/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "runtime.h" #include #include #ifdef __linux__ #include #endif #include #include #include #include #if defined(__APPLE__) #include // for _NSGetEnviron #endif #include #include #include #include #include #include #include #include #include #include "arch/arm/registers_arm.h" #include "arch/arm64/registers_arm64.h" #include "arch/context.h" #include "arch/instruction_set_features.h" #include "arch/x86/registers_x86.h" #include "arch/x86_64/registers_x86_64.h" #include "art_field-inl.h" #include "art_method-inl.h" #include "asm_support.h" #include "base/aborting.h" #include "base/arena_allocator.h" #include "base/atomic.h" #include "base/dumpable.h" #include "base/file_utils.h" #include "base/flags.h" #include "base/malloc_arena_pool.h" #include "base/mem_map_arena_pool.h" #include "base/memory_tool.h" #include "base/mutex.h" #include "base/os.h" #include "base/pointer_size.h" #include "base/quasi_atomic.h" #include "base/sdk_version.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/unix_file/fd_file.h" #include "base/utils.h" #include "class_linker-inl.h" #include "class_root-inl.h" #include "compiler_callbacks.h" #include "debugger.h" #include "dex/art_dex_file_loader.h" #include "dex/dex_file_loader.h" #include "entrypoints/entrypoint_utils-inl.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "experimental_flags.h" #include "fault_handler.h" #include "gc/accounting/card_table-inl.h" #include "gc/heap.h" #include "gc/scoped_gc_critical_section.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "gc/system_weak.h" #include "gc/task_processor.h" #include "handle_scope-inl.h" #include "hidden_api.h" #include "indirect_reference_table.h" #include "instrumentation.h" #include "intern_table-inl.h" #include "interpreter/interpreter.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jit/profile_saver.h" #include "jni/java_vm_ext.h" #include "jni/jni_id_manager.h" #include "jni_id_type.h" #include "linear_alloc.h" #include "memory_representation.h" #include "metrics/statsd.h" #include "mirror/array.h" #include "mirror/class-alloc-inl.h" #include "mirror/class-inl.h" #include "mirror/class_ext.h" #include "mirror/class_loader-inl.h" #include "mirror/emulated_stack_frame.h" #include "mirror/field.h" #include "mirror/method.h" #include "mirror/method_handle_impl.h" #include "mirror/method_handles_lookup.h" #include "mirror/method_type.h" #include "mirror/stack_trace_element.h" #include "mirror/throwable.h" #include "mirror/var_handle.h" #include "monitor.h" #include "native/dalvik_system_BaseDexClassLoader.h" #include "native/dalvik_system_DexFile.h" #include "native/dalvik_system_VMDebug.h" #include "native/dalvik_system_VMRuntime.h" #include "native/dalvik_system_VMStack.h" #include "native/dalvik_system_ZygoteHooks.h" #include "native/java_lang_Class.h" #include "native/java_lang_Object.h" #include "native/java_lang_StackStreamFactory.h" #include "native/java_lang_String.h" #include "native/java_lang_StringFactory.h" #include "native/java_lang_System.h" #include "native/java_lang_Thread.h" #include "native/java_lang_Throwable.h" #include "native/java_lang_VMClassLoader.h" #include "native/java_lang_invoke_MethodHandle.h" #include "native/java_lang_invoke_MethodHandleImpl.h" #include "native/java_lang_ref_FinalizerReference.h" #include "native/java_lang_ref_Reference.h" #include "native/java_lang_reflect_Array.h" #include "native/java_lang_reflect_Constructor.h" #include "native/java_lang_reflect_Executable.h" #include "native/java_lang_reflect_Field.h" #include "native/java_lang_reflect_Method.h" #include "native/java_lang_reflect_Parameter.h" #include "native/java_lang_reflect_Proxy.h" #include "native/java_util_concurrent_atomic_AtomicLong.h" #include "native/jdk_internal_misc_Unsafe.h" #include "native/libcore_io_Memory.h" #include "native/libcore_util_CharsetUtils.h" #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h" #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h" #include "native/sun_misc_Unsafe.h" #include "native_bridge_art_interface.h" #include "native_stack_dump.h" #include "nativehelper/scoped_local_ref.h" #include "nterp_helpers.h" #include "oat/aot_class_linker.h" #include "oat/elf_file.h" #include "oat/image-inl.h" #include "oat/oat.h" #include "oat/oat_file_manager.h" #include "oat/oat_quick_method_header.h" #include "object_callbacks.h" #include "odr_statslog/odr_statslog.h" #include "parsed_options.h" #include "quick/quick_method_frame_info.h" #include "reflection.h" #include "runtime_callbacks.h" #include "runtime_common.h" #include "runtime_image.h" #include "runtime_intrinsics.h" #include "runtime_options.h" #include "scoped_thread_state_change-inl.h" #include "sigchain.h" #include "signal_catcher.h" #include "signal_set.h" #include "thread.h" #include "thread_list.h" #include "ti/agent.h" #include "trace.h" #include "vdex_file.h" #include "verifier/class_verifier.h" #include "well_known_classes-inl.h" #ifdef ART_TARGET_ANDROID #include #include #include "com_android_apex.h" namespace apex = com::android::apex; #endif // Static asserts to check the values of generated assembly-support macros. #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME); #include "asm_defines.def" #undef ASM_DEFINE namespace art HIDDEN { // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack. static constexpr bool kEnableJavaStackTraceHandler = false; // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class // linking. static constexpr double kLowMemoryMinLoadFactor = 0.5; static constexpr double kLowMemoryMaxLoadFactor = 0.8; static constexpr double kNormalMinLoadFactor = 0.4; static constexpr double kNormalMaxLoadFactor = 0.7; #ifdef ART_PAGE_SIZE_AGNOSTIC // Declare the constant as ALWAYS_HIDDEN to ensure it isn't visible from outside libart.so. const size_t PageSize::value_ ALWAYS_HIDDEN = GetPageSizeSlow(); PageSize gPageSize ALWAYS_HIDDEN; #endif Runtime* Runtime::instance_ = nullptr; struct TraceConfig { Trace::TraceMode trace_mode; TraceOutputMode trace_output_mode; std::string trace_file; size_t trace_file_size; TraceClockSource clock_source; }; namespace { #ifdef __APPLE__ inline char** GetEnviron() { // When Google Test is built as a framework on MacOS X, the environ variable // is unavailable. Apple's documentation (man environ) recommends using // _NSGetEnviron() instead. return *_NSGetEnviron(); } #else // Some POSIX platforms expect you to declare environ. extern "C" makes // it reside in the global namespace. EXPORT extern "C" char** environ; inline char** GetEnviron() { return environ; } #endif void CheckConstants() { CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset()); } } // namespace