/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "space_bitmap-inl.h" #include #include #include "android-base/stringprintf.h" #include "art_field-inl.h" #include "base/mem_map.h" #include "dex/dex_file-inl.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "mirror/object_array.h" namespace art HIDDEN { namespace gc { namespace accounting { using android::base::StringPrintf; template size_t SpaceBitmap::ComputeBitmapSize(uint64_t capacity) { // Number of space (heap) bytes covered by one bitmap word. // (Word size in bytes = `sizeof(intptr_t)`, which is expected to be // 4 on a 32-bit architecture and 8 on a 64-bit one.) const uint64_t kBytesCoveredPerWord = kAlignment * kBitsPerIntPtrT; // Calculate the number of words required to cover a space (heap) // having a size of `capacity` bytes. return (RoundUp(capacity, kBytesCoveredPerWord) / kBytesCoveredPerWord) * sizeof(intptr_t); } template size_t SpaceBitmap::ComputeHeapSize(uint64_t bitmap_bytes) { return bitmap_bytes * kBitsPerByte * kAlignment; } template SpaceBitmap SpaceBitmap::CreateFromMemMap( const std::string& name, MemMap&& mem_map, uint8_t* heap_begin, size_t heap_capacity) { CHECK(mem_map.IsValid()); uintptr_t* bitmap_begin = reinterpret_cast(mem_map.Begin()); const size_t bitmap_size = ComputeBitmapSize(heap_capacity); return { name, std::move(mem_map), bitmap_begin, bitmap_size, heap_begin, heap_capacity }; } template SpaceBitmap::SpaceBitmap(const std::string& name, MemMap&& mem_map, uintptr_t* bitmap_begin, size_t bitmap_size, const void* heap_begin, size_t heap_capacity) : mem_map_(std::move(mem_map)), bitmap_begin_(reinterpret_cast*>(bitmap_begin)), bitmap_size_(bitmap_size), heap_begin_(reinterpret_cast(heap_begin)), heap_limit_(reinterpret_cast(heap_begin) + heap_capacity), name_(name) { CHECK(bitmap_begin_ != nullptr); CHECK_NE(bitmap_size, 0U); } template SpaceBitmap::~SpaceBitmap() {} template SpaceBitmap SpaceBitmap::Create( const std::string& name, uint8_t* heap_begin, size_t heap_capacity) { // Round up since `heap_capacity` is not necessarily a multiple of `kAlignment * kBitsPerIntPtrT` // (we represent one word as an `intptr_t`). const size_t bitmap_size = ComputeBitmapSize(heap_capacity); std::string error_msg; MemMap mem_map = MemMap::MapAnonymous(name.c_str(), bitmap_size, PROT_READ | PROT_WRITE, /*low_4gb=*/ false, &error_msg); if (UNLIKELY(!mem_map.IsValid())) { LOG(ERROR) << "Failed to allocate bitmap " << name << ": " << error_msg; return SpaceBitmap(); } return CreateFromMemMap(name, std::move(mem_map), heap_begin, heap_capacity); } template void SpaceBitmap::SetHeapLimit(uintptr_t new_end) { DCHECK_ALIGNED(new_end, kBitsPerIntPtrT * kAlignment); size_t new_size = OffsetToIndex(new_end - heap_begin_) * sizeof(intptr_t); if (new_size < bitmap_size_) { bitmap_size_ = new_size; } heap_limit_ = new_end; // Not sure if doing this trim is necessary, since nothing past the end of the heap capacity // should be marked. } template std::string SpaceBitmap::Dump() const { return StringPrintf("%s: %p-%p", name_.c_str(), reinterpret_cast(HeapBegin()), reinterpret_cast(HeapLimit())); } template std::string SpaceBitmap::DumpMemAround(mirror::Object* obj) const { uintptr_t addr = reinterpret_cast(obj); DCHECK_GE(addr, heap_begin_); DCHECK(HasAddress(obj)) << obj; const uintptr_t offset = addr - heap_begin_; const size_t index = OffsetToIndex(offset); const uintptr_t mask = OffsetToMask(offset); size_t num_entries = bitmap_size_ / sizeof(uintptr_t); DCHECK_LT(index, num_entries) << " bitmap_size_ = " << bitmap_size_; Atomic* atomic_entry = &bitmap_begin_[index]; uintptr_t prev = 0; uintptr_t next = 0; if (index > 0) { prev = (atomic_entry - 1)->load(std::memory_order_relaxed); } uintptr_t curr = atomic_entry->load(std::memory_order_relaxed); if (index < num_entries - 1) { next = (atomic_entry + 1)->load(std::memory_order_relaxed); } std::ostringstream oss; oss << " offset: " << offset << " index: " << index << " mask: " << std::hex << std::setfill('0') << std::setw(16) << mask << " words {" << std::hex << std::setfill('0') << std::setw(16) << prev << ", " << std::hex << std::setfill('0') << std::setw(16) << curr << ", " << std::hex < void SpaceBitmap::Clear(bool release_eagerly) { if (bitmap_begin_ != nullptr) { // We currently always eagerly release the memory to the OS. static constexpr bool kAlwaysEagerlyReleaseBitmapMemory = true; mem_map_.FillWithZero(kAlwaysEagerlyReleaseBitmapMemory || release_eagerly); } } template void SpaceBitmap::ClearRange(const mirror::Object* begin, const mirror::Object* end) { uintptr_t begin_offset = reinterpret_cast(begin) - heap_begin_; uintptr_t end_offset = reinterpret_cast(end) - heap_begin_; // Align begin and end to bitmap word boundaries. while (begin_offset < end_offset && OffsetBitIndex(begin_offset) != 0) { Clear(reinterpret_cast(heap_begin_ + begin_offset)); begin_offset += kAlignment; } while (begin_offset < end_offset && OffsetBitIndex(end_offset) != 0) { end_offset -= kAlignment; Clear(reinterpret_cast(heap_begin_ + end_offset)); } // Bitmap word boundaries. const uintptr_t start_index = OffsetToIndex(begin_offset); const uintptr_t end_index = OffsetToIndex(end_offset); ZeroAndReleaseMemory(reinterpret_cast(&bitmap_begin_[start_index]), (end_index - start_index) * sizeof(*bitmap_begin_)); } template void SpaceBitmap::CopyFrom(SpaceBitmap* source_bitmap) { DCHECK_EQ(Size(), source_bitmap->Size()); const size_t count = source_bitmap->Size() / sizeof(intptr_t); Atomic* const src = source_bitmap->Begin(); Atomic* const dest = Begin(); for (size_t i = 0; i < count; ++i) { dest[i].store(src[i].load(std::memory_order_relaxed), std::memory_order_relaxed); } } template void SpaceBitmap::SweepWalk(const SpaceBitmap& live_bitmap, const SpaceBitmap& mark_bitmap, uintptr_t sweep_begin, uintptr_t sweep_end, SpaceBitmap::SweepCallback* callback, void* arg) { CHECK(live_bitmap.bitmap_begin_ != nullptr); CHECK(mark_bitmap.bitmap_begin_ != nullptr); CHECK_EQ(live_bitmap.heap_begin_, mark_bitmap.heap_begin_); CHECK_EQ(live_bitmap.bitmap_size_, mark_bitmap.bitmap_size_); CHECK(callback != nullptr); CHECK_LE(sweep_begin, sweep_end); CHECK_GE(sweep_begin, live_bitmap.heap_begin_); if (sweep_end <= sweep_begin) { return; } size_t buffer_size = sizeof(intptr_t) * kBitsPerIntPtrT; Atomic* live = live_bitmap.bitmap_begin_; Atomic* mark = mark_bitmap.bitmap_begin_; const size_t start = OffsetToIndex(sweep_begin - live_bitmap.heap_begin_); const size_t end = OffsetToIndex(sweep_end - live_bitmap.heap_begin_ - 1); CHECK_LT(end, live_bitmap.Size() / sizeof(intptr_t)); if (Runtime::Current()->IsRunningOnMemoryTool()) { // For memory tool, make the buffer large enough to hold all allocations. This is done since // we get the size of objects (and hence read the class) inside of the freeing logic. This can // cause crashes for unloaded classes since the class may get zeroed out before it is read. // See b/131542326 for (size_t i = start; i <= end; i++) { uintptr_t garbage = live[i].load(std::memory_order_relaxed) & ~mark[i].load(std::memory_order_relaxed); buffer_size += POPCOUNT(garbage); } } std::vector pointer_buf(buffer_size); mirror::Object** cur_pointer = &pointer_buf[0]; mirror::Object** pointer_end = cur_pointer + (buffer_size - kBitsPerIntPtrT); for (size_t i = start; i <= end; i++) { uintptr_t garbage = live[i].load(std::memory_order_relaxed) & ~mark[i].load(std::memory_order_relaxed); if (UNLIKELY(garbage != 0)) { uintptr_t ptr_base = IndexToOffset(i) + live_bitmap.heap_begin_; do { const size_t shift = CTZ(garbage); garbage ^= (static_cast(1)) << shift; *cur_pointer++ = reinterpret_cast(ptr_base + shift * kAlignment); } while (garbage != 0); // Make sure that there are always enough slots available for an // entire word of one bits. if (cur_pointer >= pointer_end) { (*callback)(cur_pointer - &pointer_buf[0], &pointer_buf[0], arg); cur_pointer = &pointer_buf[0]; } } } if (cur_pointer > &pointer_buf[0]) { (*callback)(cur_pointer - &pointer_buf[0], &pointer_buf[0], arg); } } template class SpaceBitmap; template class SpaceBitmap; } // namespace accounting } // namespace gc } // namespace art