# Generate model interfaces using metadata Using [TensorFlow Lite Metadata](../models/convert/metadata), developers can generate wrapper code to enable integration on Android. For most developers, the graphical interface of [Android Studio ML Model Binding](#mlbinding) is the easiest to use. If you require more customisation or are using command line tooling, the [TensorFlow Lite Codegen](#codegen) is also available. ## Use Android Studio ML Model Binding {:#mlbinding} For TensorFlow Lite models enhanced with [metadata](../models/convert/metadata.md), developers can use Android Studio ML Model Binding to automatically configure settings for the project and generate wrapper classes based on the model metadata. The wrapper code removes the need to interact directly with `ByteBuffer`. Instead, developers can interact with the TensorFlow Lite model with typed objects such as `Bitmap` and `Rect`. Note: Required [Android Studio 4.1](https://developer.android.com/studio) or above ### Import a TensorFlow Lite model in Android Studio 1. Right-click on the module you would like to use the TFLite model or click on `File`, then `New` > `Other` > `TensorFlow Lite Model` ![Right-click menus to access the TensorFlow Lite import functionality](../images/android/right_click_menu.png) 1. Select the location of your TFLite file. Note that the tooling will configure the module's dependency on your behalf with ML Model binding and all dependencies automatically inserted into your Android module's `build.gradle` file. Optional: Select the second checkbox for importing TensorFlow GPU if you want to use GPU acceleration. ![Import dialog for TFLite model](../images/android/import_dialog.png) 1. Click `Finish`. 1. The following screen will appear after the import is successful. To start using the model, select Kotlin or Java, copy and paste the code under the `Sample Code` section. You can get back to this screen by double clicking the TFLite model under the `ml` directory in Android Studio. ![Model details page in Android Studio](../images/android/model_details.png) ### Accelerating model inference {:#acceleration} ML Model Binding provides a way for developers to accelerate their code through the use of delegates and the number of threads. Note: The TensorFlow Lite Interpreter must be created on the same thread as when is run. Otherwise, TfLiteGpuDelegate Invoke: GpuDelegate must run on the same thread where it was initialized. may occur. Step 1. Check the module `build.gradle` file that it contains the following dependency: ```java dependencies { ... // TFLite GPU delegate 2.3.0 or above is required. implementation 'org.tensorflow:tensorflow-lite-gpu:2.3.0' } ``` Step 2. Detect if GPU running on the device is compatible with TensorFlow GPU delegate, if not run the model using multiple CPU threads:

Kotlin

    import org.tensorflow.lite.gpu.CompatibilityList
    import org.tensorflow.lite.gpu.GpuDelegate

    val compatList = CompatibilityList()

    val options = if(compatList.isDelegateSupportedOnThisDevice) {
        // if the device has a supported GPU, add the GPU delegate
        Model.Options.Builder().setDevice(Model.Device.GPU).build()
    } else {
        // if the GPU is not supported, run on 4 threads
        Model.Options.Builder().setNumThreads(4).build()
    }

    // Initialize the model as usual feeding in the options object
    val myModel = MyModel.newInstance(context, options)

    // Run inference per sample code
      

Java

    import org.tensorflow.lite.support.model.Model
    import org.tensorflow.lite.gpu.CompatibilityList;
    import org.tensorflow.lite.gpu.GpuDelegate;

    // Initialize interpreter with GPU delegate
    Model.Options options;
    CompatibilityList compatList = CompatibilityList();

    if(compatList.isDelegateSupportedOnThisDevice()){
        // if the device has a supported GPU, add the GPU delegate
        options = Model.Options.Builder().setDevice(Model.Device.GPU).build();
    } else {
        // if the GPU is not supported, run on 4 threads
        options = Model.Options.Builder().setNumThreads(4).build();
    }

    MyModel myModel = new MyModel.newInstance(context, options);