Runtime::Runtime() : resolution_method_(nullptr), imt_conflict_method_(nullptr), imt_unimplemented_method_(nullptr), instruction_set_(InstructionSet::kNone), compiler_callbacks_(nullptr), is_zygote_(false), is_primary_zygote_(false), is_system_server_(false), must_relocate_(false), is_concurrent_gc_enabled_(true), is_explicit_gc_disabled_(false), is_eagerly_release_explicit_gc_disabled_(false), image_dex2oat_enabled_(true), default_stack_size_(0), heap_(nullptr), max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation), monitor_list_(nullptr), monitor_pool_(nullptr), thread_list_(nullptr), intern_table_(nullptr), class_linker_(nullptr), signal_catcher_(nullptr), java_vm_(nullptr), thread_pool_ref_count_(0u), fault_message_(nullptr), threads_being_born_(0), shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)), shutting_down_(false), shutting_down_started_(false), started_(false), finished_starting_(false), vfprintf_(nullptr), exit_(nullptr), abort_(nullptr), stats_enabled_(false), is_running_on_memory_tool_(kRunningOnMemoryTool), instrumentation_(), main_thread_group_(nullptr), system_thread_group_(nullptr), system_class_loader_(nullptr), dump_gc_performance_on_shutdown_(false), active_transaction_(false), verify_(verifier::VerifyMode::kNone), target_sdk_version_(static_cast(SdkVersion::kUnset)), compat_framework_(), implicit_null_checks_(false), implicit_so_checks_(false), implicit_suspend_checks_(false), no_sig_chain_(false), force_native_bridge_(false), is_native_bridge_loaded_(false), is_native_debuggable_(false), async_exceptions_thrown_(false), non_standard_exits_enabled_(false), runtime_debug_state_(RuntimeDebugState::kNonJavaDebuggable), monitor_timeout_enable_(false), monitor_timeout_ns_(0), zygote_max_failed_boots_(0), experimental_flags_(ExperimentalFlags::kNone), oat_file_manager_(nullptr), is_low_memory_mode_(false), madvise_willneed_total_dex_size_(0), madvise_willneed_odex_filesize_(0), madvise_willneed_art_filesize_(0), safe_mode_(false), hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled), core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled), test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled), dedupe_hidden_api_warnings_(true), hidden_api_access_event_log_rate_(0), dump_native_stack_on_sig_quit_(true), // Initially assume we perceive jank in case the process state is never updated. process_state_(kProcessStateJankPerceptible), zygote_no_threads_(false), verifier_logging_threshold_ms_(100), verifier_missing_kthrow_fatal_(false), perfetto_hprof_enabled_(false), perfetto_javaheapprof_enabled_(false), out_of_memory_error_hook_(nullptr) { static_assert(Runtime::kCalleeSaveSize == static_cast(CalleeSaveType::kLastCalleeSaveType), "Unexpected size"); CheckConstants(); std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u); interpreter::CheckInterpreterAsmConstants(); callbacks_.reset(new RuntimeCallbacks()); for (size_t i = 0; i <= static_cast(DeoptimizationKind::kLast); ++i) { deoptimization_counts_[i] = 0u; } } Runtime::~Runtime() { ScopedTrace trace("Runtime shutdown"); if (is_native_bridge_loaded_) { UnloadNativeBridge(); } Thread* self = Thread::Current(); const bool attach_shutdown_thread = self == nullptr; if (attach_shutdown_thread) { // We can only create a peer if the runtime is actually started. This is only not true during // some tests. If there is extreme memory pressure the allocation of the thread peer can fail. // In this case we will just try again without allocating a peer so that shutdown can continue. // Very few things are actually capable of distinguishing between the peer & peerless states so // this should be fine. // Running callbacks is prone to deadlocks in libjdwp tests that need an event handler lock to // process any event. We also need to enter a GCCriticalSection when processing certain events // (for ex: removing the last breakpoint). These two restrictions together make the tear down // of the jdwp tests deadlock prone if we fail to finish Thread::Attach callback. // (TODO:b/251163712) Remove this once we update deopt manager to not use GCCriticalSection. bool thread_attached = AttachCurrentThread("Shutdown thread", /* as_daemon= */ false, GetSystemThreadGroup(), /* create_peer= */ IsStarted(), /* should_run_callbacks= */ false); if (UNLIKELY(!thread_attached)) { LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer."; CHECK(AttachCurrentThread("Shutdown thread (no java peer)", /* as_daemon= */ false, /* thread_group=*/ nullptr, /* create_peer= */ false)); } self = Thread::Current(); } else { LOG(WARNING) << "Current thread not detached in Runtime shutdown"; } if (dump_gc_performance_on_shutdown_) { heap_->CalculatePreGcWeightedAllocatedBytes(); uint64_t process_cpu_end_time = ProcessCpuNanoTime(); ScopedLogSeverity sls(LogSeverity::INFO); // This can't be called from the Heap destructor below because it // could call RosAlloc::InspectAll() which needs the thread_list // to be still alive. heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO)); uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime(); uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime(); float ratio = static_cast(gc_cpu_time) / process_cpu_time; LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time) << " out of process CPU time " << PrettyDuration(process_cpu_time) << " (" << ratio << ")" << "\n"; double pre_gc_weighted_allocated_bytes = heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time; // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real // GC. Both numerator and denominator take into account until the end of the last GC, // instead of the whole process life time like pre_gc_weighted_allocated_bytes. double post_gc_weighted_allocated_bytes = heap_->GetPostGcWeightedAllocatedBytes() / (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime()); LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: " << static_cast(pre_gc_weighted_allocated_bytes) << " (" << PrettySize(pre_gc_weighted_allocated_bytes) << ")"; LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: " << static_cast(post_gc_weighted_allocated_bytes) << " (" << PrettySize(post_gc_weighted_allocated_bytes) << ")" << "\n"; } // Wait for the workers of thread pools to be created since there can't be any // threads attaching during shutdown. WaitForThreadPoolWorkersToStart(); if (jit_ != nullptr) { jit_->WaitForWorkersToBeCreated(); // Stop the profile saver thread before marking the runtime as shutting down. // The saver will try to dump the profiles before being sopped and that // requires holding the mutator lock. jit_->StopProfileSaver(); // Delete thread pool before the thread list since we don't want to wait forever on the // JIT compiler threads. Also this should be run before marking the runtime // as shutting down as some tasks may require mutator access. jit_->DeleteThreadPool(); } if (oat_file_manager_ != nullptr) { oat_file_manager_->WaitForWorkersToBeCreated(); } // Disable GC before deleting the thread-pool and shutting down runtime as it // restricts attaching new threads. heap_->DisableGCForShutdown(); heap_->WaitForWorkersToBeCreated(); // Make sure to let the GC complete if it is running. heap_->WaitForGcToComplete(gc::kGcCauseBackground, self); // Shutdown any trace before SetShuttingDown. Trace uses thread pool workers to flush entries // and we want to make sure they are fully created. Threads cannot attach while shutting down. Trace::Shutdown(); { ScopedTrace trace2("Wait for shutdown cond"); MutexLock mu(self, *Locks::runtime_shutdown_lock_); shutting_down_started_ = true; while (threads_being_born_ > 0) { shutdown_cond_->Wait(self); } SetShuttingDown(); } // Shutdown and wait for the daemons. CHECK(self != nullptr); if (IsFinishedStarting()) { ScopedTrace trace2("Waiting for Daemons"); self->ClearException(); ScopedObjectAccess soa(self); WellKnownClasses::java_lang_Daemons_stop->InvokeStatic<'V'>(self); } // Report death. Clients may require a working thread, still, so do it before GC completes and // all non-daemon threads are done. { ScopedObjectAccess soa(self); callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath); } // Delete thread pools before detaching the current thread in case tasks // getting deleted need to have access to Thread::Current. heap_->DeleteThreadPool(); if (oat_file_manager_ != nullptr) { oat_file_manager_->DeleteThreadPool(); } DeleteThreadPool(); CHECK(thread_pool_ == nullptr); if (attach_shutdown_thread) { DetachCurrentThread(/* should_run_callbacks= */ false); self = nullptr; } // Make sure our internal threads are dead before we start tearing down things they're using. GetRuntimeCallbacks()->StopDebugger(); // Deletion ordering is tricky. Null out everything we've deleted. delete signal_catcher_; signal_catcher_ = nullptr; // Shutdown metrics reporting. metrics_reporter_.reset(); // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended. // Also wait for daemon threads to quiesce, so that in addition to being "suspended", they // no longer access monitor and thread list data structures. We leak user daemon threads // themselves, since we have no mechanism for shutting them down. { ScopedTrace trace2("Delete thread list"); thread_list_->ShutDown(); } // TODO Maybe do some locking. for (auto& agent : agents_) { agent->Unload(); } // TODO Maybe do some locking for (auto& plugin : plugins_) { plugin.Unload(); } // Finally delete the thread list. // Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked. // We assume that by this point, we've waited long enough for things to quiesce. delete thread_list_; thread_list_ = nullptr; // Delete the JIT after thread list to ensure that there is no remaining threads which could be // accessing the instrumentation when we delete it. if (jit_ != nullptr) { VLOG(jit) << "Deleting jit"; jit_.reset(nullptr); jit_code_cache_.reset(nullptr); } // Shutdown the fault manager if it was initialized. fault_manager.Shutdown(); ScopedTrace trace2("Delete state"); delete monitor_list_; monitor_list_ = nullptr; delete monitor_pool_; monitor_pool_ = nullptr; delete class_linker_; class_linker_ = nullptr; delete small_lrt_allocator_; small_lrt_allocator_ = nullptr; delete heap_; heap_ = nullptr; delete intern_table_; intern_table_ = nullptr; delete oat_file_manager_; oat_file_manager_ = nullptr; Thread::Shutdown(); QuasiAtomic::Shutdown(); // Destroy allocators before shutting down the MemMap because they may use it. java_vm_.reset(); linear_alloc_.reset(); delete ReleaseStartupLinearAlloc(); linear_alloc_arena_pool_.reset(); arena_pool_.reset(); jit_arena_pool_.reset(); protected_fault_page_.Reset(); MemMap::Shutdown(); // TODO: acquire a static mutex on Runtime to avoid racing. CHECK(instance_ == nullptr || instance_ == this); instance_ = nullptr; // Well-known classes must be deleted or it is impossible to successfully start another Runtime // instance. We rely on a small initialization order issue in Runtime::Start() that requires // elements of WellKnownClasses to be null, see b/65500943. WellKnownClasses::Clear(); #ifdef ART_PAGE_SIZE_AGNOSTIC // This is added to ensure no test is able to access gPageSize prior to initializing Runtime just // because a Runtime instance was created (and subsequently destroyed) by another test. gPageSize.DisallowAccess(); #endif } struct AbortState { void Dump(std::ostream& os) const { if (gAborting > 1) { os << "Runtime aborting --- recursively, so no thread-specific detail!\n"; DumpRecursiveAbort(os); return; } gAborting++; os << "Runtime aborting...\n"; if (Runtime::Current() == nullptr) { os << "(Runtime does not yet exist!)\n"; DumpNativeStack(os, GetTid(), " native: ", nullptr); return; } Thread* self = Thread::Current(); // Dump all threads first and then the aborting thread. While this is counter the logical flow, // it improves the chance of relevant data surviving in the Android logs. DumpAllThreads(os, self); if (self == nullptr) { os << "(Aborting thread was not attached to runtime!)\n"; DumpNativeStack(os, GetTid(), " native: ", nullptr); } else { os << "Aborting thread:\n"; if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) { DumpThread(os, self); } else { if (Locks::mutator_lock_->SharedTryLock(self)) { DumpThread(os, self); Locks::mutator_lock_->SharedUnlock(self); } } } } // No thread-safety analysis as we do explicitly test for holding the mutator lock. void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS { DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)); self->Dump(os); if (self->IsExceptionPending()) { mirror::Throwable* exception = self->GetException(); os << "Pending exception " << exception->Dump(); } } void DumpAllThreads(std::ostream& os, Thread* self) const { Runtime* runtime = Runtime::Current(); if (runtime != nullptr) { ThreadList* thread_list = runtime->GetThreadList(); if (thread_list != nullptr) { // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be // grabbed). // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout // acquiring the locks. bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self); bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self); if (tll_already_held || tscl_already_held) { os << "Skipping all-threads dump as locks are held:" << (tll_already_held ? "" : " thread_list_lock") << (tscl_already_held ? "" : " thread_suspend_count_lock") << "\n"; return; } bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self); if (ml_already_exlusively_held) { os << "Skipping all-threads dump as mutator lock is exclusively held."; return; } bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self); if (!ml_already_held) { os << "Dumping all threads without mutator lock held\n"; } os << "All threads:\n"; thread_list->Dump(os); } } } // For recursive aborts. void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS { // The only thing we'll attempt is dumping the native stack of the current thread. We will only // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually // die. // Note: as we're using a global counter for the recursive abort detection, there is a potential // race here and it is not OK to just print when the counter is "2" (one from // Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough. static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u; if (gAborting < kOnlyPrintWhenRecursionLessThan) { gAborting++; DumpNativeStack(os, GetTid()); } } }; void Runtime::SetAbortMessage(const char* msg) { auto old_value = gAborting.fetch_add(1); // set before taking any locks // Only set the first abort message. if (old_value == 0) { #ifdef ART_TARGET_ANDROID android_set_abort_message(msg); #endif // Set the runtime fault message in case our unexpected-signal code will run. Runtime* current = Runtime::Current(); if (current != nullptr) { current->SetFaultMessage(msg); } } } void Runtime::Abort(const char* msg) { SetAbortMessage(msg); // May be coming from an unattached thread. if (Thread::Current() == nullptr) { Runtime* current = Runtime::Current(); if (current != nullptr && current->IsStarted() && !current->IsShuttingDownUnsafe()) { // We do not flag this to the unexpected-signal handler so that that may dump the stack. abort(); UNREACHABLE(); } } { // Ensure that we don't have multiple threads trying to abort at once, // which would result in significantly worse diagnostics. ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNativeForAbort); Locks::abort_lock_->ExclusiveLock(Thread::Current()); } // Get any pending output out of the way. fflush(nullptr); // Many people have difficulty distinguish aborts from crashes, // so be explicit. // Note: use cerr on the host to print log lines immediately, so we get at least some output // in case of recursive aborts. We lose annotation with the source file and line number // here, which is a minor issue. The same is significantly more complicated on device, // which is why we ignore the issue there. AbortState state; if (kIsTargetBuild) { LOG(FATAL_WITHOUT_ABORT) << Dumpable(state); } else { std::cerr << Dumpable(state); } // Sometimes we dump long messages, and the Android abort message only retains the first line. // In those cases, just log the message again, to avoid logcat limits. if (msg != nullptr && strchr(msg, '\n') != nullptr) { LOG(FATAL_WITHOUT_ABORT) << msg; } FlagRuntimeAbort(); // Call the abort hook if we have one. if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) { LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook..."; Runtime::Current()->abort_(); // notreached LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!"; } abort(); // notreached } /** * Update entrypoints of methods before the first fork. This * helps sharing pages where ArtMethods are allocated between the zygote and * forked apps. */ class UpdateMethodsPreFirstForkVisitor : public ClassVisitor { public: explicit UpdateMethodsPreFirstForkVisitor(ClassLinker* class_linker) : class_linker_(class_linker), can_use_nterp_(interpreter::CanRuntimeUseNterp()) {} bool operator()(ObjPtr klass) override REQUIRES_SHARED(Locks::mutator_lock_) { bool is_initialized = klass->IsVisiblyInitialized(); for (ArtMethod& method : klass->GetDeclaredMethods(kRuntimePointerSize)) { if (!is_initialized && method.NeedsClinitCheckBeforeCall() && can_use_nterp_) { const void* existing = method.GetEntryPointFromQuickCompiledCode(); if (class_linker_->IsQuickResolutionStub(existing) && CanMethodUseNterp(&method)) { method.SetEntryPointFromQuickCompiledCode(interpreter::GetNterpWithClinitEntryPoint()); } } } return true; } private: ClassLinker* const class_linker_; const bool can_use_nterp_; DISALLOW_COPY_AND_ASSIGN(UpdateMethodsPreFirstForkVisitor); }; // Wait until the kernel thinks we are single-threaded again. static void WaitUntilSingleThreaded() { #if defined(__linux__) // Read num_threads field from /proc/self/stat, avoiding higher-level IO libraries that may // break atomicity of the read. static constexpr size_t kNumTries = 2000; static constexpr size_t kNumThreadsIndex = 20; static constexpr size_t BUF_SIZE = 500; static constexpr size_t BUF_PRINT_SIZE = 150; // Only log this much on failure to limit length. static_assert(BUF_SIZE > BUF_PRINT_SIZE); char buf[BUF_SIZE]; size_t bytes_read = 0; uint64_t millis = 0; for (size_t tries = 0; tries < kNumTries; ++tries) { bytes_read = GetOsThreadStat(getpid(), buf, BUF_SIZE); CHECK_NE(bytes_read, 0u); size_t pos = 0; while (pos < bytes_read && buf[pos++] != ')') {} ++pos; // We're now positioned at the beginning of the third field. Don't count blanks embedded in // second (command) field. size_t blanks_seen = 2; while (pos < bytes_read && blanks_seen < kNumThreadsIndex - 1) { if (buf[pos++] == ' ') { ++blanks_seen; } } CHECK(pos < bytes_read - 2); // pos is first character of num_threads field. CHECK_EQ(buf[pos + 1], ' '); // We never have more than single-digit threads here. if (buf[pos] == '1') { return; // num_threads == 1; success. } if (millis == 0) { millis = MilliTime(); } usleep(tries < 10 ? 1000 : 2000); } buf[std::min(BUF_PRINT_SIZE, bytes_read)] = '\0'; // Truncate buf before printing. LOG(ERROR) << "Not single threaded: bytes_read = " << bytes_read << " stat contents = \"" << buf << "...\""; LOG(ERROR) << "Other threads' abbreviated stats: " << GetOtherThreadOsStats(); bytes_read = GetOsThreadStat(getpid(), buf, BUF_PRINT_SIZE); CHECK_NE(bytes_read, 0u); LOG(ERROR) << "After re-read: bytes_read = " << bytes_read << " stat contents = \"" << buf << "...\""; LOG(FATAL) << "Failed to reach single-threaded state: wait_time = " << MilliTime() - millis; #else // Not Linux; shouldn't matter, but this has a high probability of working slowly. usleep(20'000); #endif } void Runtime::PreZygoteFork() { if (GetJit() != nullptr) { GetJit()->PreZygoteFork(); } // All other threads have already been joined, but they may not have finished // removing themselves from the thread list. Wait until the other threads have completely // finished, and are no longer in the thread list. // TODO: Since the threads Unregister() themselves before exiting, the first wait should be // unnecessary. But since we're reading from a /proc entry that's concurrently changing, for // now we play this as safe as possible. ThreadList* tl = GetThreadList(); { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::thread_list_lock_); tl->WaitForUnregisterToComplete(self); if (kIsDebugBuild) { auto list = tl->GetList(); if (list.size() != 1) { for (Thread* t : list) { std::string name; t->GetThreadName(name); LOG(ERROR) << "Remaining pre-fork thread: " << name; } } } CHECK_EQ(tl->Size(), 1u); // And then wait until the kernel thinks the threads are gone. WaitUntilSingleThreaded(); } if (!heap_->HasZygoteSpace()) { Thread* self = Thread::Current(); // This is the first fork. Update ArtMethods in the boot classpath now to // avoid having forked apps dirty the memory. // Ensure we call FixupStaticTrampolines on all methods that are // initialized. class_linker_->MakeInitializedClassesVisiblyInitialized(self, /*wait=*/ true); ScopedObjectAccess soa(self); UpdateMethodsPreFirstForkVisitor visitor(class_linker_); class_linker_->VisitClasses(&visitor); } heap_->PreZygoteFork(); PreZygoteForkNativeBridge(); } void Runtime::PostZygoteFork() { jit::Jit* jit = GetJit(); if (jit != nullptr) { jit->PostZygoteFork(); // Ensure that the threads in the JIT pool have been created with the right // priority. if (kIsDebugBuild && jit->GetThreadPool() != nullptr) { jit->GetThreadPool()->CheckPthreadPriority( IsZygote() ? jit->GetZygoteThreadPoolPthreadPriority() : jit->GetThreadPoolPthreadPriority()); } } // Reset all stats. ResetStats(0xFFFFFFFF); } void Runtime::CallExitHook(jint status) { if (exit_ != nullptr) { ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNative); exit_(status); LOG(WARNING) << "Exit hook returned instead of exiting!"; } } void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) { // Userfaultfd compaction updates weak intern-table page-by-page via // LinearAlloc. if (!GetHeap()->IsPerformingUffdCompaction()) { GetInternTable()->SweepInternTableWeaks(visitor); } GetMonitorList()->SweepMonitorList(visitor); GetJavaVM()->SweepJniWeakGlobals(visitor); GetHeap()->SweepAllocationRecords(visitor); // Sweep JIT tables only if the GC is moving as in other cases the entries are // not updated. if (GetJit() != nullptr && GetHeap()->IsMovingGc()) { // Visit JIT literal tables. Objects in these tables are classes and strings // and only classes can be affected by class unloading. The strings always // stay alive as they are strongly interned. // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses // from mutators. See b/32167580. GetJit()->GetCodeCache()->SweepRootTables(visitor); } // All other generic system-weak holders. for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { holder->Sweep(visitor); } } bool Runtime::ParseOptions(const RuntimeOptions& raw_options, bool ignore_unrecognized, RuntimeArgumentMap* runtime_options) { Locks::Init(); InitLogging(/* argv= */ nullptr, Abort); // Calls Locks::Init() as a side effect. bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options); if (!parsed) { LOG(ERROR) << "Failed to parse options"; return false; } return true; } // Callback to check whether it is safe to call Abort (e.g., to use a call to // LOG(FATAL)). It is only safe to call Abort if the runtime has been created, // properly initialized, and has not shut down. static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS { Runtime* runtime = Runtime::Current(); return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked(); } void Runtime::AddGeneratedCodeRange(const