char *C) {
210 int x = 0;
211 while (*C)
212 ++x,++C;
213}
214
215//===---------------------------------------------------------------------===//
216
217[LOOP RECOGNITION]
218
219These idioms should be recognized as popcount (see PR1488):
220
221unsigned countbits_slow(unsigned v) {
222 unsigned c;
223 for (c = 0; v; v >>= 1)
224 c += v & 1;
225 return c;
226}
227
228unsigned int popcount(unsigned int input) {
229 unsigned int count = 0;
230 for (unsigned int i = 0; i < 4 * 8; i++)
231 count += (input >> i) & i;
232 return count;
233}
234
235This should be recognized as CLZ: rdar://8459039
236
237unsigned clz_a(unsigned a) {
238 int i;
239 for (i=0;i<32;i++)
240 if (a & (1<<(31-i)))
241 return i;
242 return 32;
243}
244
245This sort of thing should be added to the loop idiom pass.
246
247//===---------------------------------------------------------------------===//
248
249These should turn into single 16-bit (unaligned?) loads on little/big endian
250processors.
251
252unsigned short read_16_le(const unsigned char *adr) {
253 return adr[0] | (adr[1] << 8);
254}
255unsigned short read_16_be(const unsigned char *adr) {
256 return (adr[0] << 8) | adr[1];
257}
258
259//===---------------------------------------------------------------------===//
260
261-instcombine should handle this transform:
262 icmp pred (sdiv X / C1 ), C2
263when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
264
265Currently InstCombine avoids this transform but will do it when the signs of
266the operands and the sign of the divide match. See the FIXME in
267InstructionCombining.cpp in the visitSetCondInst method after the switch case
268for Instruction::UDiv (around line 4447) for more details.
269
270The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
271this construct.
272
273//===---------------------------------------------------------------------===//
274
275[LOOP OPTIMIZATION]
276
277SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
278opportunities in its double_array_divs_variable function: it needs loop
279interchange, memory promotion (which LICM already does), vectorization and
280variable trip count loop unrolling (since it has a constant trip count). ICC
281apparently produces this very nice code with -ffast-math:
282
283..B1.70: # Preds ..B1.70 ..B1.69
284 mulpd %xmm0, %xmm1 #108.2
285 mulpd %xmm0, %xmm1 #108.2
286 mulpd %xmm0, %xmm1 #108.2
287 mulpd %xmm0, %xmm1 #108.2
288 addl $8, %edx #
289 cmpl $131072, %edx #108.2
290 jb ..B1.70 # Prob 99% #108.2
291
292It would be better to count down to zero, but this is a lot better than what we
293do.
294
295//===---------------------------------------------------------------------===//
296
297Consider:
298
299typedef unsigned U32;
300typedef unsigned long long U64;
301int test (U32 *inst, U64 *regs) {
302 U64 effective_addr2;
303 U32 temp = *inst;
304 int r1 = (temp >> 20) & 0xf;
305 int b2 = (temp >> 16) & 0xf;
306 effective_addr2 = temp & 0xfff;
307 if (b2) effective_addr2 += regs[b2];
308 b2 = (temp >> 12) & 0xf;
309 if (b2) effective_addr2 += regs[b2];
310 effective_addr2 &= regs[4];
311 if ((effective_addr2 & 3) == 0)
312 return 1;
313 return 0;
314}
315
316Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
317we don't eliminate the computation of the top half of effective_addr2 because
318we don't have whole-function selection dags. On x86, this means we use one
319extra register for the function when effective_addr2 is declared as U64 than
320when it is declared U32.
321
322PHI Slicing could be extended to do this.
323
324//===---------------------------------------------------------------------===//
325
326Tail call elim should be more aggressive, checking to see if the call is
327followed by an uncond branch to an exit block.
328
329; This testcase is due to tail-duplication not wanting to copy the return
330; instruction into the terminating blocks because there was other code
331; optimized out of the function after the taildup happened.
332; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
333
334define i32 @t4(i32 %a) {
335entry:
336 %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
337 %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
338 br i1 %tmp.2, label %then.0, label %else.0
339
340then.0: ; preds = %entry
341 %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
342 %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
343 br label %return
344
345else.0: ; preds = %entry
346 %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
347 br i1 %tmp.7, label %then.1, label %return
348
349then.1: ; preds = %else.0
350 %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
351 %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
352 br label %return
353
354return: ; preds = %then.1, %else.0, %then.0
355 %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
356 [ %tmp.9, %then.1 ]
357 ret i32 %result.0
358}
359
360//===---------------------------------------------------------------------===//
361
362Tail recursion elimination should handle:
363
364int pow2m1(int n) {
365 if (n == 0)
366 return 0;
367 return 2 * pow2m1 (n - 1) + 1;
368}
369
370Also, multiplies can be turned into SHL's, so they should be handled as if
371they were associative. "return foo() << 1" can be tail recursion eliminated.
372
373//===---------------------------------------------------------------------===//
374
375Argument promotion should promote arguments for recursive functions, like
376this:
377
378; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
379
380define internal i32 @foo(i32* %x) {
381entry:
382 %tmp = load i32* %x ; <i32> [#uses=0]
383 %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
384 ret i32 %tmp.foo
385}
386
387define i32 @bar(i32* %x) {
388entry:
389 %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
390 ret i32 %tmp3
391}
392
393//===---------------------------------------------------------------------===//
394
395We should investigate an instruction sinking pass. Consider this silly
396example in pic mode:
397
398#include <assert.h>
399void foo(int x) {
400 assert(x);
401 //...
402}
403
404we compile this to:
405_foo:
406 subl $28, %esp
407 call "L1$pb"
408"L1$pb":
409 popl %eax
410 cmpl $0, 32(%esp)
411 je LBB1_2 # cond_true
412LBB1_1: # return
413 # ...
414 addl $28, %esp
415 ret
416LBB1_2: # cond_true
417...
418
419The PIC base computation (call+popl) is only used on one path through the
420code, but is currently always computed in the entry block. It would be
421better to sink the picbase computation down into the block for the
422assertion, as it is the only one that uses it. This happens for a lot of
423code with early outs.
424
425Another example is loads of arguments, which are usually emitted into the
426entry block on targets like x86. If not used in all paths through a
427function, they should be sunk into the ones that do.
428
429In this case, whole-function-isel would also handle this.
430
431//===---------------------------------------------------------------------===//
432
433Investigate lowering of sparse switch statements into perfect hash tables:
434http://burtleburtle.net/bob/hash/perfect.html
435
436//===---------------------------------------------------------------------===//
437
438We should turn things like "load+fabs+store" and "load+fneg+store" into the
439corresponding integer operations. On a yonah, this loop:
440
441double a[256];
442void foo() {
443 int i, b;
444 for (b = 0; b < 10000000; b++)
445 for (i = 0; i < 256; i++)
446 a[i] = -a[i];
447}
448
449is twice as slow as this loop:
450
451long long a[256];
452void foo() {
453 int i, b;
454 for (b = 0; b < 10000000; b++)
455 for (i = 0; i < 256; i++)
456 a[i] ^= (1ULL << 63);
457}
458
459and I suspect other processors are similar. On X86 in particular this is a
460big win because doing this with integers allows the use of read/modify/write
461instructions.
462
463//===---------------------------------------------------------------------===//
464
465DAG Combiner should try to combine small loads into larger loads when
466profitable. For example, we compile this C++ example:
467
468struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
469extern THotKey m_HotKey;
470THotKey GetHotKey () { return m_HotKey; }
471
472into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
473
474__Z9GetHotKeyv: ## @_Z9GetHotKeyv
475 movq _m_HotKey@GOTPCREL(%rip), %rax
476 movzwl (%rax), %ecx
477 movzbl 2(%rax), %edx
478 shlq $16, %rdx
479 orq %rcx, %rdx
480 movzbl 3(%rax), %ecx
481 shlq $24, %rcx
482 orq %rdx, %rcx
483 movzbl 4(%rax), %eax
484 shlq $32, %rax
485 orq %rcx, %rax
486 ret
487
488//===---------------------------------------------------------------------===//
489
490We should add an FRINT node to the DAG to model targets that have legal
491implementations of ceil/floor/rint.
