1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "VelocityTracker"
18
19 #include <android-base/logging.h>
20 #include <array>
21 #include <ftl/enum.h>
22 #include <inttypes.h>
23 #include <limits.h>
24 #include <math.h>
25 #include <optional>
26
27 #include <android-base/stringprintf.h>
28 #include <input/PrintTools.h>
29 #include <input/VelocityTracker.h>
30 #include <utils/BitSet.h>
31 #include <utils/Timers.h>
32
33 using std::literals::chrono_literals::operator""ms;
34
35 namespace android {
36
37 /**
38 * Log debug messages about velocity tracking.
39 * Enable this via "adb shell setprop log.tag.VelocityTrackerVelocity DEBUG" (requires restart)
40 */
41 const bool DEBUG_VELOCITY =
42 __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Velocity", ANDROID_LOG_INFO);
43
44 /**
45 * Log debug messages about the progress of the algorithm itself.
46 * Enable this via "adb shell setprop log.tag.VelocityTrackerStrategy DEBUG" (requires restart)
47 */
48 const bool DEBUG_STRATEGY =
49 __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Strategy", ANDROID_LOG_INFO);
50
51 /**
52 * Log debug messages about the 'impulse' strategy.
53 * Enable this via "adb shell setprop log.tag.VelocityTrackerImpulse DEBUG" (requires restart)
54 */
55 const bool DEBUG_IMPULSE =
56 __android_log_is_loggable(ANDROID_LOG_DEBUG, LOG_TAG "Impulse", ANDROID_LOG_INFO);
57
58 // Nanoseconds per milliseconds.
59 static const nsecs_t NANOS_PER_MS = 1000000;
60
61 // All axes supported for velocity tracking, mapped to their default strategies.
62 // Although other strategies are available for testing and comparison purposes,
63 // the default strategy is the one that applications will actually use. Be very careful
64 // when adjusting the default strategy because it can dramatically affect
65 // (often in a bad way) the user experience.
66 static const std::map<int32_t, VelocityTracker::Strategy> DEFAULT_STRATEGY_BY_AXIS =
67 {{AMOTION_EVENT_AXIS_X, VelocityTracker::Strategy::LSQ2},
68 {AMOTION_EVENT_AXIS_Y, VelocityTracker::Strategy::LSQ2},
69 {AMOTION_EVENT_AXIS_SCROLL, VelocityTracker::Strategy::IMPULSE}};
70
71 // Axes specifying location on a 2D plane (i.e. X and Y).
72 static const std::set<int32_t> PLANAR_AXES = {AMOTION_EVENT_AXIS_X, AMOTION_EVENT_AXIS_Y};
73
74 // Axes whose motion values are differential values (i.e. deltas).
75 static const std::set<int32_t> DIFFERENTIAL_AXES = {AMOTION_EVENT_AXIS_SCROLL};
76
77 // Threshold for determining that a pointer has stopped moving.
78 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
79 // stopped. We need to detect this case so that we can accurately predict the
80 // velocity after the pointer starts moving again.
81 static const std::chrono::duration ASSUME_POINTER_STOPPED_TIME = 40ms;
82
toString(std::chrono::nanoseconds t)83 static std::string toString(std::chrono::nanoseconds t) {
84 std::stringstream stream;
85 stream.precision(1);
86 stream << std::fixed << std::chrono::duration<float, std::milli>(t).count() << " ms";
87 return stream.str();
88 }
89
vectorDot(const float * a,const float * b,uint32_t m)90 static float vectorDot(const float* a, const float* b, uint32_t m) {
91 float r = 0;
92 for (size_t i = 0; i < m; i++) {
93 r += *(a++) * *(b++);
94 }
95 return r;
96 }
97
vectorNorm(const float * a,uint32_t m)98 static float vectorNorm(const float* a, uint32_t m) {
99 float r = 0;
100 for (size_t i = 0; i < m; i++) {
101 float t = *(a++);
102 r += t * t;
103 }
104 return sqrtf(r);
105 }
106
vectorToString(const float * a,uint32_t m)107 static std::string vectorToString(const float* a, uint32_t m) {
108 std::string str;
109 str += "[";
110 for (size_t i = 0; i < m; i++) {
111 if (i) {
112 str += ",";
113 }
114 str += android::base::StringPrintf(" %f", *(a++));
115 }
116 str += " ]";
117 return str;
118 }
119
vectorToString(const std::vector<float> & v)120 static std::string vectorToString(const std::vector<float>& v) {
121 return vectorToString(v.data(), v.size());
122 }
123
matrixToString(const float * a,uint32_t m,uint32_t n,bool rowMajor)124 static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
125 std::string str;
126 str = "[";
127 for (size_t i = 0; i < m; i++) {
128 if (i) {
129 str += ",";
130 }
131 str += " [";
132 for (size_t j = 0; j < n; j++) {
133 if (j) {
134 str += ",";
135 }
136 str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]);
137 }
138 str += " ]";
139 }
140 str += " ]";
141 return str;
142 }
143
144
145 // --- VelocityTracker ---
146
VelocityTracker(const Strategy strategy)147 VelocityTracker::VelocityTracker(const Strategy strategy)
148 : mLastEventTime(0), mCurrentPointerIdBits(0), mOverrideStrategy(strategy) {}
149
isAxisSupported(int32_t axis)150 bool VelocityTracker::isAxisSupported(int32_t axis) {
151 return DEFAULT_STRATEGY_BY_AXIS.find(axis) != DEFAULT_STRATEGY_BY_AXIS.end();
152 }
153
configureStrategy(int32_t axis)154 void VelocityTracker::configureStrategy(int32_t axis) {
155 const bool isDifferentialAxis = DIFFERENTIAL_AXES.find(axis) != DIFFERENTIAL_AXES.end();
156 if (isDifferentialAxis || mOverrideStrategy == VelocityTracker::Strategy::DEFAULT) {
157 // Do not allow overrides of strategies for differential axes, for now.
