/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBARTBASE_BASE_ATOMIC_H_ #define ART_LIBARTBASE_BASE_ATOMIC_H_ #include #include #include #include #include #include "macros.h" namespace art { enum class CASMode { kStrong, kWeak, }; template class PACKED(sizeof(T)) Atomic : public std::atomic { public: Atomic() : std::atomic(T()) { } explicit Atomic(T value) : std::atomic(value) { } // Load data from an atomic variable with Java data memory order semantics. // // Promises memory access semantics of ordinary Java data. // Does not order other memory accesses. // Long and double accesses may be performed 32 bits at a time. // There are no "cache coherence" guarantees; e.g. loads from the same location may be reordered. // In contrast to normal C++ accesses, racing accesses are allowed. T LoadJavaData() const { return this->load(std::memory_order_relaxed); } // Store data in an atomic variable with Java data memory ordering semantics. // // Promises memory access semantics of ordinary Java data. // Does not order other memory accesses. // Long and double accesses may be performed 32 bits at a time. // There are no "cache coherence" guarantees; e.g. loads from the same location may be reordered. // In contrast to normal C++ accesses, racing accesses are allowed. void StoreJavaData(T desired_value) { this->store(desired_value, std::memory_order_relaxed); } // Atomically replace the value with desired_value if it matches the expected_value. // Participates in total ordering of atomic operations. bool CompareAndSetStrongSequentiallyConsistent(T expected_value, T desired_value) { return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst); } // The same, except it may fail spuriously. bool CompareAndSetWeakSequentiallyConsistent(T expected_value, T desired_value) { return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst); } // Atomically replace the value with desired_value if it matches the expected_value. Doesn't // imply ordering or synchronization constraints. bool CompareAndSetStrongRelaxed(T expected_value, T desired_value) { return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed); } // Atomically replace the value with desired_value if it matches the expected_value. Prior writes // to other memory locations become visible to the threads that do a consume or an acquire on the // same location. bool CompareAndSetStrongRelease(T expected_value, T desired_value) { return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_release); } // The same, except it may fail spuriously. bool CompareAndSetWeakRelaxed(T expected_value, T desired_value) { return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed); } // Atomically replace the value with desired_value if it matches the expected_value. Prior writes // made to other memory locations by the thread that did the release become visible in this // thread. bool CompareAndSetWeakAcquire(T expected_value, T desired_value) { return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire); } // Atomically replace the value with desired_value if it matches the expected_value. Prior writes // to other memory locations become visible to the threads that do a consume or an acquire on the // same location. bool CompareAndSetWeakRelease(T expected_value, T desired_value) { return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release); } bool CompareAndSet(T expected_value, T desired_value, CASMode mode, std::memory_order memory_order) { return mode == CASMode::kStrong ? this->compare_exchange_strong(expected_value, desired_value, memory_order) : this->compare_exchange_weak(expected_value, desired_value, memory_order); } // Returns the address of the current atomic variable. This is only used by futex() which is // declared to take a volatile address (see base/mutex-inl.h). volatile T* Address() { return reinterpret_cast(this); } static T MaxValue() { return std::numeric_limits::max(); } }; // Increment a debug- or statistics-only counter when there is a single writer, especially if // concurrent reads are uncommon. Usually appreciably faster in this case. // NOT suitable as an approximate counter with multiple writers. template void IncrementStatsCounter(std::atomic* a) { a->store(a->load(std::memory_order_relaxed) + 1, std::memory_order_relaxed); } using AtomicInteger = Atomic; static_assert(sizeof(AtomicInteger) == sizeof(int32_t), "Weird AtomicInteger size"); static_assert(alignof(AtomicInteger) == alignof(int32_t), "AtomicInteger alignment differs from that of underlyingtype"); static_assert(sizeof(Atomic) == sizeof(int64_t), "Weird Atomic size"); // Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit // architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte // aligned. #if defined(__LP64__) static_assert(alignof(Atomic) == alignof(int64_t), "Atomic alignment differs from that of underlying type"); #endif } // namespace art #endif // ART_LIBARTBASE_BASE_ATOMIC_H_