492
493//===---------------------------------------------------------------------===//
494
495Consider:
496
497int test() {
498 long long input[8] = {1,0,1,0,1,0,1,0};
499 foo(input);
500}
501
502Clang compiles this into:
503
504 call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
505 %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
506 store i64 1, i64* %0, align 16
507 %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
508 store i64 1, i64* %1, align 16
509 %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
510 store i64 1, i64* %2, align 16
511 %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
512 store i64 1, i64* %3, align 16
513
514Which gets codegen'd into:
515
516 pxor %xmm0, %xmm0
517 movaps %xmm0, -16(%rbp)
518 movaps %xmm0, -32(%rbp)
519 movaps %xmm0, -48(%rbp)
520 movaps %xmm0, -64(%rbp)
521 movq $1, -64(%rbp)
522 movq $1, -48(%rbp)
523 movq $1, -32(%rbp)
524 movq $1, -16(%rbp)
525
526It would be better to have 4 movq's of 0 instead of the movaps's.
527
528//===---------------------------------------------------------------------===//
529
530http://llvm.org/PR717:
531
532The following code should compile into "ret int undef". Instead, LLVM
533produces "ret int 0":
534
535int f() {
536 int x = 4;
537 int y;
538 if (x == 3) y = 0;
539 return y;
540}
541
542//===---------------------------------------------------------------------===//
543
544The loop unroller should partially unroll loops (instead of peeling them)
545when code growth isn't too bad and when an unroll count allows simplification
546of some code within the loop. One trivial example is:
547
548#include <stdio.h>
549int main() {
550 int nRet = 17;
551 int nLoop;
552 for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
553 if ( nLoop & 1 )
554 nRet += 2;
555 else
556 nRet -= 1;
557 }
558 return nRet;
559}
560
561Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
562reduction in code size. The resultant code would then also be suitable for
563exit value computation.
564
565//===---------------------------------------------------------------------===//
566
567We miss a bunch of rotate opportunities on various targets, including ppc, x86,
568etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
569matching code in dag combine doesn't look through truncates aggressively
570enough. Here are some testcases reduces from GCC PR17886:
571
572unsigned long long f5(unsigned long long x, unsigned long long y) {
573 return (x << 8) | ((y >> 48) & 0xffull);
574}
575unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
576 switch(z) {
577 case 1:
578 return (x << 8) | ((y >> 48) & 0xffull);
579 case 2:
580 return (x << 16) | ((y >> 40) & 0xffffull);
581 case 3:
582 return (x << 24) | ((y >> 32) & 0xffffffull);
583 case 4:
584 return (x << 32) | ((y >> 24) & 0xffffffffull);
585 default:
586 return (x << 40) | ((y >> 16) & 0xffffffffffull);
587 }
588}
589
590//===---------------------------------------------------------------------===//
591
592This (and similar related idioms):
593
594unsigned int foo(unsigned char i) {
595 return i | (i<<8) | (i<<16) | (i<<24);
596}
597
598compiles into:
599
600define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
601entry:
602 %conv = zext i8 %i to i32
603 %shl = shl i32 %conv, 8
604 %shl5 = shl i32 %conv, 16
605 %shl9 = shl i32 %conv, 24
606 %or = or i32 %shl9, %conv
607 %or6 = or i32 %or, %shl5
608 %or10 = or i32 %or6, %shl
609 ret i32 %or10
610}
611
612it would be better as:
613
614unsigned int bar(unsigned char i) {
615 unsigned int j=i | (i << 8);
616 return j | (j<<16);
617}
618
619aka:
620
621define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
622entry:
623 %conv = zext i8 %i to i32
624 %shl = shl i32 %conv, 8
625 %or = or i32 %shl, %conv
626 %shl5 = shl i32 %or, 16
627 %or6 = or i32 %shl5, %or
628 ret i32 %or6
629}
630
631or even i*0x01010101, depending on the speed of the multiplier. The best way to
632handle this is to canonicalize it to a multiply in IR and have codegen handle
633lowering multiplies to shifts on cpus where shifts are faster.
634
635//===---------------------------------------------------------------------===//
636
637We do a number of simplifications in simplify libcalls to strength reduce
638standard library functions, but we don't currently merge them together. For
639example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
640be done safely if "b" isn't modified between the strlen and memcpy of course.
641
642//===---------------------------------------------------------------------===//
643
644We compile this program: (from GCC PR11680)
645http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
646
647Into code that runs the same speed in fast/slow modes, but both modes run 2x
648slower than when compile with GCC (either 4.0 or 4.2):
649
650$ llvm-g++ perf.cpp -O3 -fno-exceptions
651$ time ./a.out fast
6521.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
653
654$ g++ perf.cpp -O3 -fno-exceptions
655$ time ./a.out fast
6560.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
657
658It looks like we are making the same inlining decisions, so this may be raw
659codegen badness or something else (haven't investigated).
660
661//===---------------------------------------------------------------------===//
662
663Divisibility by constant can be simplified (according to GCC PR12849) from
664being a mulhi to being a mul lo (cheaper). Testcase:
665
666void bar(unsigned n) {
667 if (n % 3 == 0)
668 true();
669}
670
671This is equivalent to the following, where 2863311531 is the multiplicative
672inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
673void bar(unsigned n) {
674 if (n * 2863311531U < 1431655766U)
675 true();
676}
677
678The same transformation can work with an even modulo with the addition of a
679rotate: rotate the result of the multiply to the right by the number of bits
680which need to be zero for the condition to be true, and shrink the compare RHS
681by the same amount. Unless the target supports rotates, though, that
682transformation probably isn't worthwhile.
683
684The transformation can also easily be made to work with non-zero equality
685comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
686
687//===---------------------------------------------------------------------===//
688
689Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
690bunch of other stuff from this example (see PR1604):
691
692#include <cstdio>
693struct test {
694 int val;
695 virtual ~test() {}
696};
697
698int main() {
699 test t;
700 std::scanf("%d", &t.val);
701 std::printf("%d\n", t.val);
702}
703
704//===---------------------------------------------------------------------===//
705
706These functions perform the same computation, but produce different assembly.
707
708define i8 @select(i8 %x) readnone nounwind {
709 %A = icmp ult i8 %x, 250
710 %B = select i1 %A, i8 0, i8 1
711 ret i8 %B
712}
713
714define i8 @addshr(i8 %x) readnone nounwind {
715 %A = zext i8 %x to i9
716 %B = add i9 %A, 6 ;; 256 - 250 == 6
717 %C = lshr i9 %B, 8
718 %D = trunc i9 %C to i8
719 ret i8 %D
720}
721
722//===---------------------------------------------------------------------===//
723
724From gcc bug 24696:
725int
726f (unsigned long a, unsigned long b, unsigned long c)
727{
728 return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
729}
730int
731f (unsigned long a, unsigned long b, unsigned long c)
732{
733 return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
734}
735Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with
736"clang -emit-llvm-bc | opt -O3".
737
738//===---------------------------------------------------------------------===//
739
740From GCC Bug 20192:
741#define PMD_MASK (~((1UL << 23) - 1))
742void clear_pmd_range(unsigned long start, unsigned long end)
743{
744 if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
745 f();
746}
747The expression should optimize to something like
748"!((start|end)&~PMD_MASK). Currently not optimized with "clang
749-emit-llvm-bc | opt -O3".
750
751//===---------------------------------------------------------------------===//
752
753unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
754i;}
755unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
756These should combine to the same thing. Currently, the first function
757produces better code on X86.
