# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ragged_util.""" from absl.testing import parameterized import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops.ragged import ragged_util from tensorflow.python.platform import googletest # Example 3d tensor for test cases. Has shape [4, 2, 3]. TENSOR_3D = [[[('%d%d%d' % (i, j, k)).encode('utf-8') for k in range(3)] for j in range(2)] for i in range(4)] # Example 4d tensor for test cases. Has shape [4, 2, 3, 5]. TENSOR_4D = [[[[('%d%d%d%d' % (i, j, k, l)).encode('utf-8') for l in range(5)] for k in range(3)] for j in range(2)] for i in range(4)] @test_util.run_all_in_graph_and_eager_modes class RaggedUtilTest(test_util.TensorFlowTestCase, parameterized.TestCase): @parameterized.parameters([ # Docstring examples dict( data=['a', 'b', 'c'], repeats=[3, 0, 2], axis=0, expected=[b'a', b'a', b'a', b'c', b'c']), dict( data=[[1, 2], [3, 4]], repeats=[2, 3], axis=0, expected=[[1, 2], [1, 2], [3, 4], [3, 4], [3, 4]]), dict( data=[[1, 2], [3, 4]], repeats=[2, 3], axis=1, expected=[[1, 1, 2, 2, 2], [3, 3, 4, 4, 4]]), # Scalar repeats value dict( data=['a', 'b', 'c'], repeats=2, axis=0, expected=[b'a', b'a', b'b', b'b', b'c', b'c']), dict( data=[[1, 2], [3, 4]], repeats=2, axis=0, expected=[[1, 2], [1, 2], [3, 4], [3, 4]]), dict( data=[[1, 2], [3, 4]], repeats=2, axis=1, expected=[[1, 1, 2, 2], [3, 3, 4, 4]]), # data & repeats are broadcast to have at least one dimension, # so these are all equivalent: dict(data=3, repeats=4, axis=0, expected=[3, 3, 3, 3]), dict(data=[3], repeats=4, axis=0, expected=[3, 3, 3, 3]), dict(data=3, repeats=[4], axis=0, expected=[3, 3, 3, 3]), dict(data=[3], repeats=[4], axis=0, expected=[3, 3, 3, 3]), # Empty tensor dict(data=[], repeats=[], axis=0, expected=[]), ]) def testRepeat(self, data, repeats, expected, axis=None): result = ragged_util.repeat(data, repeats, axis) self.assertAllEqual(result, expected) @parameterized.parameters([ dict(mode=mode, **args) for mode in ['constant', 'dynamic', 'unknown_shape'] for args in [ # data & repeats are broadcast to have at least one dimension, # so these are all equivalent: dict(data=3, repeats=4, axis=0), dict(data=[3], repeats=4, axis=0), dict(data=3, repeats=[4], axis=0), dict(data=[3], repeats=[4], axis=0), # 1-dimensional data tensor. dict(data=[], repeats=5, axis=0), dict(data=[1, 2, 3], repeats=5, axis=0), dict(data=[1, 2, 3], repeats=[3, 0, 2], axis=0), dict(data=[1, 2, 3], repeats=[3, 0, 2], axis=-1), dict(data=[b'a', b'b', b'c'], repeats=[3, 0, 2], axis=0), # 2-dimensional data tensor. dict(data=[[1, 2, 3], [4, 5, 6]], repeats=3, axis=0), dict(data=[[1, 2, 3], [4, 5, 6]], repeats=3, axis=1), dict(data=[[1, 2, 3], [4, 5, 6]], repeats=[3, 5], axis=0), dict(data=[[1, 2, 3], [4, 5, 6]], repeats=[3, 5, 7], axis=1), # 3-dimensional data tensor: shape=[4, 2, 3]. dict(data=TENSOR_3D, repeats=2, axis=0), dict(data=TENSOR_3D, repeats=2, axis=1), dict(data=TENSOR_3D, repeats=2, axis=2), dict(data=TENSOR_3D, repeats=[2, 0, 4, 1], axis=0), dict(data=TENSOR_3D, repeats=[3, 2], axis=1), dict(data=TENSOR_3D, repeats=[1, 3, 1], axis=2), # 4-dimensional data tensor: shape=[4, 2, 3, 5]. dict(data=TENSOR_4D, repeats=2, axis=0), dict(data=TENSOR_4D, repeats=2, axis=1), dict(data=TENSOR_4D, repeats=2, axis=2), dict(data=TENSOR_4D, repeats=2, axis=3), dict(data=TENSOR_4D, repeats=[2, 0, 4, 1], axis=0), dict(data=TENSOR_4D, repeats=[3, 2], axis=1), dict(data=TENSOR_4D, repeats=[1, 3, 1], axis=2), dict(data=TENSOR_4D, repeats=[1, 3, 0, 0, 2], axis=3), ] ]) def testValuesMatchesNumpy(self, mode, data, repeats, axis): # Exception: we can't handle negative axis if data.ndims is unknown. if axis < 0 and mode == 'unknown_shape': return expected = np.repeat(data, repeats, axis) if mode == 'constant': data = constant_op.constant(data) repeats = constant_op.constant(repeats) elif mode == 'dynamic': data = constant_op.constant(data) repeats = constant_op.constant(repeats) data = array_ops.placeholder_with_default(data, data.shape) repeats = array_ops.placeholder_with_default(repeats, repeats.shape) elif mode == 'unknown_shape': data = array_ops.placeholder_with_default(data, None) repeats = array_ops.placeholder_with_default(repeats, None) result = ragged_util.repeat(data, repeats, axis) self.assertAllEqual(result, expected) @parameterized.parameters([ dict( descr='axis >= rank(data)', mode='dynamic', data=[1, 2, 3], repeats=[3, 0, 2], axis=1, error='axis=1 out of bounds: expected -1<=axis<1'), dict( descr='axis < -rank(data)', mode='dynamic', data=[1, 2, 3], repeats=[3, 0, 2], axis=-2, error='axis=-2 out of bounds: expected -1<=axis<1'), dict( descr='len(repeats) != data.shape[axis]', mode='dynamic', data=[[1, 2, 3], [4, 5, 6]], repeats=[2, 3], axis=1, error='Dimensions 3 and 2 are not compatible'), dict( descr='rank(repeats) > 1', mode='dynamic', data=[[1, 2, 3], [4, 5, 6]], repeats=[[3], [5]], axis=1, error=r'Shape \(2, 1\) must have rank at most 1'), dict( descr='non-integer axis', mode='constant', data=[1, 2, 3], repeats=2, axis='foo', exception=TypeError, error='`axis` must be an int'), ]) def testError(self, descr, mode, data, repeats, axis, exception=ValueError, error=None): # Make sure that this is also an error case for numpy. with self.assertRaises(exception): np.repeat(data, repeats, axis) if mode == 'constant': data = constant_op.constant(data) repeats = constant_op.constant(repeats) elif mode == 'dynamic': data = constant_op.constant(data) repeats = constant_op.constant(repeats) data = array_ops.placeholder_with_default(data, data.shape) repeats = array_ops.placeholder_with_default(repeats, repeats.shape) elif mode == 'unknown_shape': data = array_ops.placeholder_with_default(data, None) repeats = array_ops.placeholder_with_default(repeats, None) with self.assertRaisesRegex(exception, error): ragged_util.repeat(data, repeats, axis) if __name__ == '__main__': googletest.main()