    // Run inference per sample code
      

## Generate model interfaces with TensorFlow Lite code generator {:#codegen} Note: TensorFlow Lite wrapper code generator currently only supports Android. For TensorFlow Lite model enhanced with [metadata](../models/convert/metadata.md), developers can use the TensorFlow Lite Android wrapper code generator to create platform specific wrapper code. The wrapper code removes the need to interact directly with `ByteBuffer`. Instead, developers can interact with the TensorFlow Lite model with typed objects such as `Bitmap` and `Rect`. The usefulness of the code generator depend on the completeness of the TensorFlow Lite model's metadata entry. Refer to the `` section under relevant fields in [metadata_schema.fbs](https://github.com/tensorflow/tflite-support/blob/master/tensorflow_lite_support/metadata/metadata_schema.fbs), to see how the codegen tool parses each field. ### Generate wrapper Code You will need to install the following tooling in your terminal: ```sh pip install tflite-support ``` Once completed, the code generator can be used using the following syntax: ```sh tflite_codegen --model=./model_with_metadata/mobilenet_v1_0.75_160_quantized.tflite \ --package_name=org.tensorflow.lite.classify \ --model_class_name=MyClassifierModel \ --destination=./classify_wrapper ``` The resulting code will be located in the destination directory. If you are using [Google Colab](https://colab.research.google.com/) or other remote environment, it maybe easier to zip up the result in a zip archive and download it to your Android Studio project: ```python # Zip up the generated code !zip -r classify_wrapper.zip classify_wrapper/ # Download the archive from google.colab import files files.download('classify_wrapper.zip') ``` ### Using the generated code #### Step 1: Import the generated code Unzip the generated code if necessary into a directory structure. The root of the generated code is assumed to be `SRC_ROOT`. Open the Android Studio project where you would like to use the TensorFlow lite model and import the generated module by: And File -> New -> Import Module -> select `SRC_ROOT` Using the above example, the directory and the module imported would be called `classify_wrapper`. #### Step 2: Update the app's `build.gradle` file In the app module that will be consuming the generated library module: Under the android section, add the following: ```build aaptOptions { noCompress "tflite" } ``` Note: starting from version 4.1 of the Android Gradle plugin, .tflite will be added to the noCompress list by default and the aaptOptions above is not needed anymore. Under the dependencies section, add the following: ```build implementation project(":classify_wrapper") ``` #### Step 3: Using the model ```java // 1. Initialize the model MyClassifierModel myImageClassifier = null; try { myImageClassifier = new MyClassifierModel(this); } catch (IOException io){ // Error reading the model } if(null != myImageClassifier) { // 2. Set the input with a Bitmap called inputBitmap MyClassifierModel.Inputs inputs = myImageClassifier.createInputs(); inputs.loadImage(inputBitmap)); // 3. Run the model MyClassifierModel.Outputs outputs = myImageClassifier.run(inputs); // 4. Retrieve the result Map labeledProbability = outputs.getProbability(); } ``` ### Accelerating model inference The generated code provides a way for developers to accelerate their code through the use of [delegates](../performance/delegates.md) and the number of threads. These can be set when initializing the model object as it takes three parameters: * **`Context`**: Context from the Android Activity or Service * (Optional) **`Device`**: TFLite acceleration delegate for example GPUDelegate or NNAPIDelegate * (Optional) **`numThreads`**: Number of threads used to run the model - default is one. For example, to use a NNAPI delegate and up to three threads, you can initialize the model like this: ```java try { myImageClassifier = new MyClassifierModel(this, Model.Device.NNAPI, 3); } catch (IOException io){ // Error reading the model } ``` ### Troubleshooting If you get a 'java.io.FileNotFoundException: This file can not be opened as a file descriptor; it is probably compressed' error, insert the following lines under the android section of the app module that will uses the library module: ```build aaptOptions { noCompress "tflite" } ``` Note: starting from version 4.1 of the Android Gradle plugin, .tflite will be added to the noCompress list by default and the aaptOptions above is not needed anymore.