758
759//===---------------------------------------------------------------------===//
760
761From GCC Bug 15784:
762#define abs(x) x>0?x:-x
763int f(int x, int y)
764{
765 return (abs(x)) >= 0;
766}
767This should optimize to x == INT_MIN. (With -fwrapv.) Currently not
768optimized with "clang -emit-llvm-bc | opt -O3".
769
770//===---------------------------------------------------------------------===//
771
772From GCC Bug 14753:
773void
774rotate_cst (unsigned int a)
775{
776 a = (a << 10) | (a >> 22);
777 if (a == 123)
778 bar ();
779}
780void
781minus_cst (unsigned int a)
782{
783 unsigned int tem;
784
785 tem = 20 - a;
786 if (tem == 5)
787 bar ();
788}
789void
790mask_gt (unsigned int a)
791{
792 /* This is equivalent to a > 15. */
793 if ((a & ~7) > 8)
794 bar ();
795}
796void
797rshift_gt (unsigned int a)
798{
799 /* This is equivalent to a > 23. */
800 if ((a >> 2) > 5)
801 bar ();
802}
803
804All should simplify to a single comparison. All of these are
805currently not optimized with "clang -emit-llvm-bc | opt
806-O3".
807
808//===---------------------------------------------------------------------===//
809
810From GCC Bug 32605:
811int c(int* x) {return (char*)x+2 == (char*)x;}
812Should combine to 0. Currently not optimized with "clang
813-emit-llvm-bc | opt -O3" (although llc can optimize it).
814
815//===---------------------------------------------------------------------===//
816
817int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
818Should be combined to "((b >> 1) | b) & 1". Currently not optimized
819with "clang -emit-llvm-bc | opt -O3".
820
821//===---------------------------------------------------------------------===//
822
823unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
824Should combine to "x | (y & 3)". Currently not optimized with "clang
825-emit-llvm-bc | opt -O3".
826
827//===---------------------------------------------------------------------===//
828
829int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
830Should fold to "(~a & c) | (a & b)". Currently not optimized with
831"clang -emit-llvm-bc | opt -O3".
832
833//===---------------------------------------------------------------------===//
834
835int a(int a,int b) {return (~(a|b))|a;}
836Should fold to "a|~b". Currently not optimized with "clang
837-emit-llvm-bc | opt -O3".
838
839//===---------------------------------------------------------------------===//
840
841int a(int a, int b) {return (a&&b) || (a&&!b);}
842Should fold to "a". Currently not optimized with "clang -emit-llvm-bc
843| opt -O3".
844
845//===---------------------------------------------------------------------===//
846
847int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
848Should fold to "a ? b : c", or at least something sane. Currently not
849optimized with "clang -emit-llvm-bc | opt -O3".
850
851//===---------------------------------------------------------------------===//
852
853int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
854Should fold to a && (b || c). Currently not optimized with "clang
855-emit-llvm-bc | opt -O3".
856
857//===---------------------------------------------------------------------===//
858
859int a(int x) {return x | ((x & 8) ^ 8);}
860Should combine to x | 8. Currently not optimized with "clang
861-emit-llvm-bc | opt -O3".
862
863//===---------------------------------------------------------------------===//
864
865int a(int x) {return x ^ ((x & 8) ^ 8);}
866Should also combine to x | 8. Currently not optimized with "clang
867-emit-llvm-bc | opt -O3".
868
869//===---------------------------------------------------------------------===//
870
871int a(int x) {return ((x | -9) ^ 8) & x;}
872Should combine to x & -9. Currently not optimized with "clang
873-emit-llvm-bc | opt -O3".
874
875//===---------------------------------------------------------------------===//
876
877unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
878Should combine to "a * 0x88888888 >> 31". Currently not optimized
879with "clang -emit-llvm-bc | opt -O3".
880
881//===---------------------------------------------------------------------===//
882
883unsigned a(char* x) {if ((*x & 32) == 0) return b();}
884There's an unnecessary zext in the generated code with "clang
885-emit-llvm-bc | opt -O3".
886
887//===---------------------------------------------------------------------===//
888
889unsigned a(unsigned long long x) {return 40 * (x >> 1);}
890Should combine to "20 * (((unsigned)x) & -2)". Currently not
891optimized with "clang -emit-llvm-bc | opt -O3".
892
893//===---------------------------------------------------------------------===//
894
895int g(int x) { return (x - 10) < 0; }
896Should combine to "x <= 9" (the sub has nsw). Currently not
897optimized with "clang -emit-llvm-bc | opt -O3".
898
899//===---------------------------------------------------------------------===//
900
901int g(int x) { return (x + 10) < 0; }
902Should combine to "x < -10" (the add has nsw). Currently not
903optimized with "clang -emit-llvm-bc | opt -O3".
904
905//===---------------------------------------------------------------------===//
906
907int f(int i, int j) { return i < j + 1; }
908int g(int i, int j) { return j > i - 1; }
909Should combine to "i <= j" (the add/sub has nsw). Currently not
910optimized with "clang -emit-llvm-bc | opt -O3".
911
912//===---------------------------------------------------------------------===//
913
914unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
915The & 15 part should be optimized away, it doesn't change the result. Currently
916not optimized with "clang -emit-llvm-bc | opt -O3".
917
918//===---------------------------------------------------------------------===//
919
920This was noticed in the entryblock for grokdeclarator in 403.gcc:
921
922 %tmp = icmp eq i32 %decl_context, 4
923 %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context
924 %tmp1 = icmp eq i32 %decl_context_addr.0, 1
925 %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
926
927tmp1 should be simplified to something like:
928 (!tmp || decl_context == 1)
929
930This allows recursive simplifications, tmp1 is used all over the place in
931the function, e.g. by:
932
933 %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1]
934 %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1]
935 %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1]
936
937later.
938
939//===---------------------------------------------------------------------===//
940
941[STORE SINKING]
942
943Store sinking: This code:
944
945void f (int n, int *cond, int *res) {
946 int i;
947 *res = 0;
948 for (i = 0; i < n; i++)
949 if (*cond)
950 *res ^= 234; /* (*) */
951}
952
953On this function GVN hoists the fully redundant value of *res, but nothing
954moves the store out. This gives us this code:
955
956bb: ; preds = %bb2, %entry
957 %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]
958 %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
959 %1 = load i32* %cond, align 4
960 %2 = icmp eq i32 %1, 0
961 br i1 %2, label %bb2, label %bb1
962
963bb1: ; preds = %bb
964 %3 = xor i32 %.rle, 234
965 store i32 %3, i32* %res, align 4
966 br label %bb2
967
968bb2: ; preds = %bb, %bb1
969 %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]
970 %indvar.next = add i32 %i.05, 1
971 %exitcond = icmp eq i32 %indvar.next, %n
972 br i1 %exitcond, label %return, label %bb
973
974DSE should sink partially dead stores to get the store out of the loop.
975
976Here's another partial dead case:
977http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
978
979//===---------------------------------------------------------------------===//
980
981Scalar PRE hoists the mul in the common block up to the else:
982
983int test (int a, int b, int c, int g) {
984 int d, e;
985 if (a)
986 d = b * c;
987 else
988 d = b - c;
989 e = b * c + g;
990 return d + e;
991}
992
993It would be better to do the mul once to reduce codesize above the if.
994This is GCC PR38204.
995
996
997//===---------------------------------------------------------------------===//
998This simple function from 179.art:
999
1000int winner, numf2s;
1001struct { double y; int reset; } *Y;
1002
1003void find_match() {
1004 int i;
1005 winner = 0;
1006 for (i=0;i<numf2s;i++)
1007 if (Y[i].y > Y[winner].y)
1008 winner =i;
1009}
1010
1011Compiles into (with clang TBAA):
1012
1013for.body: ; preds = %for.inc, %bb.nph
1014 %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
1015 %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
1016 %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
1017 %tmp5 = load double* %tmp4, align 8, !tbaa !4
1018 %idxprom7 = sext i32 %i.01718 to i64
1019 %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
1020 %tmp11 = load double* %tmp10, align 8, !tbaa !4
1021 %cmp12 = fcmp ogt double %tmp5, %tmp11
1022 br i1 %cmp12, label %if.then, label %for.inc
1023
1024if.then: ; preds = %for.body
1025 %i.017 = trunc i64 %indvar to i32
1026 br label %for.inc
1027
1028for.inc: ; preds = %for.body, %if.then
1029 %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
1030 %indvar.next = add i64 %indvar, 1
1031 %exitcond = icmp eq i64 %indvar.next, %tmp22
1032 br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
1033
1034
1035It is good that we hoisted the reloads of numf2's, and Y out of the loop and
1036sunk the store to winner out.
