# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os from tensorflow.core.protobuf import meta_graph_pb2 from tensorflow.python.data.ops import dataset_ops from tensorflow.python.eager import backprop from tensorflow.python.eager import def_function from tensorflow.python.eager import wrap_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import importer as graph_def_importer from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.ops.ragged import ragged_tensor from tensorflow.python.platform import test from tensorflow.python.training import saver as saver_lib class WrapFunctionTest(test.TestCase): def testDocString(self): def f(x, do_add): v = variables.Variable(5.0) if do_add: op = v.assign_add(x) else: op = v.assign_sub(x) with ops.control_dependencies([op]): return v.read_value() f_add = wrap_function.wrap_function( f, [tensor_spec.TensorSpec((), dtypes.float32), True]) self.assertAllEqual(f_add(1.0), 6.0) self.assertAllEqual(f_add(1.0), 7.0) # Can call tf.compat.v1.wrap_function again to get a new trace, a new set # of variables, and possibly different non-template arguments. f_sub = wrap_function.wrap_function( f, [tensor_spec.TensorSpec((), dtypes.float32), False]) self.assertAllEqual(f_sub(1.0), 4.0) self.assertAllEqual(f_sub(1.0), 3.0) def testPrune(self): x_in = [] x_out = [] def f(x, y): x_in.append(x) xx = x * x x_out.append(xx) return xx, 2 * y*y f_wrapped = wrap_function.wrap_function( f, [tensor_spec.TensorSpec((), dtypes.float32)] * 2) f_pruned = f_wrapped.prune(x_in[0], [x_out[0]]) self.assertAllEqual(f_pruned(ops.convert_to_tensor(2.0)), [4.0]) def testPruneRagged(self): x_in = [] x_out = [] def f(x, y): x_in.append(x) xx = x * x x_out.append(xx) return xx, y * y x_spec = ragged_tensor.RaggedTensorSpec([None, None], dtypes.float32) y_spec = tensor_spec.TensorSpec((), dtypes.float32) f_wrapped = wrap_function.wrap_function(f, [x_spec, y_spec]) f_pruned = f_wrapped.prune(x_in[0], x_out[0]) rt = ragged_factory_ops.constant([[1.0, 2.0], [3.0]]) expected = ragged_factory_ops.constant_value([[1.0, 4.0], [9.0]]) # Note: when we call f_pruned, we must pass the RaggedTensor in using # its components, since that's the current convention for how concrete # functions handle structured inputs. self.assertAllEqual(f_pruned(rt.values, rt.row_splits), expected) def _assert_single_captured_variable_argument(self, graph_def): # The single FunctionDef should have one argument, a captured variable function_def, = graph_def.library.function self.assertLen(function_def.signature.input_arg, 1) function_arg, = function_def.signature.input_arg self.assertEqual(dtypes.resource, dtypes.as_dtype(function_arg.type)) def testVariableLifting(self): save_prefix = os.path.join(self.get_temp_dir(), 'meta_graph_test') export_graph = ops.Graph() with export_graph.as_default(): v = variables.Variable(1.) array_ops.identity(v + 1., name='output') saver = saver_lib.Saver([v]) with self.test_session() as session: session.run(v.initializer) saver.save(session, save_prefix) def importer(): saver_lib.import_meta_graph(save_prefix + '.meta') return ops.get_default_graph().as_graph_element('output:0') wrapped = wrap_function.wrap_function(importer, []) lifted_variables = list(wrapped.graph.variables) self.assertLen(lifted_variables, 1) initializer = wrapped.prune( [], wrapped.graph.as_graph_element(v.initializer.name)) self.assertEqual(lifted_variables, list(initializer.graph.variables)) self.assertEqual(initializer.graph.external_captures, wrapped.graph.external_captures) @def_function.function