# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import importlib import numpy as np from tensorflow.python.eager import backprop from tensorflow.python.framework import constant_op from tensorflow.python.framework import random_seed from tensorflow.python.framework import tensor_shape from tensorflow.python.framework import test_util from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.ops.distributions import beta as beta_lib from tensorflow.python.ops.distributions import kullback_leibler from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging def try_import(name): # pylint: disable=invalid-name module = None try: module = importlib.import_module(name) except ImportError as e: tf_logging.warning("Could not import %s: %s" % (name, str(e))) return module special = try_import("scipy.special") stats = try_import("scipy.stats") @test_util.run_all_in_graph_and_eager_modes class BetaTest(test.TestCase): def testSimpleShapes(self): a = np.random.rand(3) b = np.random.rand(3) dist = beta_lib.Beta(a, b) self.assertAllEqual([], self.evaluate(dist.event_shape_tensor())) self.assertAllEqual([3], self.evaluate(dist.batch_shape_tensor())) self.assertEqual(tensor_shape.TensorShape([]), dist.event_shape) self.assertEqual(tensor_shape.TensorShape([3]), dist.batch_shape) def testComplexShapes(self): a = np.random.rand(3, 2, 2) b = np.random.rand(3, 2, 2) dist = beta_lib.Beta(a, b) self.assertAllEqual([], self.evaluate(dist.event_shape_tensor())) self.assertAllEqual([3, 2, 2], self.evaluate(dist.batch_shape_tensor())) self.assertEqual(tensor_shape.TensorShape([]), dist.event_shape) self.assertEqual(tensor_shape.TensorShape([3, 2, 2]), dist.batch_shape) def testComplexShapesBroadcast(self): a = np.random.rand(3, 2, 2) b = np.random.rand(2, 2) dist = beta_lib.Beta(a, b) self.assertAllEqual([], self.evaluate(dist.event_shape_tensor())) self.assertAllEqual([3, 2, 2], self.evaluate(dist.batch_shape_tensor())) self.assertEqual(tensor_shape.TensorShape([]), dist.event_shape) self.assertEqual(tensor_shape.TensorShape([3, 2, 2]), dist.batch_shape) def testAlphaProperty(self): a = [[1., 2, 3]] b = [[2., 4, 3]] dist = beta_lib.Beta(a, b) self.assertEqual([1, 3], dist.concentration1.get_shape()) self.assertAllClose(a, self.evaluate(dist.concentration1)) def testBetaProperty(self): a = [[1., 2, 3]] b = [[2., 4, 3]] dist = beta_lib.Beta(a, b) self.assertEqual([1, 3], dist.concentration0.get_shape()) self.assertAllClose(b, self.evaluate(dist.concentration0)) def testPdfXProper(self): a = [[1., 2, 3]] b = [[2., 4, 3]] dist = beta_lib.Beta(a, b, validate_args=True) self.evaluate(dist.prob([.1, .3, .6])) self.evaluate(dist.prob([.2, .3, .5])) # Either condition can trigger. with self.assertRaisesOpError("sample must be positive"): self.evaluate(dist.prob([-1., 0.1, 0.5])) with self.assertRaisesOpError("sample must be positive"): self.evaluate(dist.prob([0., 0.1, 0.5])) with self.assertRaisesOpError("sample must be less than `1`"): self.evaluate(dist.prob([.1, .2, 1.2])) with self.assertRaisesOpError("sample must be less than `1`"): self.evaluate(dist.prob([.1, .2, 1.0])) def testPdfTwoBatches(self): a = [1., 2] b = [1., 2] x = [.5, .5] dist = beta_lib.Beta(a, b) pdf = dist.prob(x) self.assertAllClose([1., 3. / 2], self.evaluate(pdf), rtol=1e-5, atol=1e-5) self.assertEqual((2,), pdf.get_shape()) def testPdfTwoBatchesNontrivialX(self): a = [1., 2] b = [1., 2] x = [.3, .7] dist = beta_lib.Beta(a, b) pdf = dist.prob(x) self.assertAllClose([1, 63. / 50], self.evaluate(pdf), rtol=1e-5, atol=1e-5) self.assertEqual((2,), pdf.get_shape()) def testPdfUniformZeroBatch(self): # This is equivalent to a uniform distribution a = 1. b = 1. x = np.array([.1, .2, .3, .5, .8], dtype=np.float32) dist = beta_lib.Beta(a, b) pdf = dist.prob(x) self.assertAllClose([1.] * 5, self.evaluate(pdf)) self.assertEqual((5,), pdf.get_shape()) def testPdfAlphaStretchedInBroadcastWhenSameRank(self): a = [[1., 2]] b = [[1., 2]] x = [[.5, .5], [.3, .7]] dist = beta_lib.Beta(a, b) pdf = dist.prob(x) self.assertAllClose([[1., 3. / 2], [1., 63. / 50]], self.evaluate(pdf), rtol=1e-5, atol=1e-5) self.assertEqual((2, 2), pdf.get_shape()) def testPdfAlphaStretchedInBroadcastWhenLowerRank(self): a = [1., 2] b = [1., 2] x = [[.5, .5], [.2, .8]] pdf = beta_lib.Beta(a, b).prob(x) self.assertAllClose([[1., 3. / 2], [1., 24. / 25]], self.evaluate(pdf), rtol=1e-5, atol=1e-5) self.assertEqual((2, 2), pdf.get_shape()) def testPdfXStretchedInBroadcastWhenSameRank(self): a = [[1., 2], [2., 3]] b = [[1., 2], [2., 3]] x = [[.5, .5]] pdf = beta_lib.Beta(a, b).prob(x) self.assertAllClose([[1., 3. / 2], [3. / 2, 15. / 8]], self.evaluate(pdf), rtol=1e-5, atol=1e-5) self.assertEqual((2, 2), pdf.get_shape()) def testPdfXStretchedInBroadcastWhenLowerRank(self): a = [[1., 2], [2., 3]] b = [[1., 2], [2., 3]] x = [.5, .5] pdf = beta_lib.Beta(a, b).prob(x) self.assertAllClose([[1., 3. / 2], [3. / 2, 15. / 8]], self.evaluate(pdf), rtol=1e-5, atol=1e-5) self.assertEqual((2, 2), pdf.get_shape()) def testLogPdfOnBoundaryIsFiniteWhenAlphaIsOne(self): b = [[0.01, 0.1, 1., 2], [5., 10., 2., 3]] pdf = self.evaluate(beta_lib.Beta(1., b).prob(0.)) self.assertAllEqual(np.ones_like(pdf, dtype=np.bool_), np.isfinite(pdf)) def testBetaMean(self): a = [1., 2, 3] b = [2., 4, 1.2] dist = beta_lib.Beta(a, b) self.assertEqual(dist.mean().get_shape(), (3,)) if not stats: return expected_mean = stats.beta.mean(a, b) self.assertAllClose(expected_mean, self.evaluate(dist.mean())) def testBetaVariance(self): a = [1., 2, 3] b = [2., 4, 1.2] dist = beta_lib.Beta(a, b) self.assertEqual(dist.variance().get_shape(), (3,)) if not stats: return expected_variance = stats.beta.var(a, b) self.assertAllClose(expected_variance, self.evaluate(dist.variance())) def testBetaMode(self): a = np.array([1.1, 2, 3]) b = np.array([2., 4, 1.2]) expected_mode = (a - 1) / (a + b - 2) dist = beta_lib.Beta(a, b) self.assertEqual(dist.mode().get_shape(), (3,)) self.assertAllClose(expected_mode, self.evaluate(dist.mode())) def testBetaModeInvalid(self): a = np.array([1., 2, 3]) b = np.array([2., 4, 1.2]) dist = beta_lib.Beta(a, b, allow_nan_stats=False) with self.assertRaisesOpError("Condition x < y.*"): self.evaluate(dist.mode()) a = np.array([2., 2, 3]) b = np.array([1., 4, 1.2]) dist = beta_lib.Beta(a, b, allow_nan_stats=False) with self.assertRaisesOpError("Condition x < y.*"): self.evaluate(dist.mode()) def testBetaModeEnableAllowNanStats(self): a = np.array([1., 2, 3]) b = np.array([2., 4, 1.2]) dist = beta_lib.Beta(a, b, allow_nan_stats=True) expected_mode = (a - 1) / (a + b - 2) expected_mode[0] = np.nan self.assertEqual((3,), dist.mode().get_shape()) self.assertAllClose(expected_mode, self.evaluate(dist.mode())) a = np.array([2., 2, 3]) b = np.array([1., 4, 1.2]) dist = beta_lib.Beta(a, b, allow_nan_stats=True) expected_mode = (a - 1) / (a + b - 2) expected_mode[0] = np.nan self.assertEqual((3,), dist.mode().get_shape()) self.assertAllClose(expected_mode, self.evaluate(dist.mode())) def testBetaEntropy(self): a = [1., 2, 3] b = [2., 4, 1.2] dist = beta_lib.Beta(a, b) self.assertEqual(dist.entropy().get_shape(), (3,)) if not stats: return expected_entropy = stats.beta.entropy(a, b) self.assertAllClose(expected_entropy, self.evaluate(dist.entropy())) def testBetaSample(self): a = 1. b = 2. beta = beta_lib.Beta(a, b) n = constant_op.constant(100000) samples = beta.sample(n) sample_values = self.evaluate(samples) self.assertEqual(sample_values.shape, (100000,)) self.assertFalse(np.any(sample_values < 0.0)) if not stats: return self.assertLess( stats.kstest( # Beta is a univariate distribution. sample_values, stats.beta(a=1., b=2.).cdf)[0], 0.01) # The standard error of the sample mean is 1 / (sqrt(18 * n)) self.assertAllClose( sample_values.mean(axis=0), stats.beta.mean(a, b), atol=1e-2) self.assertAllClose( np.cov(sample_values, rowvar=0), stats.beta.var(a, b), atol=1e-1) def