1037
1038However, this is awful on several levels: the conditional truncate in the loop
1039(-indvars at fault? why can't we completely promote the IV to i64?).
1040
1041Beyond that, we have a partially redundant load in the loop: if "winner" (aka
1042%i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
1043Similarly, the addressing that feeds it (including the sext) is redundant. In
1044the end we get this generated assembly:
1045
1046LBB0_2: ## %for.body
1047 ## =>This Inner Loop Header: Depth=1
1048 movsd (%rdi), %xmm0
1049 movslq %edx, %r8
1050 shlq $4, %r8
1051 ucomisd (%rcx,%r8), %xmm0
1052 jbe LBB0_4
1053 movl %esi, %edx
1054LBB0_4: ## %for.inc
1055 addq $16, %rdi
1056 incq %rsi
1057 cmpq %rsi, %rax
1058 jne LBB0_2
1059
1060All things considered this isn't too bad, but we shouldn't need the movslq or
1061the shlq instruction, or the load folded into ucomisd every time through the
1062loop.
1063
1064On an x86-specific topic, if the loop can't be restructure, the movl should be a
1065cmov.
1066
1067//===---------------------------------------------------------------------===//
1068
1069[STORE SINKING]
1070
1071GCC PR37810 is an interesting case where we should sink load/store reload
1072into the if block and outside the loop, so we don't reload/store it on the
1073non-call path.
1074
1075for () {
1076 *P += 1;
1077 if ()
1078 call();
1079 else
1080 ...
1081->
1082tmp = *P
1083for () {
1084 tmp += 1;
1085 if () {
1086 *P = tmp;
1087 call();
1088 tmp = *P;
1089 } else ...
1090}
1091*P = tmp;
1092
1093We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
1094we don't sink the store. We need partially dead store sinking.
1095
1096//===---------------------------------------------------------------------===//
1097
1098[LOAD PRE CRIT EDGE SPLITTING]
1099
1100GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
1101leading to excess stack traffic. This could be handled by GVN with some crazy
1102symbolic phi translation. The code we get looks like (g is on the stack):
1103
1104bb2: ; preds = %bb1
1105..
1106 %9 = getelementptr %struct.f* %g, i32 0, i32 0
1107 store i32 %8, i32* %9, align bel %bb3
1108
1109bb3: ; preds = %bb1, %bb2, %bb
1110 %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
1111 %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
1112 %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
1113 %11 = load i32* %10, align 4
1114
1115%11 is partially redundant, an in BB2 it should have the value %8.
1116
1117GCC PR33344 and PR35287 are similar cases.
1118
1119
1120//===---------------------------------------------------------------------===//
1121
1122[LOAD PRE]
1123
1124There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
1125GCC testsuite, ones we don't get yet are (checked through loadpre25):
1126
1127[CRIT EDGE BREAKING]
1128predcom-4.c
1129
1130[PRE OF READONLY CALL]
1131loadpre5.c
1132
1133[TURN SELECT INTO BRANCH]
1134loadpre14.c loadpre15.c
1135
1136actually a conditional increment: loadpre18.c loadpre19.c
1137
1138//===---------------------------------------------------------------------===//
1139
1140[LOAD PRE / STORE SINKING / SPEC HACK]
1141
1142This is a chunk of code from 456.hmmer:
1143
1144int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
1145 int *tpdm, int xmb, int *bp, int *ms) {
1146 int k, sc;
1147 for (k = 1; k <= M; k++) {
1148 mc[k] = mpp[k-1] + tpmm[k-1];
1149 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
1150 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
1151 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
1152 mc[k] += ms[k];
1153 }
1154}
1155
1156It is very profitable for this benchmark to turn the conditional stores to mc[k]
1157into a conditional move (select instr in IR) and allow the final store to do the
1158store. See GCC PR27313 for more details. Note that this is valid to xform even
1159with the new C++ memory model, since mc[k] is previously loaded and later
1160stored.
1161
1162//===---------------------------------------------------------------------===//
1163
1164[SCALAR PRE]
1165There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
1166GCC testsuite.
1167
1168//===---------------------------------------------------------------------===//
1169
1170There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
1171GCC testsuite. For example, we get the first example in predcom-1.c, but
1172miss the second one:
1173
1174unsigned fib[1000];
1175unsigned avg[1000];
1176
1177__attribute__ ((noinline))
1178void count_averages(int n) {
1179 int i;
1180 for (i = 1; i < n; i++)
1181 avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
1182}
1183
1184which compiles into two loads instead of one in the loop.
1185
1186predcom-2.c is the same as predcom-1.c
1187
1188predcom-3.c is very similar but needs loads feeding each other instead of
1189store->load.
1190
1191
1192//===---------------------------------------------------------------------===//
1193
1194[ALIAS ANALYSIS]
1195
1196Type based alias analysis:
1197http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
1198
1199We should do better analysis of posix_memalign. At the least it should
1200no-capture its pointer argument, at best, we should know that the out-value
1201result doesn't point to anything (like malloc). One example of this is in
1202SingleSource/Benchmarks/Misc/dt.c
1203
1204//===---------------------------------------------------------------------===//
1205
1206Interesting missed case because of control flow flattening (should be 2 loads):
1207http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
1208With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as |
1209 opt -mem2reg -gvn -instcombine | llvm-dis
1210we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
1211VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
1212
1213//===---------------------------------------------------------------------===//
1214
1215http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
1216We could eliminate the branch condition here, loading from null is undefined:
1217
1218struct S { int w, x, y, z; };
1219struct T { int r; struct S s; };
1220void bar (struct S, int);
1221void foo (int a, struct T b)
1222{
1223 struct S *c = 0;
1224 if (a)
1225 c = &b.s;
1226 bar (*c, a);
1227}
1228
1229//===---------------------------------------------------------------------===//
1230
1231simplifylibcalls should do several optimizations for strspn/strcspn:
1232
1233strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
1234
1235size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
1236 int __reject3) {
1237 register size_t __result = 0;
1238 while (__s[__result] != '\0' && __s[__result] != __reject1 &&
1239 __s[__result] != __reject2 && __s[__result] != __reject3)
1240 ++__result;
1241 return __result;
1242}
1243
1244This should turn into a switch on the character. See PR3253 for some notes on
1245codegen.
1246
1247456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn.
1248
1249//===---------------------------------------------------------------------===//
1250
1251simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
1252
1253char buf1[6], buf2[6], buf3[4], buf4[4];
1254int i;
1255
1256int foo (void) {
1257 int ret = snprintf (buf1, sizeof buf1, "abcde");
1258 ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
1259 ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
1260 ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
1261 return ret;
1262}
1263
1264//===---------------------------------------------------------------------===//
1265
1266"gas" uses this idiom:
1267 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
1268..
1269 else if (strchr ("<>", *intel_parser.op_string)
1270
1271Those should be turned into a switch. SimplifyLibCalls only gets the second
1272case.
1273
1274//===---------------------------------------------------------------------===//
1275
1276252.eon contains this interesting code:
1277
1278 %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
1279 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1280 %strlen = call i32 @strlen(i8* %3072) ; uses = 1
1281 %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
1282 call void @llvm.memcpy.i32(i8* %endptr,
1283 i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
1284 %3074 = call i32 @strlen(i8* %endptr) nounwind readonly
1285
1286This is interesting for a couple reasons. First, in this:
1287
1288The memcpy+strlen strlen can be replaced with:
1289
1290 %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly
1291
1292Because the destination was just copied into the specified memory buffer. This,
1293in turn, can be constant folded to "4".