def wraps_initializer(): initializer() wraps_initializer() self.assertEqual(1., lifted_variables[0].numpy()) wrapped_initializer_graphdef = ( wraps_initializer.get_concrete_function().graph.as_graph_def()) self._assert_single_captured_variable_argument(wrapped_initializer_graphdef) @def_function.function def wraps_wrapped(): return wrapped() # Verify that the original graph also has the correct signature. wrapped_wrapped_graphdef = ( wraps_wrapped.get_concrete_function().graph.as_graph_def()) self._assert_single_captured_variable_argument(wrapped_wrapped_graphdef) # Now check that the graph runs wrapped, from eager, and when pruned. self.assertAllEqual(wraps_wrapped().numpy(), lifted_variables[0].numpy() + 1.) self.assertAllEqual(wrapped().numpy(), lifted_variables[0].numpy() + 1.) pruned = wrapped.prune([], wrapped.graph.as_graph_element('output:0')) self.assertAllEqual(wrapped().numpy(), pruned().numpy()) def testNoArguments(self): def f(): return constant_op.constant(1.) f_wrapped = wrap_function.wrap_function(f, []) self.assertAllEqual(1.0, f_wrapped()) def testPruneCaptures(self): v1 = variables.Variable(2.) def f(): v2 = variables.Variable(3.) return array_ops.identity(v1 * v2 * constant_op.constant(1.), 'fetch') f_wrapped = wrap_function.wrap_function(f, []) self.assertAllEqual(6.0, f_wrapped()) # Test pruning directly on the inputs pruned = f_wrapped.prune( feeds=f_wrapped.inputs, fetches=f_wrapped.graph.get_tensor_by_name('fetch:0')) self.assertAllEqual(6.0, pruned()) # Test pruning with no inputs pruned = f_wrapped.prune( feeds=(), fetches=f_wrapped.graph.get_tensor_by_name('fetch:0')) self.assertAllEqual(6.0, pruned()) def testCollectionsIsolation(self): v1 = variables.Variable(2.) v2_holder = [] def f(): v2 = variables.Variable(3.) v2_holder.append(v2) ops.add_to_collection(ops.GraphKeys.LOSSES, v2 * constant_op.constant(3.)) return array_ops.identity(v1 * v2 * constant_op.constant(1.), 'fetch') f_wrapped = wrap_function.wrap_function(f, []) self.assertAllEqual(6.0, f_wrapped()) self.assertEqual( len(f_wrapped.graph.get_collection(ops.GraphKeys.LOSSES)), 1) f_var_collection = f_wrapped.graph.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) self.assertEqual(len(f_var_collection), 1) self.assertIs(f_var_collection[0], v2_holder[0]) v3_holder = [] def g(): v3 = variables.Variable(4.) v3_holder.append(v3) ops.add_to_collection(ops.GraphKeys.LOSSES, v3 * constant_op.constant(3.)) return array_ops.identity(v1 * v3 * constant_op.constant(1.), 'fetch') g_wrapped = wrap_function.wrap_function(g, []) self.assertAllEqual(8.0, g_wrapped()) self.assertEqual( len(g_wrapped.graph.get_collection(ops.GraphKeys.LOSSES)), 1) g_var_collection = g_wrapped.graph.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) self.assertEqual(len(g_var_collection), 1) self.assertIs(g_var_collection[0], v3_holder[0]) # Both have only one value, and their values aren't equal. So no sharing. self.assertIsNot(g_wrapped.graph.get_collection(ops.GraphKeys.LOSSES[0]), f_wrapped.graph.get_collection(ops.GraphKeys.LOSSES)[0]) def testGradientsOfPrune(self): v1 = variables.Variable(2.) v2_holder = [] def f(z): v2 = variables.Variable(3.) v2_holder.append(v2) return array_ops.identity(v1 * v2 * z, 'fetch') f_wrapped = wrap_function.wrap_function( f, [tensor_spec.TensorSpec((), dtype=dtypes.float32)]) x = constant_op.constant(1.) with backprop.GradientTape() as tape: tape.watch(x) out = f_wrapped(x) grads = tape.gradient(out, [x, v1, v2_holder[0]]) self.assertAllEqual(6.0, out) self.assertAllEqual([6.0, 3.0, 2.0], grads) pruned = f_wrapped.prune( feeds=f_wrapped.inputs, fetches=f_wrapped.graph.get_tensor_by_name('fetch:0')) x = constant_op.constant(1.) with backprop.GradientTape() as tape: tape.watch(x) out = pruned(x) grads = tape.gradient(out, [x, v1, v2_holder[0]]) self.assertAllEqual(6.0, out) self.assertAllEqual([6.0, 3.0, 2.0], grads) def testPruneOperations(self): v = variables.Variable(0) def f(): v.assign_add(1, name='increment', read_value=False) f_wrapped = wrap_function.wrap_function(f, []) pruned = f_wrapped.prune( feeds=(), fetches=(f_wrapped.graph.get_operation_by_name('increment'),)) self.assertEqual((None,), pruned()) self.assertEqual(1, self.evaluate(v)) del f, f_wrapped def f1(): v.assign_add( array_ops.placeholder(shape=[], dtype=dtypes.int32, name='step'), name='increment', read_value=False) return constant_op.constant(1, name='other') f_wrapped = wrap_function.wrap_function(f1, []) increments = f_wrapped.prune( feeds=(f_wrapped.graph.get_tensor_by_name('step:0')), fetches=(f_wrapped.graph.get_operation_by_name('increment'), f_wrapped.graph.get_tensor_by_name('other:0'))) first_output, second_output = increments(constant_op.constant(2)) self.assertEqual(['step:0', 'increment/resource:0'], [t.name for t in increments.inputs]) self.assertIs(None, first_output) self.assertEqual(1, second_output.numpy()) self.assertEqual(3, v.numpy()) does_not_increment = f_wrapped.prune( feeds=(f_wrapped.graph.get_tensor_by_name('step:0')), fetches=f_wrapped.graph.get_tensor_by_name('other:0')) self.assertEqual(1, does_not_increment(constant_op.constant(3)).numpy()) self.assertEqual(3, v.numpy()) def testPruneStatefulOpsFromWrappedFunc(self): v0 = variables.Variable(0) v1 = variables.Variable(0) # When we wrap a function, we expect it to be executed with 'tf.Graph` # rules: it's allowed to prune all ops that are not in transitive fanin of # the fetches. def f(x): v0.assign_add(1, name='increment_v0') v1.assign_add(1, name='increment_v1') return x f_wrapped = wrap_function.wrap_function(f, [1]) self.assertEqual(1, f_wrapped().numpy()) self.assertEqual(0, v0.numpy()) self.assertEqual(0, v1.numpy()) f_wrapped_with_name = wrap_function.wrap_function(f, [2], name='func') self.assertEqual(2, f_wrapped_with_name().numpy()) self.assertEqual(0, v0.numpy()) self.assertEqual(0, v1.numpy()) def test_operation_returned(self): v = variables.Variable(0) def f(): v.assign(1, read_value=False, name='assign_to_v') f_wrapped = wrap_function.wrap_function(f, []) operation_to_fetch = f_wrapped.graph.get_operation_by_name('assign_to_v') f_pruned = f_wrapped.prune( [], operation_to_fetch) self.assertEqual( ['assign_to_v'], [operation.name for operation in f_pruned.graph.control_outputs]) self.assertEqual(0, v.numpy()) f_pruned() self.assertEqual(1, v.numpy()) f_wrapped.prune([], 'assign_to_v')() f_wrapped.prune([], meta_graph_pb2.TensorInfo(name='assign_to_v'))() def test_function_from_graph_def(self): @def_function.function def make_graph_def(x): return x + 1. original_func_graph = make_graph_def.get_concrete_function( tensor_spec.TensorSpec([None, 2], dtypes.float32)).graph graph_def = original_func_graph.as_graph_def() revived_function = wrap_function.function_from_graph_def( graph_def, inputs=original_func_graph.inputs[0].name, outputs=original_func_graph.outputs[0].name) self.assertEqual(2., revived_function(constant_op.constant(1.)).numpy()) def