#!/usr/bin/env python3 # # Copyright (C) 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for looking up symbolic debugging information. The information can include symbol names, offsets, and source locations. """ import atexit import json import glob import os import platform import re import shutil import signal import subprocess import unittest ANDROID_BUILD_TOP = os.environ.get("ANDROID_BUILD_TOP", ".") def FindClangDir(): get_clang_version = ANDROID_BUILD_TOP + "/build/soong/scripts/get_clang_version.py" if os.path.exists(get_clang_version): # We want the script to fail if get_clang_version.py exists but is unable # to find the clang version. version_output = subprocess.check_output(get_clang_version, text=True) return ANDROID_BUILD_TOP + "/prebuilts/clang/host/linux-x86/" + version_output.strip() else: return None def FindSymbolsDir(): saveddir = os.getcwd() os.chdir(ANDROID_BUILD_TOP) stream = None try: cmd = "build/soong/soong_ui.bash --dumpvar-mode --abs TARGET_OUT_UNSTRIPPED" stream = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True, shell=True).stdout return str(stream.read().strip()) finally: if stream is not None: stream.close() os.chdir(saveddir) SYMBOLS_DIR = FindSymbolsDir() ARCH_IS_32BIT = None VERBOSE = False # These are private. Do not access them from other modules. _CACHED_TOOLCHAIN = None _CACHED_CXX_FILT = None # Caches for symbolized information. _SYMBOL_INFORMATION_ADDR2LINE_CACHE = {} _SYMBOL_INFORMATION_OBJDUMP_CACHE = {} _SYMBOL_DEMANGLING_CACHE = {} # Caches for pipes to subprocesses. class ProcessCache: _cmd2pipe = {} _lru = [] # Max number of open pipes. _PIPE_MAX_OPEN = 10 def GetProcess(self, cmd): cmd_tuple = tuple(cmd) # Need to use a tuple as lists can't be dict keys. # Pipe already available? if cmd_tuple in self._cmd2pipe: pipe = self._cmd2pipe[cmd_tuple] # Update LRU. self._lru = [(cmd_tuple, pipe)] + [i for i in self._lru if i[0] != cmd_tuple] return pipe # Not cached, yet. Open a new one. # Check if too many are open, close the old ones. while len(self._lru) >= self._PIPE_MAX_OPEN: open_cmd, open_pipe = self._lru.pop() del self._cmd2pipe[open_cmd] self.TerminateProcess(open_pipe) # Create and put into cache. pipe = self.SpawnProcess(cmd) self._cmd2pipe[cmd_tuple] = pipe self._lru = [(cmd_tuple, pipe)] + self._lru return pipe def SpawnProcess(self, cmd): return subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, universal_newlines=True) def TerminateProcess(self, pipe): pipe.stdin.close() pipe.stdout.close() pipe.terminate() pipe.wait() def KillAllProcesses(self): for _, open_pipe in self._lru: self.TerminateProcess(open_pipe) _cmd2pipe = {} _lru = [] _PIPE_ADDR2LINE_CACHE = ProcessCache() _PIPE_CPPFILT_CACHE = ProcessCache() # Process cache cleanup on shutdown. def CloseAllPipes(): _PIPE_ADDR2LINE_CACHE.KillAllProcesses() _PIPE_CPPFILT_CACHE.KillAllProcesses() atexit.register(CloseAllPipes) def PipeTermHandler(signum, frame): CloseAllPipes() os._exit(0) for sig in (signal.SIGABRT, signal.SIGINT, signal.SIGTERM): signal.signal(sig, PipeTermHandler) def ToolPath(tool, toolchain=None): """Return a fully-qualified path to the specified tool, or just the tool if it's on PATH """ if shutil.which(tool): return tool if not toolchain: toolchain = FindToolchain() return os.path.join(toolchain, tool) def FindToolchain(): """Returns the toolchain.""" global _CACHED_TOOLCHAIN if _CACHED_TOOLCHAIN: return _CACHED_TOOLCHAIN llvm_binutils_dir = ANDROID_BUILD_TOP + "/prebuilts/clang/host/linux-x86/llvm-binutils-stable/"; if not os.path.exists(llvm_binutils_dir): raise Exception("Could not find llvm tool chain directory %s" % (llvm_binutils_dir)) _CACHED_TOOLCHAIN = llvm_binutils_dir print("Using toolchain from:", _CACHED_TOOLCHAIN) return _CACHED_TOOLCHAIN def SymbolInformation(lib, addr): """Look up symbol information about an address. Args: lib: library (or executable) pathname containing symbols addr: string hexidecimal address Returns: A list of the form [(source_symbol, source_location, object_symbol_with_offset)]. If the function has been inlined then the list may contain more than one