1294
1295In other code, it contains:
1296
1297 %endptr6978 = bitcast i8* %endptr69 to i32*
1298 store i32 7107374, i32* %endptr6978, align 1
1299 %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly
1300
1301Which could also be constant folded. Whatever is producing this should probably
1302be fixed to leave this as a memcpy from a string.
1303
1304Further, eon also has an interesting partially redundant strlen call:
1305
1306bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit
1307 %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2]
1308 %683 = load i8** %682, align 4 ; <i8*> [#uses=4]
1309 %684 = load i8* %683, align 1 ; <i8> [#uses=1]
1310 %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1]
1311 br i1 %685, label %bb10, label %bb9
1312
1313bb9: ; preds = %bb8
1314 %686 = call i32 @strlen(i8* %683) nounwind readonly
1315 %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1]
1316 br i1 %687, label %bb10, label %bb11
1317
1318bb10: ; preds = %bb9, %bb8
1319 %688 = call i32 @strlen(i8* %683) nounwind readonly
1320
1321This could be eliminated by doing the strlen once in bb8, saving code size and
1322improving perf on the bb8->9->10 path.
1323
1324//===---------------------------------------------------------------------===//
1325
1326I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
1327which looks like:
1328 %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0
1329
1330
1331bb62: ; preds = %bb55, %bb53
1332 %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]
1333 %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1334 %172 = add i32 %171, -1 ; <i32> [#uses=1]
1335 %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172
1336
1337... no stores ...
1338 br i1 %or.cond, label %bb65, label %bb72
1339
1340bb65: ; preds = %bb62
1341 store i8 0, i8* %173, align 1
1342 br label %bb72
1343
1344bb72: ; preds = %bb65, %bb62
1345 %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]
1346 %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1347
1348Note that on the bb62->bb72 path, that the %177 strlen call is partially
1349redundant with the %171 call. At worst, we could shove the %177 strlen call
1350up into the bb65 block moving it out of the bb62->bb72 path. However, note
1351that bb65 stores to the string, zeroing out the last byte. This means that on
1352that path the value of %177 is actually just %171-1. A sub is cheaper than a
1353strlen!
1354
1355This pattern repeats several times, basically doing:
1356
1357 A = strlen(P);
1358 P[A-1] = 0;
1359 B = strlen(P);
1360 where it is "obvious" that B = A-1.
1361
1362//===---------------------------------------------------------------------===//
1363
1364186.crafty has this interesting pattern with the "out.4543" variable:
1365
1366call void @llvm.memcpy.i32(
1367 i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
1368 i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1)
1369%101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind
1370
1371It is basically doing:
1372
1373 memcpy(globalarray, "string");
1374 printf(..., globalarray);
1375
1376Anyway, by knowing that printf just reads the memory and forward substituting
1377the string directly into the printf, this eliminates reads from globalarray.
1378Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
1379other similar functions) there are many stores to "out". Once all the printfs
1380stop using "out", all that is left is the memcpy's into it. This should allow
1381globalopt to remove the "stored only" global.
1382
1383//===---------------------------------------------------------------------===//
1384
1385This code:
1386
1387define inreg i32 @foo(i8* inreg %p) nounwind {
1388 %tmp0 = load i8* %p
1389 %tmp1 = ashr i8 %tmp0, 5
1390 %tmp2 = sext i8 %tmp1 to i32
1391 ret i32 %tmp2
1392}
1393
1394could be dagcombine'd to a sign-extending load with a shift.
1395For example, on x86 this currently gets this:
1396
1397 movb (%eax), %al
1398 sarb $5, %al
1399 movsbl %al, %eax
1400
1401while it could get this:
1402
1403 movsbl (%eax), %eax
1404 sarl $5, %eax
1405
1406//===---------------------------------------------------------------------===//
1407
1408GCC PR31029:
1409
1410int test(int x) { return 1-x == x; } // --> return false
1411int test2(int x) { return 2-x == x; } // --> return x == 1 ?
1412
1413Always foldable for odd constants, what is the rule for even?
1414
1415//===---------------------------------------------------------------------===//
1416
1417PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
1418for next field in struct (which is at same address).
1419
1420For example: store of float into { {{}}, float } could be turned into a store to
1421the float directly.
1422
1423//===---------------------------------------------------------------------===//
1424
1425The arg promotion pass should make use of nocapture to make its alias analysis
1426stuff much more precise.
1427
1428//===---------------------------------------------------------------------===//
1429
1430The following functions should be optimized to use a select instead of a
1431branch (from gcc PR40072):
1432
1433char char_int(int m) {if(m>7) return 0; return m;}
1434int int_char(char m) {if(m>7) return 0; return m;}
1435
1436//===---------------------------------------------------------------------===//
1437
1438int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
1439
1440Generates this:
1441
1442define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1443entry:
1444 %0 = and i32 %a, 128 ; <i32> [#uses=1]
1445 %1 = icmp eq i32 %0, 0 ; <i1> [#uses=1]
1446 %2 = or i32 %b, 128 ; <i32> [#uses=1]
1447 %3 = and i32 %b, -129 ; <i32> [#uses=1]
1448 %b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1]
1449 ret i32 %b_addr.0
1450}
1451
1452However, it's functionally equivalent to:
1453
1454 b = (b & ~0x80) | (a & 0x80);
1455
1456Which generates this:
1457
1458define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1459entry:
1460 %0 = and i32 %b, -129 ; <i32> [#uses=1]
1461 %1 = and i32 %a, 128 ; <i32> [#uses=1]
1462 %2 = or i32 %0, %1 ; <i32> [#uses=1]
1463 ret i32 %2
1464}
1465
1466This can be generalized for other forms:
1467
1468 b = (b & ~0x80) | (a & 0x40) << 1;
1469
1470//===---------------------------------------------------------------------===//
1471
1472These two functions produce different code. They shouldn't:
1473
1474#include <stdint.h>
1475
1476uint8_t p1(uint8_t b, uint8_t a) {
1477 b = (b & ~0xc0) | (a & 0xc0);
1478 return (b);
1479}
1480
1481uint8_t p2(uint8_t b, uint8_t a) {
1482 b = (b & ~0x40) | (a & 0x40);
1483 b = (b & ~0x80) | (a & 0x80);
1484 return (b);
1485}
1486
1487define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1488entry:
1489 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1490 %1 = and i8 %a, -64 ; <i8> [#uses=1]
1491 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1492 ret i8 %2
1493}
1494
1495define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1496entry:
1497 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1498 %.masked = and i8 %a, 64 ; <i8> [#uses=1]
1499 %1 = and i8 %a, -128 ; <i8> [#uses=1]
1500 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1501 %3 = or i8 %2, %.masked ; <i8> [#uses=1]
1502 ret i8 %3
1503}
1504
1505//===---------------------------------------------------------------------===//
1506
1507IPSCCP does not currently propagate argument dependent constants through
1508functions where it does not not all of the callers. This includes functions
1509with normal external linkage as well as templates, C99 inline functions etc.
1510Specifically, it does nothing to:
1511
1512define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
1513entry:
1514 %0 = add nsw i32 %y, %z
1515 %1 = mul i32 %0, %x
1516 %2 = mul i32 %y, %z
1517 %3 = add nsw i32 %1, %2
1518 ret i32 %3
1519}
1520
1521define i32 @test2() nounwind {
1522entry:
1523 %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
1524 ret i32 %0
1525}
1526
1527It would be interesting extend IPSCCP to be able to handle simple cases like
1528this, where all of the arguments to a call are constant. Because IPSCCP runs
1529before inlining, trivial templates and inline functions are not yet inlined.
1530The results for a function + set of constant arguments should be memoized in a
1531map.