void* start, size_t size) { if (HandlesSignalsInCompiledCode()) { fault_manager.AddGeneratedCodeRange(start, size); } } void Runtime::RemoveGeneratedCodeRange(const void* start, size_t size) { if (HandlesSignalsInCompiledCode()) { fault_manager.RemoveGeneratedCodeRange(start, size); } } bool Runtime::Create(RuntimeArgumentMap&& runtime_options) { // TODO: acquire a static mutex on Runtime to avoid racing. if (Runtime::instance_ != nullptr) { return false; } instance_ = new Runtime; Locks::SetClientCallback(IsSafeToCallAbort); if (!instance_->Init(std::move(runtime_options))) { // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will // leak memory, instead. Fix the destructor. b/19100793. // delete instance_; instance_ = nullptr; return false; } return true; } bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) { RuntimeArgumentMap runtime_options; return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) && Create(std::move(runtime_options)); } static jobject CreateSystemClassLoader(Runtime* runtime) { if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) { return nullptr; } ScopedObjectAccess soa(Thread::Current()); ClassLinker* cl = runtime->GetClassLinker(); auto pointer_size = cl->GetImagePointerSize(); ObjPtr class_loader_class = GetClassRoot(cl); DCHECK(class_loader_class->IsInitialized()); // Class roots have been initialized. ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod( "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size); CHECK(getSystemClassLoader != nullptr); CHECK(getSystemClassLoader->IsStatic()); ObjPtr system_class_loader = getSystemClassLoader->InvokeStatic<'L'>(soa.Self()); CHECK(system_class_loader != nullptr) << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : ""); ScopedAssertNoThreadSuspension sants(__FUNCTION__); jobject g_system_class_loader = runtime->GetJavaVM()->AddGlobalRef(soa.Self(), system_class_loader); soa.Self()->SetClassLoaderOverride(g_system_class_loader); ObjPtr thread_class = WellKnownClasses::java_lang_Thread.Get(); ArtField* contextClassLoader = thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;"); CHECK(contextClassLoader != nullptr); // We can't run in a transaction yet. contextClassLoader->SetObject(soa.Self()->GetPeer(), system_class_loader); return g_system_class_loader; } std::string Runtime::GetCompilerExecutable() const { if (!compiler_executable_.empty()) { return compiler_executable_; } std::string compiler_executable = GetArtBinDir() + "/dex2oat"; if (kIsDebugBuild) { compiler_executable += 'd'; } if (kIsTargetBuild) { compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32"; } return compiler_executable; } void Runtime::RunRootClinits(Thread* self) { class_linker_->RunRootClinits(self); GcRoot* exceptions[] = { &pre_allocated_OutOfMemoryError_when_throwing_exception_, // &pre_allocated_OutOfMemoryError_when_throwing_oome_, // Same class as above. // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, // Same class as above. &pre_allocated_NoClassDefFoundError_, }; for (GcRoot* exception : exceptions) { StackHandleScope<1> hs(self); Handle klass = hs.NewHandle(exception->Read()->GetClass()); class_linker_->EnsureInitialized(self, klass, true, true); self->AssertNoPendingException(); } } bool Runtime::Start() { VLOG(startup) << "Runtime::Start entering"; CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled"; // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump. // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel. #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__) if (kIsDebugBuild) { if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) { PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY"; } } #endif // Restore main thread state to kNative as expected by native code. Thread* self = Thread::Current(); started_ = true; // Before running any clinit, set up the native methods provided by the runtime itself. RegisterRuntimeNativeMethods(self->GetJniEnv()); class_linker_->RunEarlyRootClinits(self); InitializeIntrinsics(); self->TransitionFromRunnableToSuspended(ThreadState::kNative); // InitNativeMethods needs to be after started_ so that the classes // it touches will have methods linked to the oat file if necessary. { ScopedTrace trace2("InitNativeMethods"); InitNativeMethods(); } // InitializeCorePlatformApiPrivateFields() needs to be called after well known class // initializtion in InitNativeMethods(). art::hiddenapi::InitializeCorePlatformApiPrivateFields(); // Initialize well known thread group values that may be accessed threads while attaching. InitThreadGroups(self); Thread::FinishStartup(); // Create the JIT either if we have to use JIT compilation or save profiling info. This is // done after FinishStartup as the JIT pool needs Java thread peers, which require the main // ThreadGroup to exist. // // TODO(calin): We use the JIT class as a proxy for JIT compilation and for // recoding profiles. Maybe we should consider changing the name to be more clear it's // not only about compiling. b/28295073. if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) { CreateJit(); #ifdef ADDRESS_SANITIZER // (b/238730394): In older implementations of sanitizer + glibc there is a race between // pthread_create and dlopen that could cause a deadlock. pthread_create interceptor in ASAN // uses dl_pthread_iterator with a callback that could request a dl_load_lock via call to // __tls_get_addr [1]. dl_pthread_iterate would already hold dl_load_lock so this could cause a // deadlock. __tls_get_addr needs a dl_load_lock only when there is a dlopen happening in // parallel. As a workaround we wait for the pthread_create (i.e JIT thread pool creation) to // finish before going to the next phase. Creating a system class loader could need a dlopen so // we wait here till threads are initialized. // [1] https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/sanitizer_common/sanitizer_linux_libcdep.cpp#L408 // See this for more context: https://reviews.llvm.org/D98926 // TODO(b/238730394): Revisit this workaround once we migrate to musl libc. if (jit_ != nullptr) { jit_->GetThreadPool()->WaitForWorkersToBeCreated(); } #endif } // Send the start phase event. We have to wait till here as this is when the main thread peer // has just been generated, important root clinits have been run and JNI is completely functional. { ScopedObjectAccess soa(self); callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart); } system_class_loader_ = CreateSystemClassLoader(this); if (!is_zygote_) { if (is_native_bridge_loaded_) { PreInitializeNativeBridge("."); } NativeBridgeAction action = force_native_bridge_ ? NativeBridgeAction::kInitialize : NativeBridgeAction::kUnload; InitNonZygoteOrPostFork(self->GetJniEnv(), /* is_system_server= */ false, /* is_child_zygote= */ false, action, GetInstructionSetString(kRuntimeISA)); } { ScopedObjectAccess soa(self); StartDaemonThreads(); self->GetJniEnv()->AssertLocalsEmpty(); // Send the initialized phase event. Send it after starting the Daemon threads so that agents // cannot delay the daemon threads from starting forever. callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit); self->GetJniEnv()->AssertLocalsEmpty(); } VLOG(startup) << "Runtime::Start exiting"; finished_starting_ = true; if (trace_config_.get() != nullptr && trace_config_->trace_file != "") { ScopedThreadStateChange tsc(self, ThreadState::kWaitingForMethodTracingStart); int flags = 0; if (trace_config_->clock_source == TraceClockSource::kDual) { flags = Trace::TraceFlag::kTraceClockSourceWallClock | Trace::TraceFlag::kTraceClockSourceThreadCpu; } else if (trace_config_->clock_source == TraceClockSource::kWall) { flags = Trace::TraceFlag::kTraceClockSourceWallClock; } else if (TraceClockSource::kThreadCpu == trace_config_->clock_source) { flags = Trace::TraceFlag::kTraceClockSourceThreadCpu; } else { LOG(ERROR) << "Unexpected clock source"; } Trace::Start(trace_config_->trace_file.c_str(), static_cast(trace_config_->trace_file_size), flags, trace_config_->trace_output_mode, trace_config_->trace_mode, 0); } // In case we have a profile path passed as a command line argument, // register the current class path for profiling now. Note that we cannot do // this before we create the JIT and having it here is the most convenient way. // This is used when testing profiles with dalvikvm command as there is no // framework to register the dex files for profiling. if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() && !