158 mConfiguredStrategies[axis] = createStrategy(DEFAULT_STRATEGY_BY_AXIS.at(axis),
159 /*deltaValues=*/isDifferentialAxis);
160 } else {
161 mConfiguredStrategies[axis] = createStrategy(mOverrideStrategy, /*deltaValues=*/false);
162 }
163 }
164
createStrategy(VelocityTracker::Strategy strategy,bool deltaValues)165 std::unique_ptr<VelocityTrackerStrategy> VelocityTracker::createStrategy(
166 VelocityTracker::Strategy strategy, bool deltaValues) {
167 switch (strategy) {
168 case VelocityTracker::Strategy::IMPULSE:
169 ALOGI_IF(DEBUG_STRATEGY, "Initializing impulse strategy");
170 return std::make_unique<ImpulseVelocityTrackerStrategy>(deltaValues);
171
172 case VelocityTracker::Strategy::LSQ1:
173 return std::make_unique<LeastSquaresVelocityTrackerStrategy>(1);
174
175 case VelocityTracker::Strategy::LSQ2:
176 ALOGI_IF(DEBUG_STRATEGY && !DEBUG_IMPULSE, "Initializing lsq2 strategy");
177 return std::make_unique<LeastSquaresVelocityTrackerStrategy>(2);
178
179 case VelocityTracker::Strategy::LSQ3:
180 return std::make_unique<LeastSquaresVelocityTrackerStrategy>(3);
181
182 case VelocityTracker::Strategy::WLSQ2_DELTA:
183 return std::make_unique<
184 LeastSquaresVelocityTrackerStrategy>(2,
185 LeastSquaresVelocityTrackerStrategy::
186 Weighting::DELTA);
187 case VelocityTracker::Strategy::WLSQ2_CENTRAL:
188 return std::make_unique<
189 LeastSquaresVelocityTrackerStrategy>(2,
190 LeastSquaresVelocityTrackerStrategy::
191 Weighting::CENTRAL);
192 case VelocityTracker::Strategy::WLSQ2_RECENT:
193 return std::make_unique<
194 LeastSquaresVelocityTrackerStrategy>(2,
195 LeastSquaresVelocityTrackerStrategy::
196 Weighting::RECENT);
197
198 case VelocityTracker::Strategy::INT1:
199 return std::make_unique<IntegratingVelocityTrackerStrategy>(1);
200
201 case VelocityTracker::Strategy::INT2:
202 return std::make_unique<IntegratingVelocityTrackerStrategy>(2);
203
204 case VelocityTracker::Strategy::LEGACY:
205 return std::make_unique<LegacyVelocityTrackerStrategy>();
206
207 default:
208 break;
209 }
210 LOG(FATAL) << "Invalid strategy: " << ftl::enum_string(strategy)
211 << ", deltaValues = " << deltaValues;
212
213 return nullptr;
214 }
215
clear()216 void VelocityTracker::clear() {
217 mCurrentPointerIdBits.clear();
218 mActivePointerId = std::nullopt;
219 mConfiguredStrategies.clear();
220 }
221
clearPointer(int32_t pointerId)222 void VelocityTracker::clearPointer(int32_t pointerId) {
223 mCurrentPointerIdBits.clearBit(pointerId);
224
225 if (mActivePointerId && *mActivePointerId == pointerId) {
226 // The active pointer id is being removed. Mark it invalid and try to find a new one
227 // from the remaining pointers.
228 mActivePointerId = std::nullopt;
229 if (!mCurrentPointerIdBits.isEmpty()) {
230 mActivePointerId = mCurrentPointerIdBits.firstMarkedBit();
231 }
232 }
233
234 for (const auto& [_, strategy] : mConfiguredStrategies) {
235 strategy->clearPointer(pointerId);
236 }
237 }
238
addMovement(nsecs_t eventTime,int32_t pointerId,int32_t axis,float position)239 void VelocityTracker::addMovement(nsecs_t eventTime, int32_t pointerId, int32_t axis,
240 float position) {
241 if (mCurrentPointerIdBits.hasBit(pointerId) &&
242 std::chrono::nanoseconds(eventTime - mLastEventTime) > ASSUME_POINTER_STOPPED_TIME) {
243 ALOGD_IF(DEBUG_VELOCITY, "VelocityTracker: stopped for %s, clearing state.",
244 toString(std::chrono::nanoseconds(eventTime - mLastEventTime)).c_str());
245
246 // We have not received any movements for too long. Assume that all pointers
247 // have stopped.
248 mConfiguredStrategies.clear();
249 }
250 mLastEventTime = eventTime;
251
252 mCurrentPointerIdBits.markBit(pointerId);
253 if (!mActivePointerId) {
254 // Let this be the new active pointer if no active pointer is currently set
255 mActivePointerId = pointerId;
256 }
257
258 if (mConfiguredStrategies.find(axis) == mConfiguredStrategies.end()) {
259 configureStrategy(axis);
260 }
261 mConfiguredStrategies[axis]->addMovement(eventTime, pointerId, position);
262
263 if (DEBUG_VELOCITY) {
264 ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", pointerId=%" PRId32
265 ", activePointerId=%s",
266 eventTime, pointerId, toString(mActivePointerId).c_str());
267
268 std::optional<Estimator> estimator = getEstimator(axis, pointerId);
269 ALOGD(" %d: axis=%d, position=%0.3f, "
270 "estimator (degree=%d, coeff=%s, confidence=%f)",
271 pointerId, axis, position, int((*estimator).degree),
272 vectorToString((*estimator).coeff.data(), (*estimator).degree + 1).c_str(),
273 (*estimator).confidence);
274 }
275 }
276
addMovement(const MotionEvent * event)277 void VelocityTracker::addMovement(const MotionEvent* event) {
278 // Stores data about which axes to process based on the incoming motion event.
279 std::set<int32_t> axesToProcess;
280 int32_t actionMasked = event->getActionMasked();
281
282 switch (actionMasked) {
283 case AMOTION_EVENT_ACTION_DOWN:
284 case AMOTION_EVENT_ACTION_HOVER_ENTER:
285 // Clear all pointers on down before adding the new movement.
286 clear();
287 axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end());
288 break;
289 case AMOTION_EVENT_ACTION_POINTER_DOWN: {
290 // Start a new movement trace for a pointer that just went down.
291 // We do this on down instead of on up because the client may want to query the
292 // final velocity for a pointer that just went up.
293 clearPointer(event->getPointerId(event->getActionIndex()));
294 axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end());
295 break;
296 }
297 case AMOTION_EVENT_ACTION_MOVE:
298 case AMOTION_EVENT_ACTION_HOVER_MOVE:
299 axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end());
300 break;
301 case AMOTION_EVENT_ACTION_POINTER_UP:
302 case AMOTION_EVENT_ACTION_UP: {
303 std::chrono::nanoseconds delaySinceLastEvent(event->getEventTime() - mLastEventTime);
304 if (delaySinceLastEvent > ASSUME_POINTER_STOPPED_TIME) {
305 ALOGD_IF(DEBUG_VELOCITY,
306 "VelocityTracker: stopped for %s, clearing state upon pointer liftoff.",
307 toString(delaySinceLastEvent).c_str());
308 // We have not received any movements for too long. Assume that all pointers
309 // have stopped.