1532
1533//===---------------------------------------------------------------------===//
1534
1535The libcall constant folding stuff should be moved out of SimplifyLibcalls into
1536libanalysis' constantfolding logic. This would allow IPSCCP to be able to
1537handle simple things like this:
1538
1539static int foo(const char *X) { return strlen(X); }
1540int bar() { return foo("abcd"); }
1541
1542//===---------------------------------------------------------------------===//
1543
1544functionattrs doesn't know much about memcpy/memset. This function should be
1545marked readnone rather than readonly, since it only twiddles local memory, but
1546functionattrs doesn't handle memset/memcpy/memmove aggressively:
1547
1548struct X { int *p; int *q; };
1549int foo() {
1550 int i = 0, j = 1;
1551 struct X x, y;
1552 int **p;
1553 y.p = &i;
1554 x.q = &j;
1555 p = __builtin_memcpy (&x, &y, sizeof (int *));
1556 return **p;
1557}
1558
1559This can be seen at:
1560$ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
1561
1562
1563//===---------------------------------------------------------------------===//
1564
1565Missed instcombine transformation:
1566define i1 @a(i32 %x) nounwind readnone {
1567entry:
1568 %cmp = icmp eq i32 %x, 30
1569 %sub = add i32 %x, -30
1570 %cmp2 = icmp ugt i32 %sub, 9
1571 %or = or i1 %cmp, %cmp2
1572 ret i1 %or
1573}
1574This should be optimized to a single compare. Testcase derived from gcc.
1575
1576//===---------------------------------------------------------------------===//
1577
1578Missed instcombine or reassociate transformation:
1579int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
1580
1581The sgt and slt should be combined into a single comparison. Testcase derived
1582from gcc.
1583
1584//===---------------------------------------------------------------------===//
1585
1586Missed instcombine transformation:
1587
1588 %382 = srem i32 %tmp14.i, 64 ; [#uses=1]
1589 %383 = zext i32 %382 to i64 ; [#uses=1]
1590 %384 = shl i64 %381, %383 ; [#uses=1]
1591 %385 = icmp slt i32 %tmp14.i, 64 ; [#uses=1]
1592
1593The srem can be transformed to an and because if %tmp14.i is negative, the
1594shift is undefined. Testcase derived from 403.gcc.
1595
1596//===---------------------------------------------------------------------===//
1597
1598This is a range comparison on a divided result (from 403.gcc):
1599
1600 %1337 = sdiv i32 %1336, 8 ; [#uses=1]
1601 %.off.i208 = add i32 %1336, 7 ; [#uses=1]
1602 %1338 = icmp ult i32 %.off.i208, 15 ; [#uses=1]
1603
1604We already catch this (removing the sdiv) if there isn't an add, we should
1605handle the 'add' as well. This is a common idiom with it's builtin_alloca code.
1606C testcase:
1607
1608int a(int x) { return (unsigned)(x/16+7) < 15; }
1609
1610Another similar case involves truncations on 64-bit targets:
1611
1612 %361 = sdiv i64 %.046, 8 ; [#uses=1]
1613 %362 = trunc i64 %361 to i32 ; [#uses=2]
1614...
1615 %367 = icmp eq i32 %362, 0 ; [#uses=1]
1616
1617//===---------------------------------------------------------------------===//
1618
1619Missed instcombine/dagcombine transformation:
1620define void @lshift_lt(i8 zeroext %a) nounwind {
1621entry:
1622 %conv = zext i8 %a to i32
1623 %shl = shl i32 %conv, 3
1624 %cmp = icmp ult i32 %shl, 33
1625 br i1 %cmp, label %if.then, label %if.end
1626
1627if.then:
1628 tail call void @bar() nounwind
1629 ret void
1630
1631if.end:
1632 ret void
1633}
1634declare void @bar() nounwind
1635
1636The shift should be eliminated. Testcase derived from gcc.
1637
1638//===---------------------------------------------------------------------===//
1639
1640These compile into different code, one gets recognized as a switch and the
1641other doesn't due to phase ordering issues (PR6212):
1642
1643int test1(int mainType, int subType) {
1644 if (mainType == 7)
1645 subType = 4;
1646 else if (mainType == 9)
1647 subType = 6;
1648 else if (mainType == 11)
1649 subType = 9;
1650 return subType;
1651}
1652
1653int test2(int mainType, int subType) {
1654 if (mainType == 7)
1655 subType = 4;
1656 if (mainType == 9)
1657 subType = 6;
1658 if (mainType == 11)
1659 subType = 9;
1660 return subType;
1661}
1662
1663//===---------------------------------------------------------------------===//
1664
1665The following test case (from PR6576):
1666
1667define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1668entry:
1669 %cond1 = icmp eq i32 %b, 0 ; <i1> [#uses=1]
1670 br i1 %cond1, label %exit, label %bb.nph
1671bb.nph: ; preds = %entry
1672 %tmp = mul i32 %b, %a ; <i32> [#uses=1]
1673 ret i32 %tmp
1674exit: ; preds = %entry
1675 ret i32 0
1676}
1677
1678could be reduced to:
1679
1680define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1681entry:
1682 %tmp = mul i32 %b, %a
1683 ret i32 %tmp
1684}
1685
1686//===---------------------------------------------------------------------===//
1687
1688We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
1689See GCC PR34949
1690
1691Another interesting case is that something related could be used for variables
1692that go const after their ctor has finished. In these cases, globalopt (which
1693can statically run the constructor) could mark the global const (so it gets put
1694in the readonly section). A testcase would be:
1695
1696#include <complex>
1697using namespace std;
1698const complex<char> should_be_in_rodata (42,-42);
1699complex<char> should_be_in_data (42,-42);
1700complex<char> should_be_in_bss;
1701
1702Where we currently evaluate the ctors but the globals don't become const because
1703the optimizer doesn't know they "become const" after the ctor is done. See
1704GCC PR4131 for more examples.
1705
1706//===---------------------------------------------------------------------===//
1707
1708In this code:
1709
1710long foo(long x) {
1711 return x > 1 ? x : 1;
1712}
1713
1714LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
1715and cheaper on most targets.
1716
1717LLVM prefers comparisons with zero over non-zero in general, but in this
1718case it choses instead to keep the max operation obvious.
1719
1720//===---------------------------------------------------------------------===//
1721
1722define void @a(i32 %x) nounwind {
1723entry:
1724 switch i32 %x, label %if.end [
1725 i32 0, label %if.then
1726 i32 1, label %if.then
1727 i32 2, label %if.then
1728 i32 3, label %if.then
1729 i32 5, label %if.then
1730 ]
1731if.then:
1732 tail call void @foo() nounwind
1733 ret void
1734if.end:
1735 ret void
1736}
1737declare void @foo()
1738
1739Generated code on x86-64 (other platforms give similar results):
1740a:
1741 cmpl $5, %edi
1742 ja LBB2_2
1743 cmpl $4, %edi
1744 jne LBB2_3
1745.LBB0_2:
1746 ret
1747.LBB0_3:
1748 jmp foo # TAILCALL
1749
1750If we wanted to be really clever, we could simplify the whole thing to
1751something like the following, which eliminates a branch:
1752 xorl $1, %edi
1753 cmpl $4, %edi
1754 ja .LBB0_2
1755 ret
1756.LBB0_2:
1757 jmp foo # TAILCALL
1758
1759//===---------------------------------------------------------------------===//
1760
1761We compile this:
1762
1763int foo(int a) { return (a & (~15)) / 16; }
1764
1765Into:
1766
1767define i32 @foo(i32 %a) nounwind readnone ssp {
1768entry:
1769 %and = and i32 %a, -16
1770 %div = sdiv i32 %and, 16
1771 ret i32 %div
1772}
1773
1774but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
1775should be instcombined into just "a >> 4".
