/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "profiling_info.h" #include "art_method-inl.h" #include "dex/dex_instruction.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" namespace art HIDDEN { ProfilingInfo::ProfilingInfo(ArtMethod* method, const std::vector& inline_cache_entries, const std::vector& branch_cache_entries) : baseline_hotness_count_(GetOptimizeThreshold()), method_(method), number_of_inline_caches_(inline_cache_entries.size()), number_of_branch_caches_(branch_cache_entries.size()), current_inline_uses_(0) { InlineCache* inline_caches = GetInlineCaches(); memset(inline_caches, 0, number_of_inline_caches_ * sizeof(InlineCache)); for (size_t i = 0; i < number_of_inline_caches_; ++i) { inline_caches[i].dex_pc_ = inline_cache_entries[i]; } BranchCache* branch_caches = GetBranchCaches(); memset(branch_caches, 0, number_of_branch_caches_ * sizeof(BranchCache)); for (size_t i = 0; i < number_of_branch_caches_; ++i) { branch_caches[i].dex_pc_ = branch_cache_entries[i]; } } uint16_t ProfilingInfo::GetOptimizeThreshold() { return Runtime::Current()->GetJITOptions()->GetOptimizeThreshold(); } ProfilingInfo* ProfilingInfo::Create(Thread* self, ArtMethod* method, const std::vector& inline_cache_entries) { // Walk over the dex instructions of the method and keep track of // instructions we are interested in profiling. DCHECK(!method->IsNative()); std::vector branch_cache_entries; for (const DexInstructionPcPair& inst : method->DexInstructions()) { switch (inst->Opcode()) { case Instruction::IF_EQ: case Instruction::IF_EQZ: case Instruction::IF_NE: case Instruction::IF_NEZ: case Instruction::IF_LT: case Instruction::IF_LTZ: case Instruction::IF_LE: case Instruction::IF_LEZ: case Instruction::IF_GT: case Instruction::IF_GTZ: case Instruction::IF_GE: case Instruction::IF_GEZ: branch_cache_entries.push_back(inst.DexPc()); break; default: break; } } // We always create a `ProfilingInfo` object, even if there is no instruction we are // interested in. The JIT code cache internally uses it for hotness counter. // Allocate the `ProfilingInfo` object int the JIT's data space. jit::JitCodeCache* code_cache = Runtime::Current()->GetJit()->GetCodeCache(); return code_cache->AddProfilingInfo(self, method, inline_cache_entries, branch_cache_entries); } InlineCache* ProfilingInfo::GetInlineCache(uint32_t dex_pc) { // TODO: binary search if array is too long. InlineCache* caches = GetInlineCaches(); for (size_t i = 0; i < number_of_inline_caches_; ++i) { if (caches[i].dex_pc_ == dex_pc) { return &caches[i]; } } return nullptr; } BranchCache* ProfilingInfo::GetBranchCache(uint32_t dex_pc) { // TODO: binary search if array is too long. BranchCache* caches = GetBranchCaches(); for (size_t i = 0; i < number_of_branch_caches_; ++i) { if (caches[i].dex_pc_ == dex_pc) { return &caches[i]; } } // Currently, only if instructions are profiled. The compiler will see other // branches, like switches. return nullptr; } void ProfilingInfo::AddInvokeInfo(uint32_t dex_pc, mirror::Class* cls) { InlineCache* cache = GetInlineCache(dex_pc); if (cache == nullptr) { return; } for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { mirror::Class* existing = cache->classes_[i].Read(); mirror::Class* marked = ReadBarrier::IsMarked(existing); if (marked == cls) { // Receiver type is already in the cache, nothing else to do. return; } else if (marked == nullptr) { // Cache entry is empty, try to put `cls` in it. // Note: it's ok to spin on 'existing' here: if 'existing' is not null, that means // it is a stalled heap address, which will only be cleared during SweepSystemWeaks, // *after* this thread hits a suspend point. GcRoot expected_root(existing); GcRoot desired_root(cls); auto atomic_root = reinterpret_cast>*>(&cache->classes_[i]); if (!atomic_root->CompareAndSetStrongSequentiallyConsistent(expected_root, desired_root)) { // Some other thread put a class in the cache, continue iteration starting at this // entry in case the entry contains `cls`. --i; } else { // We successfully set `cls`, just return. return; } } } // Unsuccessfull - cache is full, making it megamorphic. We do not DCHECK it though, // as the garbage collector might clear the entries concurrently. } ScopedProfilingInfoUse::ScopedProfilingInfoUse(jit::Jit* jit, ArtMethod* method, Thread* self) : jit_(jit), method_(method), self_(self), // Fetch the profiling info ahead of using it. If it's null when fetching, // we should not call JitCodeCache::DoneCompilerUse. profiling_info_(jit == nullptr ? nullptr : jit->GetCodeCache()->NotifyCompilerUse(method, self)) {} ScopedProfilingInfoUse::~ScopedProfilingInfoUse() { if (profiling_info_ != nullptr) { jit_->GetCodeCache()->DoneCompilerUse(method_, self_); } } uint32_t InlineCache::EncodeDexPc(ArtMethod* method, const std::vector& dex_pcs, uint32_t inline_max_code_units) { if (kIsDebugBuild) { // Make sure `inline_max_code_units` is always the same. static uint32_t global_max_code_units = inline_max_code_units; CHECK_EQ(global_max_code_units, inline_max_code_units); } if (dex_pcs.size() - 1 > MaxDexPcEncodingDepth(method, inline_max_code_units)) { return -1; } uint32_t size = dex_pcs.size(); uint32_t insns_size = method->DexInstructions().InsnsSizeInCodeUnits(); uint32_t dex_pc = dex_pcs[size - 1]; uint32_t shift = MinimumBitsToStore(insns_size - 1); for (uint32_t i = size - 1; i > 0; --i) { DCHECK_LT(shift, BitSizeOf()); dex_pc += ((dex_pcs[i - 1] + 1) << shift); shift += MinimumBitsToStore(inline_max_code_units); } return dex_pc; } uint32_t InlineCache::MaxDexPcEncodingDepth(ArtMethod* method, uint32_t inline_max_code_units) { uint32_t insns_size = method->DexInstructions().InsnsSizeInCodeUnits(); uint32_t num_bits = MinimumBitsToStore(insns_size - 1); uint32_t depth = 0; do { depth++; num_bits += MinimumBitsToStore(inline_max_code_units); } while (num_bits <= BitSizeOf()); return depth - 1; } } // namespace art