310 for (int32_t axis : PLANAR_AXES) {
311 mConfiguredStrategies.erase(axis);
312 }
313 }
314 // These actions because they do not convey any new information about
315 // pointer movement. We also want to preserve the last known velocity of the pointers.
316 // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
317 // of the pointers that went up. ACTION_POINTER_UP does include the new position of
318 // pointers that remained down but we will also receive an ACTION_MOVE with this
319 // information if any of them actually moved. Since we don't know how many pointers
320 // will be going up at once it makes sense to just wait for the following ACTION_MOVE
321 // before adding the movement.
322 return;
323 }
324 case AMOTION_EVENT_ACTION_SCROLL:
325 axesToProcess.insert(AMOTION_EVENT_AXIS_SCROLL);
326 break;
327 default:
328 // Ignore all other actions.
329 return;
330 }
331
332 const size_t historySize = event->getHistorySize();
333 for (size_t h = 0; h <= historySize; h++) {
334 const nsecs_t eventTime = event->getHistoricalEventTime(h);
335 for (size_t i = 0; i < event->getPointerCount(); i++) {
336 if (event->isResampled(i, h)) {
337 continue; // skip resampled samples
338 }
339 const int32_t pointerId = event->getPointerId(i);
340 for (int32_t axis : axesToProcess) {
341 const float position = event->getHistoricalAxisValue(axis, i, h);
342 addMovement(eventTime, pointerId, axis, position);
343 }
344 }
345 }
346 }
347
getVelocity(int32_t axis,int32_t pointerId) const348 std::optional<float> VelocityTracker::getVelocity(int32_t axis, int32_t pointerId) const {
349 std::optional<Estimator> estimator = getEstimator(axis, pointerId);
350 if (estimator && (*estimator).degree >= 1) {
351 return (*estimator).coeff[1];
352 }
353 return {};
354 }
355
getComputedVelocity(int32_t units,float maxVelocity)356 VelocityTracker::ComputedVelocity VelocityTracker::getComputedVelocity(int32_t units,
357 float maxVelocity) {
358 ComputedVelocity computedVelocity;
359 for (const auto& [axis, _] : mConfiguredStrategies) {
360 BitSet32 copyIdBits = BitSet32(mCurrentPointerIdBits);
361 while (!copyIdBits.isEmpty()) {
362 uint32_t id = copyIdBits.clearFirstMarkedBit();
363 std::optional<float> velocity = getVelocity(axis, id);
364 if (velocity) {
365 float adjustedVelocity =
366 std::clamp(*velocity * units / 1000, -maxVelocity, maxVelocity);
367 computedVelocity.addVelocity(axis, id, adjustedVelocity);
368 }
369 }
370 }
371 return computedVelocity;
372 }
373
getEstimator(int32_t axis,int32_t pointerId) const374 std::optional<VelocityTracker::Estimator> VelocityTracker::getEstimator(int32_t axis,
375 int32_t pointerId) const {
376 const auto& it = mConfiguredStrategies.find(axis);
377 if (it == mConfiguredStrategies.end()) {
378 return std::nullopt;
379 }
380 return it->second->getEstimator(pointerId);
381 }
382
383 // --- LeastSquaresVelocityTrackerStrategy ---
384
LeastSquaresVelocityTrackerStrategy(uint32_t degree,Weighting weighting)385 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(uint32_t degree,
386 Weighting weighting)
387 : mDegree(degree), mWeighting(weighting) {}
388
~LeastSquaresVelocityTrackerStrategy()389 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
390 }
391
clearPointer(int32_t pointerId)392 void LeastSquaresVelocityTrackerStrategy::clearPointer(int32_t pointerId) {
393 mIndex.erase(pointerId);
394 mMovements.erase(pointerId);
395 }
396
addMovement(nsecs_t eventTime,int32_t pointerId,float position)397 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId,
398 float position) {
399 // If data for this pointer already exists, we have a valid entry at the position of
400 // mIndex[pointerId] and mMovements[pointerId]. In that case, we need to advance the index
401 // to the next position in the circular buffer and write the new Movement there. Otherwise,
402 // if this is a first movement for this pointer, we initialize the maps mIndex and mMovements
403 // for this pointer and write to the first position.
404 auto [movementIt, inserted] = mMovements.insert({pointerId, {}});
405 auto [indexIt, _] = mIndex.insert({pointerId, 0});
406 size_t& index = indexIt->second;
407 if (!inserted && movementIt->second[index].eventTime != eventTime) {
408 // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
409 // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
410 // the new pointer. If the eventtimes for both events are identical, just update the data
411 // for this time.
412 // We only compare against the last value, as it is likely that addMovement is called
413 // in chronological order as events occur.
414 index++;
415 }
416 if (index == HISTORY_SIZE) {
417 index = 0;
418 }
419
420 Movement& movement = movementIt->second[index];
421 movement.eventTime = eventTime;
422 movement.position = position;
423 }
424
425 /**
426 * Solves a linear least squares problem to obtain a N degree polynomial that fits
427 * the specified input data as nearly as possible.
428 *
429 * Returns true if a solution is found, false otherwise.
430 *
431 * The input consists of two vectors of data points X and Y with indices 0..m-1
432 * along with a weight vector W of the same size.
433 *
434 * The output is a vector B with indices 0..n that describes a polynomial
435 * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
436 * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
437 *
438 * Accordingly, the weight vector W should be initialized by the caller with the
439 * reciprocal square root of the variance of the error in each input data point.
440 * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
441 * The weights express the relative importance of each data point. If the weights are
442 * all 1, then the data points are considered to be of equal importance when fitting
443 * the polynomial. It is a good idea to choose weights that diminish the importance
444 * of data points that may have higher than usual error margins.
445 *
446 * Errors among data points are assumed to be independent. W is represented here
447 * as a vector although in the literature it is typically taken to be a diagonal matrix.
448 *
449 * That is to say, the function that generated the input data can be approximated
450 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
451 *
452 * The coefficient of determination (R^2) is also returned to describe the goodness
453 * of fit of the model for the given data. It is a value between 0 and 1, where 1
454 * indicates perfect correspondence.
455 *
456 * This function first expands the X vector to a m by n matrix A such that
457 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
458 * multiplies it by w[i]./
459 *
460 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
461 * and an m by n upper triangular matrix R. Because R is upper triangular (lower
462 * part is all zeroes), we can simplify the decomposition into an m by n matrix
463 * Q1 and a n by n matrix R1 such that A = Q1 R1.
464 *
465 * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
466 * to find B.