1776
1777We do get this at the codegen level, so something knows about it, but
1778instcombine should catch it earlier:
1779
1780_foo: ## @foo
1781## %bb.0: ## %entry
1782 movl %edi, %eax
1783 sarl $4, %eax
1784 ret
1785
1786//===---------------------------------------------------------------------===//
1787
1788This code (from GCC PR28685):
1789
1790int test(int a, int b) {
1791 int lt = a < b;
1792 int eq = a == b;
1793 if (lt)
1794 return 1;
1795 return eq;
1796}
1797
1798Is compiled to:
1799
1800define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
1801entry:
1802 %cmp = icmp slt i32 %a, %b
1803 br i1 %cmp, label %return, label %if.end
1804
1805if.end: ; preds = %entry
1806 %cmp5 = icmp eq i32 %a, %b
1807 %conv6 = zext i1 %cmp5 to i32
1808 ret i32 %conv6
1809
1810return: ; preds = %entry
1811 ret i32 1
1812}
1813
1814it could be:
1815
1816define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
1817entry:
1818 %0 = icmp sle i32 %a, %b
1819 %retval = zext i1 %0 to i32
1820 ret i32 %retval
1821}
1822
1823//===---------------------------------------------------------------------===//
1824
1825This code can be seen in viterbi:
1826
1827 %64 = call noalias i8* @malloc(i64 %62) nounwind
1828...
1829 %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
1830 %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
1831
1832llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
1833fold to %62. This is a security win (overflows of malloc will get caught)
1834and also a performance win by exposing more memsets to the optimizer.
1835
1836This occurs several times in viterbi.
1837
1838Note that this would change the semantics of @llvm.objectsize which by its
1839current definition always folds to a constant. We also should make sure that
1840we remove checking in code like
1841
1842 char *p = malloc(strlen(s)+1);
1843 __strcpy_chk(p, s, __builtin_objectsize(p, 0));
1844
1845//===---------------------------------------------------------------------===//
1846
1847clang -O3 currently compiles this code
1848
1849int g(unsigned int a) {
1850 unsigned int c[100];
1851 c[10] = a;
1852 c[11] = a;
1853 unsigned int b = c[10] + c[11];
1854 if(b > a*2) a = 4;
1855 else a = 8;
1856 return a + 7;
1857}
1858
1859into
1860
1861define i32 @g(i32 a) nounwind readnone {
1862 %add = shl i32 %a, 1
1863 %mul = shl i32 %a, 1
1864 %cmp = icmp ugt i32 %add, %mul
1865 %a.addr.0 = select i1 %cmp, i32 11, i32 15
1866 ret i32 %a.addr.0
1867}
1868
1869The icmp should fold to false. This CSE opportunity is only available
1870after GVN and InstCombine have run.
1871
1872//===---------------------------------------------------------------------===//
1873
1874memcpyopt should turn this:
1875
1876define i8* @test10(i32 %x) {
1877 %alloc = call noalias i8* @malloc(i32 %x) nounwind
1878 call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
1879 ret i8* %alloc
1880}
1881
1882into a call to calloc. We should make sure that we analyze calloc as
1883aggressively as malloc though.
1884
1885//===---------------------------------------------------------------------===//
1886
1887clang -O3 doesn't optimize this:
1888
1889void f1(int* begin, int* end) {
1890 std::fill(begin, end, 0);
1891}
1892
1893into a memset. This is PR8942.
1894
1895//===---------------------------------------------------------------------===//
1896
1897clang -O3 -fno-exceptions currently compiles this code:
1898
1899void f(int N) {
1900 std::vector<int> v(N);
1901
1902 extern void sink(void*); sink(&v);
1903}
1904
1905into
1906
1907define void @_Z1fi(i32 %N) nounwind {
1908entry:
1909 %v2 = alloca [3 x i32*], align 8
1910 %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
1911 %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
1912 %conv = sext i32 %N to i64
1913 store i32* null, i32** %v2.sub, align 8, !tbaa !0
1914 %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
1915 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1916 %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
1917 store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1918 %cmp.i.i.i.i = icmp eq i32 %N, 0
1919 br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
1920
1921_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
1922 store i32* null, i32** %v2.sub, align 8, !tbaa !0
1923 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1924 %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
1925 store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1926 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
1927
1928cond.true.i.i.i.i: ; preds = %entry
1929 %cmp.i.i.i.i.i = icmp slt i32 %N, 0
1930 br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
1931
1932if.then.i.i.i.i.i: ; preds = %cond.true.i.i.i.i
1933 call void @_ZSt17__throw_bad_allocv() noreturn nounwind
1934 unreachable
1935
1936_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i: ; preds = %cond.true.i.i.i.i
1937 %mul.i.i.i.i.i = shl i64 %conv, 2
1938 %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
1939 %0 = bitcast i8* %call3.i.i.i.i.i to i32*
1940 store i32* %0, i32** %v2.sub, align 8, !tbaa !0
1941 store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1942 %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
1943 store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1944 call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
1945 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
1946
1947This is just the handling the construction of the vector. Most surprising here
1948is the fact that all three null stores in %entry are dead (because we do no
1949cross-block DSE).
1950
1951Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
1952This is a because the client of LazyValueInfo doesn't simplify all instruction
1953operands, just selected ones.
1954
1955//===---------------------------------------------------------------------===//
1956
1957clang -O3 -fno-exceptions currently compiles this code:
1958
1959void f(char* a, int n) {
1960 __builtin_memset(a, 0, n);
1961 for (int i = 0; i < n; ++i)
1962 a[i] = 0;
1963}
1964
1965into:
1966
1967define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
1968entry:
1969 %conv = sext i32 %n to i64
1970 tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
1971 %cmp8 = icmp sgt i32 %n, 0
1972 br i1 %cmp8, label %for.body.lr.ph, label %for.end
1973
1974for.body.lr.ph: ; preds = %entry
1975 %tmp10 = add i32 %n, -1
1976 %tmp11 = zext i32 %tmp10 to i64
1977 %tmp12 = add i64 %tmp11, 1
1978 call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
1979 ret void
1980
1981for.end: ; preds = %entry
1982 ret void
1983}
1984
1985This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
1986the two memset's together.
1987
1988The issue with the addition only occurs in 64-bit mode, and appears to be at
1989least partially caused by Scalar Evolution not keeping its cache updated: it
1990returns the "wrong" result immediately after indvars runs, but figures out the
1991expected result if it is run from scratch on IR resulting from running indvars.
1992
1993//===---------------------------------------------------------------------===//
1994
1995clang -O3 -fno-exceptions currently compiles this code:
1996
1997struct S {
1998 unsigned short m1, m2;
1999 unsigned char m3, m4;
2000};
2001
2002void f(int N) {
2003 std::vector<S> v(N);
2004 extern void sink(void*); sink(&v);
2005}
2006
2007into poor code for zero-initializing 'v' when N is >0. The problem is that
2008S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
20094 stores on each iteration. If the struct were 8 bytes, this gets turned into
2010a memset.
2011
2012In order to handle this we have to:
2013 A) Teach clang to generate metadata for memsets of structs that have holes in
2014 them.
2015 B) Teach clang to use such a memset for zero init of this struct (since it has
2016 a hole), instead of doing elementwise zeroing.
2017
2018//===---------------------------------------------------------------------===//
2019
2020clang -O3 currently compiles this code:
2021
2022extern const int magic;
2023double f() { return 0.0 * magic; }
2024
2025into
2026
2027@magic = external constant i32
2028
2029define double @_Z1fv() nounwind readnone {
2030entry:
2031 %tmp = load i32* @magic, align 4, !tbaa !0
2032 %conv = sitofp i32 %tmp to double
2033 %mul = fmul double %conv, 0.000000e+00
2034 ret double %mul
2035}
2036
2037We should be able to fold away this fmul to 0.0. More generally, fmul(x,0.0)
2038can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
2039not an INF. The CannotBeNegativeZero predicate in value tracking should be
2040extended to support general "fpclassify" operations that can return
2041yes/no/unknown for each of these predicates.