testBetaFullyReparameterized(self): a = constant_op.constant(1.0) b = constant_op.constant(2.0) with backprop.GradientTape() as tape: tape.watch(a) tape.watch(b) beta = beta_lib.Beta(a, b) samples = beta.sample(100) grad_a, grad_b = tape.gradient(samples, [a, b]) self.assertIsNotNone(grad_a) self.assertIsNotNone(grad_b) # Test that sampling with the same seed twice gives the same results. def testBetaSampleMultipleTimes(self): a_val = 1. b_val = 2. n_val = 100 random_seed.set_random_seed(654321) beta1 = beta_lib.Beta( concentration1=a_val, concentration0=b_val, name="beta1") samples1 = self.evaluate(beta1.sample(n_val, seed=123456)) random_seed.set_random_seed(654321) beta2 = beta_lib.Beta( concentration1=a_val, concentration0=b_val, name="beta2") samples2 = self.evaluate(beta2.sample(n_val, seed=123456)) self.assertAllClose(samples1, samples2) def testBetaSampleMultidimensional(self): a = np.random.rand(3, 2, 2).astype(np.float32) b = np.random.rand(3, 2, 2).astype(np.float32) beta = beta_lib.Beta(a, b) n = constant_op.constant(100000) samples = beta.sample(n) sample_values = self.evaluate(samples) self.assertEqual(sample_values.shape, (100000, 3, 2, 2)) self.assertFalse(np.any(sample_values < 0.0)) if not stats: return self.assertAllClose( sample_values[:, 1, :].mean(axis=0), stats.beta.mean(a, b)[1, :], atol=1e-1) def testBetaCdf(self): shape = (30, 40, 50) for dt in (np.float32, np.float64): a = 10. * np.random.random(shape).astype(dt) b = 10. * np.random.random(shape).astype(dt) x = np.random.random(shape).astype(dt) actual = self.evaluate(beta_lib.Beta(a, b).cdf(x)) self.assertAllEqual(np.ones(shape, dtype=np.bool_), 0. <= x) self.assertAllEqual(np.ones(shape, dtype=np.bool_), 1. >= x) if not stats: return self.assertAllClose(stats.beta.cdf(x, a, b), actual, rtol=9e-3, atol=5e-6) def testBetaLogCdf(self): shape = (30, 40, 50) for dt in (np.float32, np.float64): a = 10. * np.random.random(shape).astype(dt) b = 10. * np.random.random(shape).astype(dt) x = np.random.random(shape).astype(dt) actual = self.evaluate(math_ops.exp(beta_lib.Beta(a, b).log_cdf(x))) self.assertAllEqual(np.ones(shape, dtype=np.bool_), 0. <= x) self.assertAllEqual(np.ones(shape, dtype=np.bool_), 1. >= x) if not stats: return self.assertAllClose(stats.beta.cdf(x, a, b), actual, rtol=3e-3, atol=2e-5) def testBetaWithSoftplusConcentration(self): a, b = -4.2, -9.1 dist = beta_lib.BetaWithSoftplusConcentration(a, b) self.assertAllClose( self.evaluate(nn_ops.softplus(a)), self.evaluate(dist.concentration1)) self.assertAllClose( self.evaluate(nn_ops.softplus(b)), self.evaluate(dist.concentration0)) def testBetaBetaKL(self): for shape in [(10,), (4, 5)]: a1 = 6.0 * np.random.random(size=shape) + 1e-4 b1 = 6.0 * np.random.random(size=shape) + 1e-4 a2 = 6.0 * np.random.random(size=shape) + 1e-4 b2 = 6.0 * np.random.random(size=shape) + 1e-4 # Take inverse softplus of values to test BetaWithSoftplusConcentration a1_sp = np.log(np.exp(a1) - 1.0) b1_sp = np.log(np.exp(b1) - 1.0) a2_sp = np.log(np.exp(a2) - 1.0) b2_sp = np.log(np.exp(b2) - 1.0) d1 = beta_lib.Beta(concentration1=a1, concentration0=b1) d2 = beta_lib.Beta(concentration1=a2, concentration0=b2) d1_sp = beta_lib.BetaWithSoftplusConcentration(concentration1=a1_sp, concentration0=b1_sp) d2_sp = beta_lib.BetaWithSoftplusConcentration(concentration1=a2_sp, concentration0=b2_sp) if not special: return kl_expected = (special.betaln(a2, b2) - special.betaln(a1, b1) + (a1 - a2) * special.digamma(a1) + (b1 - b2) * special.digamma(b1) + (a2 - a1 + b2 - b1) * special.digamma(a1 + b1)) for dist1 in [d1, d1_sp]: for dist2 in [d2, d2_sp]: kl = kullback_leibler.kl_divergence(dist1, dist2) kl_val = self.evaluate(kl) self.assertEqual(kl.get_shape(), shape) self.assertAllClose(kl_val, kl_expected) # Make sure KL(d1||d1) is 0 kl_same = self.evaluate(kullback_leibler.kl_divergence(d1, d1)) self.assertAllClose(kl_same, np.zeros_like(kl_expected)) if __name__ == "__main__": test.main()