467 *
468 * For efficiency, we lay out A and Q column-wise in memory because we frequently
469 * operate on the column vectors. Conversely, we lay out R row-wise.
470 *
471 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
472 * http://en.wikipedia.org/wiki/Gram-Schmidt
473 */
solveLeastSquares(const std::vector<float> & x,const std::vector<float> & y,const std::vector<float> & w,uint32_t n,std::array<float,VelocityTracker::Estimator::MAX_DEGREE+1> & outB,float * outDet)474 static bool solveLeastSquares(const std::vector<float>& x, const std::vector<float>& y,
475 const std::vector<float>& w, uint32_t n,
476 std::array<float, VelocityTracker::Estimator::MAX_DEGREE + 1>& outB,
477 float* outDet) {
478 const size_t m = x.size();
479
480 ALOGD_IF(DEBUG_STRATEGY, "solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
481 vectorToString(x).c_str(), vectorToString(y).c_str(), vectorToString(w).c_str());
482
483 LOG_ALWAYS_FATAL_IF(m != y.size() || m != w.size(), "Mismatched vector sizes");
484
485 // Expand the X vector to a matrix A, pre-multiplied by the weights.
486 float a[n][m]; // column-major order
487 for (uint32_t h = 0; h < m; h++) {
488 a[0][h] = w[h];
489 for (uint32_t i = 1; i < n; i++) {
490 a[i][h] = a[i - 1][h] * x[h];
491 }
492 }
493
494 ALOGD_IF(DEBUG_STRATEGY, " - a=%s",
495 matrixToString(&a[0][0], m, n, /*rowMajor=*/false).c_str());
496
497 // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
498 float q[n][m]; // orthonormal basis, column-major order
499 float r[n][n]; // upper triangular matrix, row-major order
500 for (uint32_t j = 0; j < n; j++) {
501 for (uint32_t h = 0; h < m; h++) {
502 q[j][h] = a[j][h];
503 }
504 for (uint32_t i = 0; i < j; i++) {
505 float dot = vectorDot(&q[j][0], &q[i][0], m);
506 for (uint32_t h = 0; h < m; h++) {
507 q[j][h] -= dot * q[i][h];
508 }
509 }
510
511 float norm = vectorNorm(&q[j][0], m);
512 if (norm < 0.000001f) {
513 // vectors are linearly dependent or zero so no solution
514 ALOGD_IF(DEBUG_STRATEGY, " - no solution, norm=%f", norm);
515 return false;
516 }
517
518 float invNorm = 1.0f / norm;
519 for (uint32_t h = 0; h < m; h++) {
520 q[j][h] *= invNorm;
521 }
522 for (uint32_t i = 0; i < n; i++) {
523 r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
524 }
525 }
526 if (DEBUG_STRATEGY) {
527 ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, /*rowMajor=*/false).c_str());
528 ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, /*rowMajor=*/true).c_str());
529
530 // calculate QR, if we factored A correctly then QR should equal A
531 float qr[n][m];
532 for (uint32_t h = 0; h < m; h++) {
533 for (uint32_t i = 0; i < n; i++) {
534 qr[i][h] = 0;
535 for (uint32_t j = 0; j < n; j++) {
536 qr[i][h] += q[j][h] * r[j][i];
537 }
538 }
539 }
540 ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, /*rowMajor=*/false).c_str());
541 }
542
543 // Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
544 // We just work from bottom-right to top-left calculating B's coefficients.
545 float wy[m];
546 for (uint32_t h = 0; h < m; h++) {
547 wy[h] = y[h] * w[h];
548 }
549 for (uint32_t i = n; i != 0; ) {
550 i--;
551 outB[i] = vectorDot(&q[i][0], wy, m);
552 for (uint32_t j = n - 1; j > i; j--) {
553 outB[i] -= r[i][j] * outB[j];
554 }
555 outB[i] /= r[i][i];
556 }
557
558 ALOGD_IF(DEBUG_STRATEGY, " - b=%s", vectorToString(outB.data(), n).c_str());
559
560 // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
561 // SSerr is the residual sum of squares (variance of the error),
562 // and SStot is the total sum of squares (variance of the data) where each
563 // has been weighted.
564 float ymean = 0;
565 for (uint32_t h = 0; h < m; h++) {
566 ymean += y[h];
567 }
568 ymean /= m;
569
570 float sserr = 0;
571 float sstot = 0;
572 for (uint32_t h = 0; h < m; h++) {
573 float err = y[h] - outB[0];
574 float term = 1;
575 for (uint32_t i = 1; i < n; i++) {
576 term *= x[h];
577 err -= term * outB[i];
578 }
579 sserr += w[h] * w[h] * err * err;
580 float var = y[h] - ymean;
581 sstot += w[h] * w[h] * var * var;
582 }
583 *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
584
585 ALOGD_IF(DEBUG_STRATEGY, " - sserr=%f", sserr);
586 ALOGD_IF(DEBUG_STRATEGY, " - sstot=%f", sstot);
587 ALOGD_IF(DEBUG_STRATEGY, " - det=%f", *outDet);
588
589 return true;
590 }
591
592 /*
593 * Optimized unweighted second-order least squares fit. About 2x speed improvement compared to
594 * the default implementation
595 */
solveUnweightedLeastSquaresDeg2(const std::vector<float> & x,const std::vector<float> & y)596 static std::optional<std::array<float, 3>> solveUnweightedLeastSquaresDeg2(
597 const std::vector<float>& x, const std::vector<float>& y) {
598 const size_t count = x.size();
599 LOG_ALWAYS_FATAL_IF(count != y.size(), "Mismatching array sizes");
600 // Solving y = a*x^2 + b*x + c
601 float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0;
602
603 for (size_t i = 0; i < count; i++) {
604 float xi = x[i];
605 float yi = y[i];
606 float xi2 = xi*xi;
607 float xi3 = xi2*xi;
608 float xi4 = xi3*xi;
609 float xiyi = xi*yi;
610 float xi2yi = xi2*yi;
611
612 sxi += xi;
613 sxi2 += xi2;
614 sxiyi += xiyi;
615 sxi2yi += xi2yi;
616 syi += yi;
617 sxi3 += xi3;
618 sxi4 += xi4;
619 }
620
621 float Sxx = sxi2 - sxi*sxi / count;
622 float Sxy = sxiyi - sxi*syi / count;
623 float Sxx2 = sxi3 - sxi*sxi2 / count;
624 float Sx2y = sxi2yi - sxi2*syi / count;
625 float Sx2x2 = sxi4 - sxi2*sxi2 / count;
626
627 float denominator = Sxx*Sx2x2 - Sxx2*Sxx2;
628 if (denominator == 0) {
629 ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2);
630 return std::nullopt;
631 }
632 // Compute a
633 float numerator = Sx2y*Sxx - Sxy*Sxx2;
634 float a = numerator / denominator;
635
636 // Compute b
637 numerator = Sxy*Sx2x2 - Sx2y*Sxx2;
638 float b = numerator / denominator;
639
640 // Compute c
641 float c = syi/count - b * sxi/count - a * sxi2/count;
642
643 return std::make_optional(std::array<float, 3>({c, b, a}));
644 }
645
getEstimator(int32_t pointerId) const646 std::optional<VelocityTracker::Estimator> LeastSquaresVelocityTrackerStrategy::getEstimator(
647 int32_t pointerId) const {
648 const auto movementIt = mMovements.find(pointerId);
649 if (movementIt == mMovements.end()) {
650 return std::nullopt; // no data
651 }
652 // Iterate over movement samples in reverse time order and collect samples.