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) { std::vector dex_filenames; Split(class_path_string_, ':', &dex_filenames); // We pass "" as the package name because at this point we don't know it. It could be the // Zygote or it could be a dalvikvm cmd line execution. The package name will be re-set during // post-fork or during RegisterAppInfo. // // Also, it's ok to pass "" to the ref profile filename. It indicates we don't have // a reference profile. RegisterAppInfo( /*package_name=*/ "", dex_filenames, jit_options_->GetProfileSaverOptions().GetProfilePath(), /*ref_profile_filename=*/ "", kVMRuntimePrimaryApk); } return true; } void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) { DCHECK_GT(threads_being_born_, 0U); threads_being_born_--; if (shutting_down_started_ && threads_being_born_ == 0) { shutdown_cond_->Broadcast(Thread::Current()); } } void Runtime::InitNonZygoteOrPostFork( JNIEnv* env, bool is_system_server, // This is true when we are initializing a child-zygote. It requires // native bridge initialization to be able to run guest native code in // doPreload(). bool is_child_zygote, NativeBridgeAction action, const char* isa, bool profile_system_server) { if (is_native_bridge_loaded_) { switch (action) { case NativeBridgeAction::kUnload: UnloadNativeBridge(); is_native_bridge_loaded_ = false; break; case NativeBridgeAction::kInitialize: InitializeNativeBridge(env, isa); break; } } if (is_child_zygote) { // If creating a child-zygote we only initialize native bridge. The rest of // runtime post-fork logic would spin up threads for Binder and JDWP. // Instead, the Java side of the child process will call a static main in a // class specified by the parent. return; } DCHECK(!IsZygote()); if (is_system_server) { // Register the system server code paths. // TODO: Ideally this should be done by the VMRuntime#RegisterAppInfo. However, right now // the method is only called when we set up the profile. It should be called all the time // (simillar to the apps). Once that's done this manual registration can be removed. const char* system_server_classpath = getenv("SYSTEMSERVERCLASSPATH"); if (system_server_classpath == nullptr || (strlen(system_server_classpath) == 0)) { LOG(WARNING) << "System server class path not set"; } else { std::vector jars = android::base::Split(system_server_classpath, ":"); app_info_.RegisterAppInfo("android", jars, /*profile_output_filename=*/ "", /*ref_profile_filename=*/ "", AppInfo::CodeType::kPrimaryApk); } // Set the system server package name to "android". // This is used to tell the difference between samples provided by system server // and samples generated by other apps when processing boot image profiles. SetProcessPackageName("android"); if (profile_system_server) { jit_options_->SetWaitForJitNotificationsToSaveProfile(false); VLOG(profiler) << "Enabling system server profiles"; } } // We only used the runtime thread pool for loading app images. However the // speed up that this brings in theory isn't there in practice b/328173302. static constexpr bool kUseRuntimeThreadPool = false; // Create the thread pools. // Avoid creating the runtime thread pool for system server since it will not be used and would // waste memory. if (!is_system_server && kUseRuntimeThreadPool) { ScopedTrace timing("CreateThreadPool"); constexpr size_t kStackSize = 64 * KB; constexpr size_t kMaxRuntimeWorkers = 4u; const size_t num_workers = std::min(static_cast(std::thread::hardware_concurrency()), kMaxRuntimeWorkers); MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); CHECK(thread_pool_ == nullptr); thread_pool_.reset( ThreadPool::Create("Runtime", num_workers, /*create_peers=*/false, kStackSize)); thread_pool_->StartWorkers(Thread::Current()); } // Reset the gc performance data and metrics at zygote fork so that the events from // before fork aren't attributed to an app. heap_->ResetGcPerformanceInfo(); GetMetrics()->Reset(); if (metrics_reporter_ != nullptr) { // Now that we know if we are an app or system server, reload the metrics reporter config // in case there are any difference. metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags(is_system_server); metrics_reporter_->ReloadConfig(metrics_config); metrics::SessionData session_data{metrics::SessionData::CreateDefault()}; // Start the session id from 1 to avoid clashes with the default value. // (better for debugability) session_data.session_id = GetRandomNumber(1, std::numeric_limits::max()); // TODO: set session_data.compilation_reason and session_data.compiler_filter metrics_reporter_->MaybeStartBackgroundThread(session_data); // Also notify about any updates to the app info. metrics_reporter_->NotifyAppInfoUpdated(&app_info_); } StartSignalCatcher(); ScopedObjectAccess soa(Thread::Current()); if (IsPerfettoHprofEnabled() && (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() || Runtime::Current()->IsSystemServer())) { std::string err; ScopedTrace tr("perfetto_hprof init."); ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative); if (!EnsurePerfettoPlugin(&err)) { LOG(WARNING) << "Failed to load perfetto_hprof: " << err; } } if (IsPerfettoJavaHeapStackProfEnabled() && (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() || Runtime::Current()->IsSystemServer())) { // Marker used for dev tracing similar to above markers. ScopedTrace tr("perfetto_javaheapprof init."); } if (Runtime::Current()->IsSystemServer()) { std::string err; ScopedTrace tr("odrefresh and device stats logging"); ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative); // Report stats if available. This should be moved into ART Services when they are ready. if (!odrefresh::UploadStatsIfAvailable(&err)) { LOG(WARNING) << "Failed to upload odrefresh metrics: " << err; } metrics::SetupCallbackForDeviceStatus(); } if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) { if (IsJavaDebuggable()) { SetJniIdType(JniIdType::kIndices); } else { SetJniIdType(JniIdType::kPointer); } } ATraceIntegerValue( "profilebootclasspath", static_cast(jit_options_->GetProfileSaverOptions().GetProfileBootClassPath())); // Start the JDWP thread. If the command-line debugger flags specified "suspend=y", // this will pause the runtime (in the internal debugger implementation), so we probably want // this to come last. GetRuntimeCallbacks()->StartDebugger(); } void Runtime::StartSignalCatcher() { if (!is_zygote_) { signal_catcher_ = new SignalCatcher(); } } bool Runtime::IsShuttingDown(Thread* self) { MutexLock mu(self, *Locks::runtime_shutdown_lock_); return IsShuttingDownLocked(); } void Runtime::StartDaemonThreads() { ScopedTrace trace(__FUNCTION__); VLOG(startup) << "Runtime::StartDaemonThreads