test_create_variables_with_same_name(self): def f(): v1 = variables.Variable(0, name='v') v2 = variables.Variable(1, name='v') return v1, v2 f_wrapped = wrap_function.wrap_function(f, []) self.assertDictEqual( {'v:0': 0, 'v_1:0': 1}, # assert that variable names are uniquified {v.name: v.numpy() for v in f_wrapped._variable_holder.variables.values()}) # Uniquification should reset in separate calls to wrap_function. def f2(): v1 = variables.Variable(3, name='v') v2 = variables.Variable(4, name='v') return v1, v2 f_wrapped_2 = wrap_function.wrap_function(f2, []) self.assertDictEqual( {'v:0': 3, 'v_1:0': 4}, {v.name: v.numpy() for v in f_wrapped_2._variable_holder.variables.values()}) class WrappedGraphTest(test.TestCase): def testAddFunction(self): def fn(x): v = variables.Variable(3, name='v') v2 = variable_scope.get_variable( 'v', initializer=init_ops.Constant(4), shape=[], dtype=dtypes.int32) return v + v2 + x with self.cached_session() as sess: result = fn(constant_op.constant(5)) sess.run(variables.global_variables_initializer()) expected = sess.run(result) g = wrap_function.WrappedGraph() signature = [tensor_spec.TensorSpec([], dtypes.int32)] wrapped_fn = g.wrap_function(fn, signature) self.assertEqual(expected, wrapped_fn(constant_op.constant(5)).numpy()) def testCollections(self): def fn(x): v = variables.VariableV1(3, name='v', trainable=False, collections=['a']) v2 = variable_scope.get_variable( 'v', initializer=init_ops.Constant(4), shape=[], dtype=dtypes.int32, collections=['a', 'b']) return v + v2 + x def assert_collections(graph): self.assertLen(graph.get_collection(ops.GraphKeys.TRAINABLE_VARIABLES), 1) self.assertLen(graph.get_collection('a'), 2) self.assertLen(graph.get_collection('b'), 1) g = wrap_function.WrappedGraph() g.wrap_function(fn, [tensor_spec.TensorSpec([], dtypes.int32)]) assert_collections(g.graph) def assert_fn(): assert_collections(ops.get_default_graph()) return 1 # Return is required # Assert that collections are accessible within a wrapped function. g.wrap_function(assert_fn, []) def testShareVariablesSameGraph(self): def add_v1(x): with variable_scope.variable_scope( 'reuse', reuse=variable_scope.AUTO_REUSE): v = variable_scope.get_variable( 'v', initializer=init_ops.Constant(3), shape=[], dtype=dtypes.int32) return v + x def subtract_v1(x): with variable_scope.variable_scope( 'reuse', reuse=variable_scope.AUTO_REUSE): v = variable_scope.get_variable( 'v', initializer=init_ops.Constant(4), shape=[], dtype=dtypes.int32) return v - x def different_variable_fn_v1(x): with variable_scope.variable_scope( 'no_reuse', reuse=variable_scope.AUTO_REUSE): v = variable_scope.get_variable( 'v', initializer=init_ops.Constant(5), shape=[], dtype=dtypes.int32) return v * x def increment_variable_v1(x): with variable_scope.variable_scope( 'reuse', reuse=variable_scope.AUTO_REUSE): v = variable_scope.get_variable( 'v', initializer=init_ops.Constant(6), shape=[], dtype=dtypes.int32) return v.assign_add(x) g = wrap_function.WrappedGraph() signature = [tensor_spec.TensorSpec([], dtypes.int32)] add = g.wrap_function(add_v1, signature) subtract = g.wrap_function(subtract_v1, signature) different_variable_fn = g.wrap_function(different_variable_fn_v1, signature) increment_variable = g.wrap_function(increment_variable_v1, signature) self.assertEqual(10, add(constant_op.constant(7)).numpy()) self.assertEqual(35, different_variable_fn(constant_op.constant(7)).numpy()) # The shared variable has a starting