653 std::vector<float> positions;
654 std::vector<float> w;
655 std::vector<float> time;
656
657 uint32_t index = mIndex.at(pointerId);
658 const Movement& newestMovement = movementIt->second[index];
659 do {
660 const Movement& movement = movementIt->second[index];
661
662 nsecs_t age = newestMovement.eventTime - movement.eventTime;
663 if (age > HORIZON) {
664 break;
665 }
666 if (movement.eventTime == 0 && index != 0) {
667 // All eventTime's are initialized to 0. In this fixed-width circular buffer, it's
668 // possible that not all entries are valid. We use a time=0 as a signal for those
669 // uninitialized values. If we encounter a time of 0 in a position
670 // that's > 0, it means that we hit the block where the data wasn't initialized.
671 // We still don't know whether the value at index=0, with eventTime=0 is valid.
672 // However, that's only possible when the value is by itself. So there's no hard in
673 // processing it anyways, since the velocity for a single point is zero, and this
674 // situation will only be encountered in artificial circumstances (in tests).
675 // In practice, time will never be 0.
676 break;
677 }
678 positions.push_back(movement.position);
679 w.push_back(chooseWeight(pointerId, index));
680 time.push_back(-age * 0.000000001f);
681 index = (index == 0 ? HISTORY_SIZE : index) - 1;
682 } while (positions.size() < HISTORY_SIZE);
683
684 const size_t m = positions.size();
685 if (m == 0) {
686 return std::nullopt; // no data
687 }
688
689 // Calculate a least squares polynomial fit.
690 uint32_t degree = mDegree;
691 if (degree > m - 1) {
692 degree = m - 1;
693 }
694
695 if (degree == 2 && mWeighting == Weighting::NONE) {
696 // Optimize unweighted, quadratic polynomial fit
697 std::optional<std::array<float, 3>> coeff =
698 solveUnweightedLeastSquaresDeg2(time, positions);
699 if (coeff) {
700 VelocityTracker::Estimator estimator;
701 estimator.time = newestMovement.eventTime;
702 estimator.degree = 2;
703 estimator.confidence = 1;
704 for (size_t i = 0; i <= estimator.degree; i++) {
705 estimator.coeff[i] = (*coeff)[i];
706 }
707 return estimator;
708 }
709 } else if (degree >= 1) {
710 // General case for an Nth degree polynomial fit
711 float det;
712 uint32_t n = degree + 1;
713 VelocityTracker::Estimator estimator;
714 if (solveLeastSquares(time, positions, w, n, estimator.coeff, &det)) {
715 estimator.time = newestMovement.eventTime;
716 estimator.degree = degree;
717 estimator.confidence = det;
718
719 ALOGD_IF(DEBUG_STRATEGY, "estimate: degree=%d, coeff=%s, confidence=%f",
720 int(estimator.degree), vectorToString(estimator.coeff.data(), n).c_str(),
721 estimator.confidence);
722
723 return estimator;
724 }
725 }
726
727 // No velocity data available for this pointer, but we do have its current position.
728 VelocityTracker::Estimator estimator;
729 estimator.coeff[0] = positions[0];
730 estimator.time = newestMovement.eventTime;
731 estimator.degree = 0;
732 estimator.confidence = 1;
733 return estimator;
734 }
735
chooseWeight(int32_t pointerId,uint32_t index) const736 float LeastSquaresVelocityTrackerStrategy::chooseWeight(int32_t pointerId, uint32_t index) const {
737 const std::array<Movement, HISTORY_SIZE>& movements = mMovements.at(pointerId);
738 switch (mWeighting) {
739 case Weighting::DELTA: {
740 // Weight points based on how much time elapsed between them and the next
741 // point so that points that "cover" a shorter time span are weighed less.
742 // delta 0ms: 0.5
743 // delta 10ms: 1.0
744 if (index == mIndex.at(pointerId)) {
745 return 1.0f;
746 }
747 uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
748 float deltaMillis =
749 (movements[nextIndex].eventTime - movements[index].eventTime) * 0.000001f;
750 if (deltaMillis < 0) {
751 return 0.5f;
752 }
753 if (deltaMillis < 10) {
754 return 0.5f + deltaMillis * 0.05;
755 }
756 return 1.0f;
757 }
758
759 case Weighting::CENTRAL: {
760 // Weight points based on their age, weighing very recent and very old points less.
761 // age 0ms: 0.5
762 // age 10ms: 1.0
763 // age 50ms: 1.0
764 // age 60ms: 0.5
765 float ageMillis =
766 (movements[mIndex.at(pointerId)].eventTime - movements[index].eventTime) *
767 0.000001f;
768 if (ageMillis < 0) {
769 return 0.5f;
770 }
771 if (ageMillis < 10) {
772 return 0.5f + ageMillis * 0.05;
773 }
774 if (ageMillis < 50) {
775 return 1.0f;
776 }
777 if (ageMillis < 60) {
778 return 0.5f + (60 - ageMillis) * 0.05;
779 }
780 return 0.5f;
781 }
782
783 case Weighting::RECENT: {
784 // Weight points based on their age, weighing older points less.