element with the symbols for the most deeply nested inlined location appearing first. The list is always non-empty, even if no information is available. Usually you want to display the source_location and object_symbol_with_offset from the last element in the list. """ info = SymbolInformationForSet(lib, set([addr])) return (info and info.get(addr)) or [(None, None, None)] def SymbolInformationForSet(lib, unique_addrs): """Look up symbol information for a set of addresses from the given library. Args: lib: library (or executable) pathname containing symbols unique_addrs: set of hexidecimal addresses Returns: A dictionary of the form {addr: [(source_symbol, source_location, object_symbol_with_offset)]} where each address has a list of associated symbols and locations. The list is always non-empty. If the function has been inlined then the list may contain more than one element with the symbols for the most deeply nested inlined location appearing first. The list is always non-empty, even if no information is available. Usually you want to display the source_location and object_symbol_with_offset from the last element in the list. """ if not lib: return None addr_to_line = CallLlvmSymbolizerForSet(lib, unique_addrs) if not addr_to_line: return None addr_to_objdump = CallObjdumpForSet(lib, unique_addrs) if not addr_to_objdump: return None result = {} for addr in unique_addrs: source_info = addr_to_line.get(addr) if not source_info: source_info = [(None, None)] if addr in addr_to_objdump: (object_symbol, object_offset) = addr_to_objdump.get(addr) object_symbol_with_offset = FormatSymbolWithOffset(object_symbol, object_offset) else: object_symbol_with_offset = None result[addr] = [(source_symbol, source_location, object_symbol_with_offset) for (source_symbol, source_location) in source_info] return result def CallLlvmSymbolizerForSet(lib, unique_addrs): """Look up line and symbol information for a set of addresses. Args: lib: library (or executable) pathname containing symbols unique_addrs: set of string hexidecimal addresses look up. Returns: A dictionary of the form {addr: [(symbol, file:line)]} where each address has a list of associated symbols and locations or an empty list if no symbol information was found. If the function has been inlined then the list may contain more than one element with the symbols for the most deeply nested inlined location appearing first. """ if not lib: return None result = {} addrs = sorted(unique_addrs) if lib in _SYMBOL_INFORMATION_ADDR2LINE_CACHE: addr_cache = _SYMBOL_INFORMATION_ADDR2LINE_CACHE[lib] # Go through and handle all known addresses. for x in range(len(addrs)): next_addr = addrs.pop(0) if next_addr in addr_cache: result[next_addr] = addr_cache[next_addr] else: # Re-add, needs to be symbolized. addrs.append(next_addr) if not addrs: # Everything was cached, we're done. return result else: addr_cache = {} _SYMBOL_INFORMATION_ADDR2LINE_CACHE[lib] = addr_cache symbols = SYMBOLS_DIR + lib if not os.path.exists(symbols): symbols = lib if not os.path.exists(symbols): return None # Make sure the symbols path is not a directory. if os.path.isdir(symbols): return None cmd = [ToolPath("llvm-symbolizer"), "--functions", "--inlines", "--demangle", "--obj=" + symbols, "--output-style=JSON"] child = _PIPE_ADDR2LINE_CACHE.GetProcess(cmd) for addr in addrs: try: child.stdin.write("0x%s\n" % addr) child.stdin.flush() records = [] json_result = json.loads(child.stdout.readline().strip()) for symbol in json_result["Symbol"]: function_name = symbol["FunctionName"] # GNU style location: file_name:line_num location = ("%s:%s" % (symbol["FileName"], symbol["Line"])) records.append((function_name, location)) except IOError as e: # Remove the / in front of the library name to match other output. records = [(None, lib[1:] + " ***Error: " + str(e))] result[addr] = records addr_cache[addr] = records return result def CallObjdumpForSet(lib, unique_addrs): """Use objdump to find out the names of the containing functions. Args: lib: library (or executable) pathname containing symbols unique_addrs: set of string hexidecimal