value of 3 because add_v1 was wrapped # first. self.assertEqual(-4, subtract(constant_op.constant(7)).numpy()) self.assertEqual(10, increment_variable(constant_op.constant(7)).numpy()) # Check that variable updates self.assertEqual(17, add(constant_op.constant(7)).numpy()) self.assertEqual(3, subtract(constant_op.constant(7)).numpy()) # Sanity check - result from this function shouldn't change. self.assertEqual(35, different_variable_fn(constant_op.constant(7)).numpy()) self.assertAllEqual({'reuse/v', 'no_reuse/v'}, set(g.variables.keys())) def testShareVariablesDifferentGraphs(self): def add_v1(x): v = variables.Variable(3, name='v') return v + x def subtract_v1(x): v = variables.Variable(4, name='v') return v - x def different_variable_fn_v1(x): with ops.name_scope('different_scope'): v = variables.Variable(5, name='v') return v * x def increment_variable_v1(x): v = variables.Variable(6, name='v') return v.assign_add(x) signature = [tensor_spec.TensorSpec([], dtypes.int32)] vh = wrap_function.VariableHolder(share_variables=True) new_graph = lambda: wrap_function.WrappedGraph(variable_holder=vh) add = new_graph().wrap_function(add_v1, signature) subtract = new_graph().wrap_function(subtract_v1, signature) different_variable_fn = new_graph().wrap_function( different_variable_fn_v1, signature) increment_variable = new_graph().wrap_function( increment_variable_v1, signature) self.assertEqual(10, add(constant_op.constant(7)).numpy()) self.assertEqual(35, different_variable_fn(constant_op.constant(7)).numpy()) # Because the variable in add_v1 was created first, its starting value is 3 # instead of the values defined in subtract_v1 or increment_variable_v1. self.assertEqual(-4, subtract(constant_op.constant(7)).numpy()) self.assertEqual(10, increment_variable(constant_op.constant(7)).numpy()) # Check that variable updates self.assertEqual(17, add(constant_op.constant(7)).numpy()) self.assertEqual(3, subtract(constant_op.constant(7)).numpy()) # Sanity check - result from this function shouldn't change. self.assertEqual(35, different_variable_fn(constant_op.constant(7)).numpy()) self.assertAllEqual({'v', 'different_scope/v'}, set(vh.variables.keys())) @test_util.run_in_graph_and_eager_modes def testImportedFunctionsRegistered(self): if test_util.is_gpu_available(): self.skipTest('not a GPU test') with ops.Graph().as_default() as graph: x = array_ops.placeholder(dtypes.variant, shape=[], name='foo') ds = dataset_ops.from_variant(x, structure=( tensor_spec.TensorSpec([], dtypes.int32))) y = ds.reduce(array_ops.zeros([], dtype=dtypes.int32), lambda p, q: p + q) graph_def = graph.as_graph_def() def fn_to_wrap(a): returned_elements = graph_def_importer.import_graph_def( graph_def, input_map={x.name: a}, return_elements=[y.name]) return returned_elements[0] wrapped_fn = wrap_function.wrap_function( fn_to_wrap, [tensor_spec.TensorSpec((), dtypes.variant)]) ds = dataset_ops.Dataset.from_tensor_slices([10, 20]) v = dataset_ops.to_variant(ds) self.evaluate(wrapped_fn(v)) def testReturnOp(self): def update_var_v1(x): v = variables.Variable(3, name='v') update_op = state_ops.assign(v, x).op return update_op g = wrap_function.WrappedGraph() signature = [tensor_spec.TensorSpec([], dtypes.int32)] update_var = g.wrap_function(update_var_v1, signature) self.assertEqual(g.variables['v'].numpy(), 3) update_var(constant_op.constant(12)) self.assertEqual(g.variables['v'].numpy(), 12) if __name__ == '__main__': ops.enable_eager_execution() test.main()