785 // age 0ms: 1.0
786 // age 50ms: 1.0
787 // age 100ms: 0.5
788 float ageMillis =
789 (movements[mIndex.at(pointerId)].eventTime - movements[index].eventTime) *
790 0.000001f;
791 if (ageMillis < 50) {
792 return 1.0f;
793 }
794 if (ageMillis < 100) {
795 return 0.5f + (100 - ageMillis) * 0.01f;
796 }
797 return 0.5f;
798 }
799
800 case Weighting::NONE:
801 return 1.0f;
802 }
803 }
804
805 // --- IntegratingVelocityTrackerStrategy ---
806
IntegratingVelocityTrackerStrategy(uint32_t degree)807 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
808 mDegree(degree) {
809 }
810
~IntegratingVelocityTrackerStrategy()811 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
812 }
813
clearPointer(int32_t pointerId)814 void IntegratingVelocityTrackerStrategy::clearPointer(int32_t pointerId) {
815 mPointerIdBits.clearBit(pointerId);
816 }
817
addMovement(nsecs_t eventTime,int32_t pointerId,float position)818 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId,
819 float position) {
820 State& state = mPointerState[pointerId];
821 if (mPointerIdBits.hasBit(pointerId)) {
822 updateState(state, eventTime, position);
823 } else {
824 initState(state, eventTime, position);
825 }
826
827 mPointerIdBits.markBit(pointerId);
828 }
829
getEstimator(int32_t pointerId) const830 std::optional<VelocityTracker::Estimator> IntegratingVelocityTrackerStrategy::getEstimator(
831 int32_t pointerId) const {
832 if (mPointerIdBits.hasBit(pointerId)) {
833 const State& state = mPointerState[pointerId];
834 VelocityTracker::Estimator estimator;
835 populateEstimator(state, &estimator);
836 return estimator;
837 }
838
839 return std::nullopt;
840 }
841
initState(State & state,nsecs_t eventTime,float pos) const842 void IntegratingVelocityTrackerStrategy::initState(State& state, nsecs_t eventTime,
843 float pos) const {
844 state.updateTime = eventTime;
845 state.degree = 0;
846
847 state.pos = pos;
848 state.accel = 0;
849 state.vel = 0;
850 }
851
updateState(State & state,nsecs_t eventTime,float pos) const852 void IntegratingVelocityTrackerStrategy::updateState(State& state, nsecs_t eventTime,
853 float pos) const {
854 const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
855 const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
856
857 if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
858 return;
859 }
860
861 float dt = (eventTime - state.updateTime) * 0.000000001f;
862 state.updateTime = eventTime;
863
864 float vel = (pos - state.pos) / dt;
865 if (state.degree == 0) {
866 state.vel = vel;
867 state.degree = 1;
868 } else {
869 float alpha = dt / (FILTER_TIME_CONSTANT + dt);
870 if (mDegree == 1) {
871 state.vel += (vel - state.vel) * alpha;
872 } else {
873 float accel = (vel - state.vel) / dt;
874 if (state.degree == 1) {
875 state.accel = accel;
876 state.degree = 2;
877 } else {
878 state.accel += (accel - state.accel) * alpha;
879 }
880 state.vel += (state.accel * dt) * alpha;
881 }
882 }
883 state.pos = pos;
884 }
885
populateEstimator(const State & state,VelocityTracker::Estimator * outEstimator) const886 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
887 VelocityTracker::Estimator* outEstimator) const {
888 outEstimator->time = state.updateTime;
889 outEstimator->confidence = 1.0f;
890 outEstimator->degree = state.degree;
891 outEstimator->coeff[0] = state.pos;
892 outEstimator->coeff[1] = state.vel;
893 outEstimator->coeff[2] = state.accel / 2;
894 }
895
896
897 // --- LegacyVelocityTrackerStrategy ---
898
LegacyVelocityTrackerStrategy()899 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {}
900
~LegacyVelocityTrackerStrategy()901 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
902 }
903
clearPointer(int32_t pointerId)904 void LegacyVelocityTrackerStrategy::clearPointer(int32_t pointerId) {
905 mIndex.erase(pointerId);
906 mMovements.erase(pointerId);
907 }
908
addMovement(nsecs_t eventTime,int32_t pointerId,float position)909 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId,
910 float position) {
911 // If data for this pointer already exists, we have a valid entry at the position of
912 // mIndex[pointerId] and mMovements[pointerId]. In that case, we need to advance the index
913 // to the next position in the circular buffer and write the new Movement there. Otherwise,
914 // if this is a first movement for this pointer, we initialize the maps mIndex and mMovements
915 // for this pointer and write to the first position.
916 auto [movementIt, inserted] = mMovements.insert({pointerId, {}});
917 auto [indexIt, _] = mIndex.insert({pointerId, 0});
918 size_t& index = indexIt->second;
919 if (!inserted && movementIt->second[index].eventTime != eventTime) {
920 // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
921 // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
922 // the new pointer. If the eventtimes for both events are identical, just update the data
923 // for this time.
924 // We only compare against the last value, as it is likely that addMovement is called
925 // in chronological order as events occur.
926 index++;
927 }
928 if (index == HISTORY_SIZE) {
929 index = 0;
930 }
931
932 Movement& movement = movementIt->second[index];
933 movement.eventTime = eventTime;
934 movement.position = position;
935 }
936
getEstimator(int32_t pointerId) const937 std::optional<VelocityTracker::Estimator> LegacyVelocityTrackerStrategy::getEstimator(
938 int32_t pointerId) const {
939 const auto movementIt = mMovements.find(pointerId);
940 if (movementIt == mMovements.end()) {
941 return std::nullopt; // no data
942 }
943 const Movement& newestMovement = movementIt->second[mIndex.at(pointerId)];
944
945 // Find the oldest sample that contains the pointer and that is not older than HORIZON.
946 nsecs_t minTime = newestMovement.eventTime - HORIZON;
947 uint32_t oldestIndex = mIndex.at(pointerId);
948 uint32_t numTouches = 1;
949 do {
950 uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
951 const Movement& nextOldestMovement = mMovements.at(pointerId)[nextOldestIndex];
952 if (nextOldestMovement.eventTime < minTime) {
953 break;
954 }
955 oldestIndex = nextOldestIndex;
956 } while (++numTouches < HISTORY_SIZE);
957
958 // Calculate an exponentially weighted moving average of the velocity estimate
959 // at different points in time measured relative to the oldest sample.
960 // This is essentially an IIR filter. Newer samples are weighted more heavily
961 // than older samples. Samples at equal time points are weighted more or less
962 // equally.
963 //
964 // One tricky problem is that the sample data may be poorly conditioned.
965 // Sometimes samples arrive very close together in time which can cause us to
966 // overestimate the velocity at that time point. Most samples might be measured
967 // 16ms apart but some consecutive samples could be only 0.5sm apart because
968 // the hardware or driver reports them irregularly or in bursts.