addresses to find the functions for. Returns: A dictionary of the form {addr: (string symbol, offset)}. """ if not lib: return None result = {} addrs = sorted(unique_addrs) addr_cache = None if lib in _SYMBOL_INFORMATION_OBJDUMP_CACHE: addr_cache = _SYMBOL_INFORMATION_OBJDUMP_CACHE[lib] # Go through and handle all known addresses. for x in range(len(addrs)): next_addr = addrs.pop(0) if next_addr in addr_cache: result[next_addr] = addr_cache[next_addr] else: # Re-add, needs to be symbolized. addrs.append(next_addr) if not addrs: # Everything was cached, we're done. return result else: addr_cache = {} _SYMBOL_INFORMATION_OBJDUMP_CACHE[lib] = addr_cache symbols = SYMBOLS_DIR + lib if not os.path.exists(symbols): symbols = lib if not os.path.exists(symbols): return None start_addr_dec = str(int(addrs[0], 16)) stop_addr_dec = str(int(addrs[-1], 16) + 8) cmd = [ToolPath("llvm-objdump"), "--section=.text", "--demangle", "--disassemble", "--start-address=" + start_addr_dec, "--stop-address=" + stop_addr_dec, symbols] # Function lines look like: # 000177b0 : # We pull out the address and function first. Then we check for an optional # offset. This is tricky due to functions that look like "operator+(..)+0x2c" func_regexp = re.compile("(^[a-f0-9]*) \<(.*)\>:$") offset_regexp = re.compile("(.*)\+0x([a-f0-9]*)") # A disassembly line looks like: # 177b2: b510 push {r4, lr} asm_regexp = re.compile("(^[ a-f0-9]*):[ a-f0-0]*.*$") current_symbol = None # The current function symbol in the disassembly. current_symbol_addr = 0 # The address of the current function. addr_index = 0 # The address that we are currently looking for. stream = subprocess.Popen(cmd, stdout=subprocess.PIPE, universal_newlines=True).stdout for line in stream: # Is it a function line like: # 000177b0 : components = func_regexp.match(line) if components: # This is a new function, so record the current function and its address. current_symbol_addr = int(components.group(1), 16) current_symbol = components.group(2) # Does it have an optional offset like: "foo(..)+0x2c"? components = offset_regexp.match(current_symbol) if components: current_symbol = components.group(1) offset = components.group(2) if offset: current_symbol_addr -= int(offset, 16) # Is it an disassembly line like: # 177b2: b510 push {r4, lr} components = asm_regexp.match(line) if components: addr = components.group(1) target_addr = addrs[addr_index] i_addr = int(addr, 16) i_target = int(target_addr, 16) if i_addr == i_target: result[target_addr] = (current_symbol, i_target - current_symbol_addr) addr_cache[target_addr] = result[target_addr] addr_index += 1 if addr_index >= len(addrs): break stream.close() return result def CallCppFilt(mangled_symbol): if mangled_symbol in _SYMBOL_DEMANGLING_CACHE: return _SYMBOL_DEMANGLING_CACHE[mangled_symbol] global _CACHED_CXX_FILT if not _CACHED_CXX_FILT: toolchains = None clang_dir = FindClangDir() if clang_dir: if os.path.exists(clang_dir + "/bin/llvm-cxxfilt"): toolchains = [clang_dir + "/bin/llvm-cxxfilt"] else: raise Exception("bin/llvm-cxxfilt missing from " + clang_dir) else: # When run in CI, we don't have a way to find the clang version. But # llvm-cxxfilt should be available in the following relative path. toolchains = glob.glob("./clang-r*/bin/llvm-cxxfilt") if toolchains and len(toolchains) != 1: raise Exception("Expected one llvm-cxxfilt but found many: " + \ ", ".join(toolchains)) if not toolchains: raise Exception("Could not find llvm-cxxfilt tool") _CACHED_CXX_FILT = sorted(toolchains)[-1] cmd = [_CACHED_CXX_FILT] process = _PIPE_CPPFILT_CACHE.GetProcess(cmd) process.stdin.write(mangled_symbol) process.stdin.write("\n") process.stdin.flush() demangled_symbol = process.stdout.readline().strip() _SYMBOL_DEMANGLING_CACHE[mangled_symbol] = demangled_symbol return demangled_symbol def FormatSymbolWithOffset(symbol, offset): if offset == 0: return symbol return "%s+%d" % (symbol, offset) def FormatSymbolWithoutParameters(symbol): """Remove parameters from function. Rather than trying to parse the demangled C++ signature, it just removes matching top level parenthesis. """ if not symbol: return symbol result = symbol result = result.replace(") const", ")") # Strip const keyword. result = result.replace("operator<<", "operator\u00AB") # Avoid unmatched '<'. result = result.replace("operator>>", "operator\u00BB") # Avoid unmatched '>'. result = result.replace("operator->", "operator\u2192") # Avoid unmatched '>'. nested = [] # Keeps tract of current nesting level of parenthesis. for i in reversed(range(len(result))): # Iterate backward to make cutting easier. c = result[i] if c == ')' or c == '>': if len(nested) == 0: end = i + 1 # Mark the end of top-level pair. nested.append(c) if c == '(' or c == '<': if len(nested) == 0 or {')':'(', '>':'<'}[nested.pop()] != c: return symbol # Malformed: character does not match its pair. if len(nested) == 0 and c == '(' and (end - i) > 2: result = result[:i] + result[end:] # Remove substring (i, end). if len(nested) > 0: return symbol # Malformed: missing pair. return result.strip() def SetBitness(lines): global ARCH_IS_32BIT trace_line = re.compile("\#[0-9]+[ \t]+..[ \t]+([0-9a-f]{8}|[0-9a-f]{16})([ \t]+|$)") asan_trace_line = re.compile("\#[0-9]+[ \t]+0x([0-9a-f]+)[ \t]+") ARCH_IS_32BIT = False for line in lines: trace_match = trace_line.search(line) if trace_match: # Try to guess the arch, we know the bitness. if len(trace_match.group(1)) == 16: ARCH_IS_32BIT = False else: ARCH_IS_32BIT = True break asan_trace_match = asan_trace_line.search(line) if asan_trace_match: # We might be able to guess the bitness by the length of the address. if len(asan_trace_match.group(1)) > 8: ARCH_IS_32BIT = False # We know for a fact this is 64 bit, so we are done. break else: # This might be 32 bit, or just a small address. Keep going in this # case, but if we couldn't figure anything else out, go with 32 bit. ARCH_IS_32BIT = True class FindClangDirTests(unittest.TestCase): @unittest.skipIf(ANDROID_BUILD_TOP == '.', 'Test only supported in an Android tree.') def test_clang_dir_found(self): self.assertIsNotNone(FindClangDir()) class SetBitnessTests(unittest.TestCase): def test_32bit_check(self): global ARCH_IS_32BIT SetBitness(["#00 pc 000374e0"]) self.assertTrue(ARCH_IS_32BIT) def test_64bit_check(self): global ARCH_IS_32BIT SetBitness(["#00 pc 00000000000374e0"]) self.assertFalse(ARCH_IS_32BIT) def test_32bit_asan_trace_line_toolchain(self): global ARCH_IS_32BIT SetBitness(["#10 0xb5eeba5d (/system/vendor/lib/egl/libGLESv1_CM_adreno.so+0xfa5d)"]) self.assertTrue(ARCH_IS_32BIT) def test_64bit_asan_trace_line_toolchain(self): global ARCH_IS_32BIT SetBitness(["#12 0x5d33bf (/system/lib/libclang_rt.asan-arm-android.so+0x823bf)", "#12 0x11b35d33bf (/system/lib/libclang_rt.asan-arm-android.so+0x823bf)"]) self.assertFalse(ARCH_IS_32BIT) class FormatSymbolWithoutParametersTests(unittest.TestCase): def test_c(self): self.assertEqual(FormatSymbolWithoutParameters("foo"), "foo") self.assertEqual(FormatSymbolWithoutParameters("foo+42"), "foo+42") def test_simple(self): self.assertEqual(FormatSymbolWithoutParameters("foo(int i)"), "foo") self.assertEqual(FormatSymbolWithoutParameters("foo(int i)+42"), "foo+42") self.assertEqual(FormatSymbolWithoutParameters("bar::foo(int i)+42"), "bar::foo+42") self.assertEqual(FormatSymbolWithoutParameters("operator()"), "operator()") def test_templates(self): self.assertEqual(FormatSymbolWithoutParameters("bar::foo(vector& v)"), "bar::foo") self.assertEqual(FormatSymbolWithoutParameters("bar::foo(vector& v)"), "bar::foo") self.assertEqual(FormatSymbolWithoutParameters("bar::foo(vector>& v)"), "bar::foo") self.assertEqual(FormatSymbolWithoutParameters("bar::foo<(EnumType)0>(vector<(EnumType)0>& v)"), "bar::foo<(EnumType)0>") def test_nested(self): self.assertEqual(FormatSymbolWithoutParameters("foo(int i)::bar(int j)"), "foo::bar") def test_unbalanced(self): self.assertEqual(FormatSymbolWithoutParameters("foo(bar(int i)"), "foo(bar(int i)") self.assertEqual(FormatSymbolWithoutParameters("foo)bar(int i)"), "foo)bar(int i)") self.assertEqual(FormatSymbolWithoutParameters("foobar(int i)"), "foo>bar(int i)") if __name__ == '__main__': unittest.main(verbosity=2)