2042
2043In this predicate, we know that uitofp is trivially never NaN or -0.0, and
2044we know that it isn't +/-Inf if the floating point type has enough exponent bits
2045to represent the largest integer value as < inf.
2046
2047//===---------------------------------------------------------------------===//
2048
2049When optimizing a transformation that can change the sign of 0.0 (such as the
20500.0*val -> 0.0 transformation above), it might be provable that the sign of the
2051expression doesn't matter. For example, by the above rules, we can't transform
2052fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
2053expression is defined to be -0.0.
2054
2055If we look at the uses of the fmul for example, we might be able to prove that
2056all uses don't care about the sign of zero. For example, if we have:
2057
2058 fadd(fmul(sitofp(x), 0.0), 2.0)
2059
2060Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
2061transform the fmul to 0.0, and then the fadd to 2.0.
2062
2063//===---------------------------------------------------------------------===//
2064
2065We should enhance memcpy/memcpy/memset to allow a metadata node on them
2066indicating that some bytes of the transfer are undefined. This is useful for
2067frontends like clang when lowering struct copies, when some elements of the
2068struct are undefined. Consider something like this:
2069
2070struct x {
2071 char a;
2072 int b[4];
2073};
2074void foo(struct x*P);
2075struct x testfunc() {
2076 struct x V1, V2;
2077 foo(&V1);
2078 V2 = V1;
2079
2080 return V2;
2081}
2082
2083We currently compile this to:
2084$ clang t.c -S -o - -O0 -emit-llvm | opt -sroa -S
2085
2086
2087%struct.x = type { i8, [4 x i32] }
2088
2089define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
2090entry:
2091 %V1 = alloca %struct.x, align 4
2092 call void @foo(%struct.x* %V1)
2093 %tmp1 = bitcast %struct.x* %V1 to i8*
2094 %0 = bitcast %struct.x* %V1 to i160*
2095 %srcval1 = load i160* %0, align 4
2096 %tmp2 = bitcast %struct.x* %agg.result to i8*
2097 %1 = bitcast %struct.x* %agg.result to i160*
2098 store i160 %srcval1, i160* %1, align 4
2099 ret void
2100}
2101
2102This happens because SRoA sees that the temp alloca has is being memcpy'd into
2103and out of and it has holes and it has to be conservative. If we knew about the
2104holes, then this could be much much better.
2105
2106Having information about these holes would also improve memcpy (etc) lowering at
2107llc time when it gets inlined, because we can use smaller transfers. This also
2108avoids partial register stalls in some important cases.
2109
2110//===---------------------------------------------------------------------===//
2111
2112We don't fold (icmp (add) (add)) unless the two adds only have a single use.
2113There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
2114example:
2115
2116 %indvar.next90 = add i64 %indvar89, 1 ;; Has 2 uses
2117 %tmp96 = add i64 %tmp95, 1 ;; Has 1 use
2118 %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
2119
2120We don't fold this because we don't want to introduce an overlapped live range
2121of the ivar. However if we can make this more aggressive without causing
2122performance issues in two ways:
2123
21241. If *either* the LHS or RHS has a single use, we can definitely do the
2125 transformation. In the overlapping liverange case we're trading one register
2126 use for one fewer operation, which is a reasonable trade. Before doing this
2127 we should verify that the llc output actually shrinks for some benchmarks.
21282. If both ops have multiple uses, we can still fold it if the operations are
2129 both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
2130 increase register pressure.
2131
2132There are a ton of icmp's we aren't simplifying because of the reg pressure
2133concern. Care is warranted here though because many of these are induction
2134variables and other cases that matter a lot to performance, like the above.
2135Here's a blob of code that you can drop into the bottom of visitICmp to see some
2136missed cases:
2137
2138 { Value *A, *B, *C, *D;
2139 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2140 match(Op1, m_Add(m_Value(C), m_Value(D))) &&
2141 (A == C || A == D || B == C || B == D)) {
2142 errs() << "OP0 = " << *Op0 << " U=" << Op0->getNumUses() << "\n";
2143 errs() << "OP1 = " << *Op1 << " U=" << Op1->getNumUses() << "\n";
2144 errs() << "CMP = " << I << "\n\n";
2145 }
2146 }
2147
2148//===---------------------------------------------------------------------===//
2149
2150define i1 @test1(i32 %x) nounwind {
2151 %and = and i32 %x, 3
2152 %cmp = icmp ult i32 %and, 2
2153 ret i1 %cmp
2154}
2155
2156Can be folded to (x & 2) == 0.
2157
2158define i1 @test2(i32 %x) nounwind {
2159 %and = and i32 %x, 3
2160 %cmp = icmp ugt i32 %and, 1
2161 ret i1 %cmp
2162}
2163
2164Can be folded to (x & 2) != 0.
2165
2166SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
2167icmp transform.
2168
2169//===---------------------------------------------------------------------===//
2170
2171This code:
2172
2173typedef struct {
2174int f1:1;
2175int f2:1;
2176int f3:1;
2177int f4:29;
2178} t1;
2179
2180typedef struct {
2181int f1:1;
2182int f2:1;
2183int f3:30;
2184} t2;
2185
2186t1 s1;
2187t2 s2;
2188
2189void func1(void)
2190{
2191s1.f1 = s2.f1;
2192s1.f2 = s2.f2;
2193}
2194
2195Compiles into this IR (on x86-64 at least):
2196
2197%struct.t1 = type { i8, [3 x i8] }
2198@s2 = global %struct.t1 zeroinitializer, align 4
2199@s1 = global %struct.t1 zeroinitializer, align 4
2200define void @func1() nounwind ssp noredzone {
2201entry:
2202 %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
2203 %bf.val.sext5 = and i32 %0, 1
2204 %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
2205 %2 = and i32 %1, -4
2206 %3 = or i32 %2, %bf.val.sext5
2207 %bf.val.sext26 = and i32 %0, 2
2208 %4 = or i32 %3, %bf.val.sext26
2209 store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
2210 ret void
2211}
2212
2213The two or/and's should be merged into one each.
2214
2215//===---------------------------------------------------------------------===//
2216
2217Machine level code hoisting can be useful in some cases. For example, PR9408
2218is about:
2219
2220typedef union {
2221 void (*f1)(int);
2222 void (*f2)(long);
2223} funcs;
2224
2225void foo(funcs f, int which) {
2226 int a = 5;
2227 if (which) {
2228 f.f1(a);
2229 } else {
2230 f.f2(a);
2231 }
2232}
2233
2234which we compile to:
2235
2236foo: # @foo
2237# %bb.0: # %entry
2238 pushq %rbp
2239 movq %rsp, %rbp
2240 testl %esi, %esi
2241 movq %rdi, %rax
2242 je .LBB0_2
2243# %bb.1: # %if.then
2244 movl $5, %edi
2245 callq *%rax
2246 popq %rbp
2247 ret
2248.LBB0_2: # %if.else
2249 movl $5, %edi
2250 callq *%rax
2251 popq %rbp
2252 ret
2253
2254Note that bb1 and bb2 are the same. This doesn't happen at the IR level
2255because one call is passing an i32 and the other is passing an i64.
2256
2257//===---------------------------------------------------------------------===//
2258
2259I see this sort of pattern in 176.gcc in a few places (e.g. the start of
2260store_bit_field). The rem should be replaced with a multiply and subtract:
2261
2262 %3 = sdiv i32 %A, %B
2263 %4 = srem i32 %A, %B
2264
2265Similarly for udiv/urem. Note that this shouldn't be done on X86 or ARM,
2266which can do this in a single operation (instruction or libcall). It is
2267probably best to do this in the code generator.
2268
2269//===---------------------------------------------------------------------===//
2270
2271unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
2272should fold to (x & y) == 0.
2273
2274//===---------------------------------------------------------------------===//
2275
2276unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
2277should fold to x > y.
2278
2279//===---------------------------------------------------------------------===//
2280