969 float accumV = 0;
970 uint32_t index = oldestIndex;
971 uint32_t samplesUsed = 0;
972 const Movement& oldestMovement = mMovements.at(pointerId)[oldestIndex];
973 float oldestPosition = oldestMovement.position;
974 nsecs_t lastDuration = 0;
975
976 while (numTouches-- > 1) {
977 if (++index == HISTORY_SIZE) {
978 index = 0;
979 }
980 const Movement& movement = mMovements.at(pointerId)[index];
981 nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
982
983 // If the duration between samples is small, we may significantly overestimate
984 // the velocity. Consequently, we impose a minimum duration constraint on the
985 // samples that we include in the calculation.
986 if (duration >= MIN_DURATION) {
987 float position = movement.position;
988 float scale = 1000000000.0f / duration; // one over time delta in seconds
989 float v = (position - oldestPosition) * scale;
990 accumV = (accumV * lastDuration + v * duration) / (duration + lastDuration);
991 lastDuration = duration;
992 samplesUsed += 1;
993 }
994 }
995
996 // Report velocity.
997 float newestPosition = newestMovement.position;
998 VelocityTracker::Estimator estimator;
999 estimator.time = newestMovement.eventTime;
1000 estimator.confidence = 1;
1001 estimator.coeff[0] = newestPosition;
1002 if (samplesUsed) {
1003 estimator.coeff[1] = accumV;
1004 estimator.degree = 1;
1005 } else {
1006 estimator.degree = 0;
1007 }
1008 return estimator;
1009 }
1010
1011 // --- ImpulseVelocityTrackerStrategy ---
1012
ImpulseVelocityTrackerStrategy(bool deltaValues)1013 ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy(bool deltaValues)
1014 : mDeltaValues(deltaValues) {}
1015
~ImpulseVelocityTrackerStrategy()1016 ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() {
1017 }
1018
clearPointer(int32_t pointerId)1019 void ImpulseVelocityTrackerStrategy::clearPointer(int32_t pointerId) {
1020 mIndex.erase(pointerId);
1021 mMovements.erase(pointerId);
1022 }
1023
addMovement(nsecs_t eventTime,int32_t pointerId,float position)1024 void ImpulseVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId,
1025 float position) {
1026 // If data for this pointer already exists, we have a valid entry at the position of
1027 // mIndex[pointerId] and mMovements[pointerId]. In that case, we need to advance the index
1028 // to the next position in the circular buffer and write the new Movement there. Otherwise,
1029 // if this is a first movement for this pointer, we initialize the maps mIndex and mMovements
1030 // for this pointer and write to the first position.
1031 auto [movementIt, inserted] = mMovements.insert({pointerId, {}});
1032 auto [indexIt, _] = mIndex.insert({pointerId, 0});
1033 size_t& index = indexIt->second;
1034 if (!inserted && movementIt->second[index].eventTime != eventTime) {
1035 // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
1036 // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
1037 // the new pointer. If the eventtimes for both events are identical, just update the data
1038 // for this time.
1039 // We only compare against the last value, as it is likely that addMovement is called
1040 // in chronological order as events occur.
1041 index++;
1042 }
1043 if (index == HISTORY_SIZE) {
1044 index = 0;
1045 }
1046
1047 Movement& movement = movementIt->second[index];
1048 movement.eventTime = eventTime;
1049 movement.position = position;
1050 }
1051
1052 /**
1053 * Calculate the total impulse provided to the screen and the resulting velocity.
1054 *
1055 * The touchscreen is modeled as a physical object.
1056 * Initial condition is discussed below, but for now suppose that v(t=0) = 0
1057 *
1058 * The kinetic energy of the object at the release is E=0.5*m*v^2
1059 * Then vfinal = sqrt(2E/m). The goal is to calculate E.
1060 *
1061 * The kinetic energy at the release is equal to the total work done on the object by the finger.
1062 * The total work W is the sum of all dW along the path.
1063 *
1064 * dW = F*dx, where dx is the piece of path traveled.
1065 * Force is change of momentum over time, F = dp/dt = m dv/dt.
1066 * Then substituting:
1067 * dW = m (dv/dt) * dx = m * v * dv
1068 *
1069 * Summing along the path, we get:
1070 * W = sum(dW) = sum(m * v * dv) = m * sum(v * dv)
1071 * Since the mass stays constant, the equation for final velocity is:
1072 * vfinal = sqrt(2*sum(v * dv))
1073 *
1074 * Here,
1075 * dv : change of velocity = (v[i+1]-v[i])
1076 * dx : change of distance = (x[i+1]-x[i])
1077 * dt : change of time = (t[i+1]-t[i])
1078 * v : instantaneous velocity = dx/dt
1079 *
1080 * The final formula is:
1081 * vfinal = sqrt(2) * sqrt(sum((v[i]-v[i-1])*|v[i]|)) for all i
1082 * The absolute value is needed to properly account for the sign. If the velocity over a
1083 * particular segment descreases, then this indicates braking, which means that negative
1084 * work was done. So for two positive, but decreasing, velocities, this contribution would be
1085 * negative and will cause a smaller final velocity.
1086 *
1087 * Initial condition
1088 * There are two ways to deal with initial condition:
1089 * 1) Assume that v(0) = 0, which would mean that the screen is initially at rest.
1090 * This is not entirely accurate. We are only taking the past X ms of touch data, where X is
1091 * currently equal to 100. However, a touch event that created a fling probably lasted for longer
1092 * than that, which would mean that the user has already been interacting with the touchscreen
1093 * and it has probably already been moving.
1094 * 2) Assume that the touchscreen has already been moving at a certain velocity, calculate this
1095 * initial velocity and the equivalent energy, and start with this initial energy.
1096 * Consider an example where we have the following data, consisting of 3 points:
1097 * time: t0, t1, t2
1098 * x : x0, x1, x2
1099 * v : 0 , v1, v2
1100 * Here is what will happen in each of these scenarios:
1101 * 1) By directly applying the formula above with the v(0) = 0 boundary condition, we will get
1102 * vfinal = sqrt(2*(|v1|*(v1-v0) + |v2|*(v2-v1))). This can be simplified since v0=0
1103 * vfinal = sqrt(2*(|v1|*v1 + |v2|*(v2-v1))) = sqrt(2*(v1^2 + |v2|*(v2 - v1)))
1104 * since velocity is a real number
1105 * 2) If we treat the screen as already moving, then it must already have an energy (per mass)
1106 * equal to 1/2*v1^2. Then the initial energy should be 1/2*v1*2, and only the second segment
1107 * will contribute to the total kinetic energy (since we can effectively consider that v0=v1).
1108 * This will give the following expression for the final velocity:
1109 * vfinal = sqrt(2*(1/2*v1^2 + |v2|*(v2-v1)))
1110 * This analysis can be generalized to an arbitrary number of samples.
1111 *
1112 *
1113 * Comparing the two equations above, we see that the only mathematical difference
1114 * is the factor of 1/2 in front of the first velocity term.
1115 * This boundary condition would allow for the "proper" calculation of the case when all of the
1116 * samples are equally spaced in time and distance, which should suggest a constant velocity.
1117 *
1118 * Note that approach 2) is sensitive to the proper ordering of the data in time, since
1119 * the boundary condition must be applied to the oldest sample to be accurate.
1120 */
kineticEnergyToVelocity(float work)1121 static float kineticEnergyToVelocity(float work) {
1122 static constexpr float sqrt2 = 1.41421356237;
1123 return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2;
1124 }
1125
calculateImpulseVelocity(const nsecs_t * t,const float * x,size_t count,bool deltaValues)1126 static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count,
1127 bool deltaValues) {
1128 // The input should be in reversed time order (most recent sample at index i=0)
1129 // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function
1130 static constexpr float SECONDS_PER_NANO = 1E-9;
1131
1132 if (count < 2) {
1133 return 0; // if 0 or 1 points, velocity is zero
1134 }
1135 if (t[1] > t[0]) { // Algorithm will still work, but not perfectly
1136 ALOGE("Samples provided to calculateImpulseVelocity in the wrong order");
1137 }
1138
1139 // If the data values are delta values, we do not have to calculate deltas here.
1140 // We can use the delta values directly, along with the calculated time deltas.
1141 // Since the data value input is in reversed time order:
1142 // [a] for non-delta inputs, instantenous velocity = (x[i] - x[i-1])/(t[i] - t[i-1])
1143 // [b] for delta inputs, instantenous velocity = -x[i-1]/(t[i] - t[i - 1])
1144 // e.g., let the non-delta values are: V = [2, 3, 7], the equivalent deltas are D = [2, 1, 4].
1145 // Since the input is in reversed time order, the input values for this function would be
1146 // V'=[7, 3, 2] and D'=[4, 1, 2] for the non-delta and delta values, respectively.
1147 //
1148 // The equivalent of {(V'[2] - V'[1]) = 2 - 3 = -1} would be {-D'[1] = -1}
1149 // Similarly, the equivalent of {(V'[1] - V'[0]) = 3 - 7 = -4} would be {-D'[0] = -4}
1150
1151 if (count == 2) { // if 2 points, basic linear calculation
1152 if (t[1] == t[0]) {
1153 ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]);
1154 return 0;
1155 }
1156 const float deltaX = deltaValues ? -x[0] : x[1] - x[0];
1157 return deltaX / (SECONDS_PER_NANO * (t[1] - t[0]));
1158 }
1159 // Guaranteed to have at least 3 points here
1160 float work = 0;
1161 for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time
1162 if (t[i] == t[i-1]) {
1163 ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]);
1164 continue;
1165 }
1166 float vprev = kineticEnergyToVelocity(work); // v[i-1]
1167 const float deltaX = deltaValues ? -x[i-1] : x[i] - x[i-1];
1168 float vcurr = deltaX / (SECONDS_PER_NANO * (t[i] - t[i-1])); // v[i]
1169 work += (vcurr - vprev) * fabsf(vcurr);
1170 if (i == count - 1) {
1171 work *= 0.5; // initial condition, case 2) above
1172 }
1173 }
1174 return kineticEnergyToVelocity(work);
1175 }
1176
getEstimator(int32_t pointerId) const1177 std::optional<VelocityTracker::Estimator> ImpulseVelocityTrackerStrategy::getEstimator(
1178 int32_t pointerId) const {
1179 const auto movementIt = mMovements.find(pointerId);
1180 if (movementIt == mMovements.end()) {
1181 return std::nullopt; // no data
1182 }
1183
1184 // Iterate over movement samples in reverse time order and collect samples.
1185 float positions[HISTORY_SIZE];
1186 nsecs_t time[HISTORY_SIZE];
1187 size_t m = 0; // number of points that will be used for fitting
1188 size_t index = mIndex.at(pointerId);
1189 const Movement& newestMovement = movementIt->second[index];
1190 do {
1191 const Movement& movement = movementIt->second[index];
1192
1193 nsecs_t age = newestMovement.eventTime - movement.eventTime;
1194 if (age > HORIZON) {
1195 break;
1196 }
1197 if (movement.eventTime == 0 && index != 0) {
1198 // All eventTime's are initialized to 0. If we encounter a time of 0 in a position
1199 // that's >0, it means that we hit the block where the data wasn't initialized.
1200 // It's also possible that the sample at 0 would be invalid, but there's no harm in
1201 // processing it, since it would be just a single point, and will only be encountered
1202 // in artificial circumstances (in tests).
1203 break;
1204 }
1205
1206 positions[m] = movement.position;
1207 time[m] = movement.eventTime;
1208 index = (index == 0 ? HISTORY_SIZE : index) - 1;
1209 } while (++m < HISTORY_SIZE);
1210
1211 if (m == 0) {
1212 return std::nullopt; // no data
1213 }
1214 VelocityTracker::Estimator estimator;
1215 estimator.coeff[0] = 0;
1216 estimator.coeff[1] = calculateImpulseVelocity(time, positions, m, mDeltaValues);
1217 estimator.coeff[2] = 0;
1218
1219 estimator.time = newestMovement.eventTime;
1220 estimator.degree = 2; // similar results to 2nd degree fit
1221 estimator.confidence = 1;
1222
1223 ALOGD_IF(DEBUG_STRATEGY, "velocity: %.1f", estimator.coeff[1]);
1224
1225 if (DEBUG_IMPULSE) {
1226 // TODO(b/134179997): delete this block once the switch to 'impulse' is complete.
1227 // Calculate the lsq2 velocity for the same inputs to allow runtime comparisons.
1228 // X axis chosen arbitrarily for velocity comparisons.
1229 VelocityTracker lsq2(VelocityTracker::Strategy::LSQ2);
1230 for (ssize_t i = m - 1; i >= 0; i--) {
1231 lsq2.addMovement(time[i], pointerId, AMOTION_EVENT_AXIS_X, positions[i]);
1232 }
1233 std::optional<float> v = lsq2.getVelocity(AMOTION_EVENT_AXIS_X, pointerId);
1234 if (v) {
1235 ALOGD("lsq2 velocity: %.1f", *v);
1236 } else {
1237 ALOGD("lsq2 velocity: could not compute velocity");
1238 }
1239 }
1240 return estimator;
1241 }
1242
1243 } // namespace android
1244