entering"; Thread* self = Thread::Current(); DCHECK_EQ(self->GetState(), ThreadState::kRunnable); WellKnownClasses::java_lang_Daemons_start->InvokeStatic<'V'>(self); if (UNLIKELY(self->IsExceptionPending())) { LOG(FATAL) << "Error starting java.lang.Daemons: " << self->GetException()->Dump(); } VLOG(startup) << "Runtime::StartDaemonThreads exiting"; } static size_t OpenBootDexFiles(ArrayRef dex_filenames, ArrayRef dex_locations, ArrayRef dex_files, std::vector>* out_dex_files) { DCHECK(out_dex_files != nullptr) << "OpenDexFiles: out-param is nullptr"; size_t failure_count = 0; for (size_t i = 0; i < dex_filenames.size(); i++) { const char* dex_filename = dex_filenames[i].c_str(); const char* dex_location = dex_locations[i].c_str(); File noFile; File* file = i < dex_files.size() ? &dex_files[i] : &noFile; static constexpr bool kVerifyChecksum = true; std::string error_msg; if (!OS::FileExists(dex_filename) && file->IsValid()) { LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'"; continue; } bool verify = Runtime::Current()->IsVerificationEnabled(); ArtDexFileLoader dex_file_loader(dex_filename, file, dex_location); if (!dex_file_loader.Open(verify, kVerifyChecksum, &error_msg, out_dex_files)) { LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "' / fd " << file->Fd() << ": " << error_msg; ++failure_count; } if (file->IsValid()) { bool close_ok = file->Close(); DCHECK(close_ok) << dex_filename; } } return failure_count; } void Runtime::SetSentinel(ObjPtr sentinel) { CHECK(sentinel_.Read() == nullptr); CHECK(sentinel != nullptr); CHECK(!heap_->IsMovableObject(sentinel)); sentinel_ = GcRoot(sentinel); } GcRoot Runtime::GetSentinel() { return sentinel_; } static inline void CreatePreAllocatedException(Thread* self, Runtime* runtime, GcRoot* exception, const char* exception_class_descriptor, const char* msg) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK_EQ(self, Thread::Current()); ClassLinker* class_linker = runtime->GetClassLinker(); // Allocate an object without initializing the class to allow non-trivial Throwable.(). ObjPtr klass = class_linker->FindSystemClass(self, exception_class_descriptor); CHECK(klass != nullptr); gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator(); ObjPtr exception_object = ObjPtr::DownCast( klass->Alloc(self, allocator_type)); CHECK(exception_object != nullptr); *exception = GcRoot(exception_object); // Initialize the "detailMessage" field. ObjPtr message = mirror::String::AllocFromModifiedUtf8(self, msg); CHECK(message != nullptr); ObjPtr throwable = GetClassRoot(class_linker); ArtField* detailMessageField = throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;"); CHECK(detailMessageField != nullptr); detailMessageField->SetObject(exception->Read(), message); } std::string Runtime::GetApexVersions(ArrayRef boot_class_path_locations) { std::vector bcp_apexes; for (std::string_view jar : boot_class_path_locations) { std::string_view apex = ApexNameFromLocation(jar); if (!apex.empty()) { bcp_apexes.push_back(apex); } } static const char* kApexFileName = "/apex/apex-info-list.xml"; // Start with empty markers. std::string empty_apex_versions(bcp_apexes.size(), '/'); // When running on host or chroot, we just use empty markers. if (!kIsTargetBuild || !OS::FileExists(kApexFileName)) { return empty_apex_versions; } #ifdef ART_TARGET_ANDROID if (access(kApexFileName, R_OK) != 0) { PLOG(WARNING) << "Failed to read " << kApexFileName; return empty_apex_versions; } auto info_list = apex::readApexInfoList(kApexFileName); if (!info_list.has_value()) { LOG(WARNING) << "Failed to parse " << kApexFileName; return empty_apex_versions; } std::string result; std::map apex_infos; for (const apex::ApexInfo& info : info_list->getApexInfo()) { if (info.getIsActive()) { apex_infos.emplace(info.getModuleName(), &info); } } for (const std::string_view& str : bcp_apexes) { auto info = apex_infos.find(str); if (info == apex_infos.end() || info->second->getIsFactory()) { result += '/'; } else { // In case lastUpdateMillis field is populated in apex-info-list.xml, we // prefer to use it as version scheme. If the field is missing we // fallback to the version code of the APEX. uint64_t version = info->second->hasLastUpdateMillis() ? info->second->getLastUpdateMillis() : info->second->getVersionCode(); android::base::StringAppendF(&result, "/%" PRIu64, version); } } return result; #else return empty_apex_versions; // Not an Android build. #endif } void Runtime::InitializeApexVersions() { apex_versions_ = GetApexVersions(ArrayRef(Runtime::Current()->GetBootClassPathLocations())); } void Runtime::ReloadAllFlags(const std::string& caller) { FlagBase::ReloadAllFlags(caller); } static std::vector FileFdsToFileObjects(std::vector&& fds) { std::vector files; files.reserve(fds.size()); for (int fd : fds) { files.push_back(File(fd, /*check_usage=*/false)); } return files; } inline static uint64_t GetThreadSuspendTimeout(const RuntimeArgumentMap* runtime_options) { auto suspend_timeout_opt = runtime_options->GetOptional(RuntimeArgumentMap::ThreadSuspendTimeout); return suspend_timeout_opt.has_value() ? suspend_timeout_opt.value().GetNanoseconds() : ThreadList::kDefaultThreadSuspendTimeout * android::base::GetIntProperty("ro.hw_timeout_multiplier", 1); } bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) { // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc. // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc. env_snapshot_.TakeSnapshot(); #ifdef ART_PAGE_SIZE_AGNOSTIC gPageSize.AllowAccess(); #endif using Opt = RuntimeArgumentMap; Opt runtime_options(std::move(runtime_options_in)); ScopedTrace trace(__FUNCTION__); CHECK_EQ(static_cast(sysconf(_SC_PAGE_SIZE)), gPageSize); // Reload all the flags value (from system properties and device configs). ReloadAllFlags(__FUNCTION__); deny_art_apex_data_files_ = runtime_options.Exists(Opt::DenyArtApexDataFiles); if (deny_art_apex_data_files_) { // We will run slower without those files if the system has taken an ART APEX update. LOG(WARNING) << "ART APEX data files are untrusted."; } // Early override for logging output. if (runtime_options.Exists(Opt::UseStderrLogger)) { android::base::SetLogger(android::base::StderrLogger); } MemMap::Init(); verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal); force_java_zygote_fork_loop_ = runtime_options.GetOrDefault(Opt::ForceJavaZygoteForkLoop); perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof); perfetto_javaheapprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoJavaHeapStackProf); // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels. // If we cannot reserve it, log a warning. // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..) // is out-of-the-way enough that it should not collide with boot image mapping. // Note: Don't request an error message. That will lead to a maps dump in the case of failure, // leading to logspam. { const uintptr_t sentinel_addr = RoundDown(static_cast(Context::kBadGprBase), gPageSize); protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page", reinterpret_cast(sentinel_addr), gPageSize, PROT_NONE, /*low_4gb=*/ true, /*reuse=*/ false, /*reservation=*/ nullptr, /*error_msg=*/ nullptr); if (!protected_fault_page_.IsValid()) { LOG(WARNING) << "Could not reserve sentinel fault page"; } else if (reinterpret_cast(protected_fault_page_.Begin()) != sentinel_addr) { LOG(WARNING) << "Could not reserve sentinel fault page at the right address."; protected_fault_page_.Reset(); } } VLOG(startup) << "Runtime::Init -verbose:startup enabled"; QuasiAtomic::Startup(); oat_file_manager_ = new OatFileManager(); jni_id_manager_.reset(new jni::JniIdManager()); Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread)); Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold), runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold)); image_locations_ = runtime_options.ReleaseOrDefault(Opt::Image); SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet)); boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath); boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations); DCHECK(boot_class_path_locations_.empty() || boot_class_path_locations_.size() == boot_class_path_.size()); if (boot_class_path_.empty()) { LOG(ERROR) << "Boot classpath is empty"; return false; } boot_class_path_files_ = FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathFds)); if (!boot_class_path_files_.empty() && boot_class_path_files_.size() != boot_class_path_.size()) { LOG(ERROR) << "Number of FDs specified in -Xbootclasspathfds must match the number of JARs in " << "-Xbootclasspath."; return false; } boot_class_path_image_files_ = FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathImageFds)); boot_class_path_vdex_files_ = FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathVdexFds)); boot_class_path_oat_files_ = FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathOatFds)); CHECK(boot_class_path_image_files_.empty() || boot_class_path_image_files_.size() == boot_class_path_.size()); CHECK(boot_class_path_vdex_files_.empty() || boot_class_path_vdex_files_.size() == boot_class_path_.size()); CHECK(boot_class_path_oat_files_.empty() || boot_class_path_oat_files_.size() == boot_class_path_.size()); class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath); properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList); compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr); must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate); is_zygote_ = runtime_options.Exists(Opt::Zygote); is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote); is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC); is_eagerly_release_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableEagerlyReleaseExplicitGC); image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat); dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit); allow_in_memory_compilation_ = runtime_options.Exists(Opt::AllowInMemoryCompilation); if (is_zygote_ || runtime_options.Exists(Opt::OnlyUseTrustedOatFiles)) { oat_file_manager_->SetOnlyUseTrustedOatFiles(); } vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf); exit_ = runtime_options.GetOrDefault(Opt::HookExit); abort_ = runtime_options.GetOrDefault(Opt::HookAbort); default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize); compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler); compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions); for (const std::string& option : Runtime::Current()->GetCompilerOptions()) { if (option == "--debuggable") { SetRuntimeDebugState(RuntimeDebugState::kJavaDebuggableAtInit); break; } } image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions); finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs); max_spins_before_thin_lock_inflation_ = runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation); monitor_list_ = new MonitorList; monitor_pool_ = MonitorPool::Create(); thread_list_ = new ThreadList(GetThreadSuspendTimeout(&runtime_options)); intern_table_ = new InternTable; monitor_timeout_enable_ = runtime_options.GetOrDefault(Opt::MonitorTimeoutEnable); int monitor_timeout_ms = runtime_options.GetOrDefault(Opt::MonitorTimeout); if (monitor_timeout_ms < Monitor::kMonitorTimeoutMinMs) { LOG(WARNING) << "Monitor timeout too short: Increasing"; monitor_timeout_ms = Monitor::kMonitorTimeoutMinMs; } if (monitor_timeout_ms >= Monitor::kMonitorTimeoutMaxMs) { LOG(WARNING) << "Monitor timeout too long: Decreasing"; monitor_timeout_ms = Monitor::kMonitorTimeoutMaxMs - 1; } monitor_timeout_ns_ = MsToNs(monitor_timeout_ms); verify_ = runtime_options.GetOrDefault(Opt::Verify); target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion); // Set hidden API enforcement policy. The checks are disabled by default and // we only enable them if: // (a) runtime was started with a command line flag that enables the checks, or // (b) Zygote forked a new process that is not exempt (see ZygoteHooks). hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy); DCHECK_IMPLIES(is_zygote_, hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled); // Set core platform API enforcement policy. The checks are disabled by default and // can be enabled with a command line flag. AndroidRuntime will pass the flag if // a system property is set. core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy); if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) { LOG(INFO) << "Core platform API reporting enabled, enforcing=" << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false"); } // Dex2Oat's Runtime does not need the signal chain or the fault handler // and it passes the `NoSigChain` option to `Runtime` to indicate this. no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain); force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge); Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_); fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint); if (runtime_options.GetOrDefault(Opt::Interpret)) { GetInstrumentation()->ForceInterpretOnly(); } zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots); experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental); is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode); madvise_willneed_total_dex_size_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedVdexFileSize); madvise_willneed_odex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedOdexFileSize); madvise_willneed_art_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedArtFileSize); jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds); automatically_set_jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds); plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins); agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath); // TODO Add back in -agentlib // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) { // agents_.push_back(lib); // } float foreground_heap_growth_multiplier; if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) { // If low memory mode, use 1.0 as the multiplier by default. foreground_heap_growth_multiplier = 1.0f; } else { // Extra added to the default heap growth multiplier for concurrent GC // compaction algorithms. This is done for historical reasons. // TODO: remove when we revisit heap configurations. foreground_heap_growth_multiplier = runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) + 1.0f; } XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption); // Generational CC collection is currently only compatible with Baker read barriers. bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc; // Cache the apex versions. InitializeApexVersions(); BackgroundGcOption background_gc = gUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground) : (gUseUserfaultfd ? BackgroundGcOption(gc::kCollectorTypeCMCBackground) : runtime_options.GetOrDefault(Opt::BackgroundGc)); heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize), runtime_options.GetOrDefault(Opt::HeapGrowthLimit), runtime_options.GetOrDefault(Opt::HeapMinFree), runtime_options.GetOrDefault(Opt::HeapMaxFree), runtime_options.GetOrDefault(Opt::HeapTargetUtilization), foreground_heap_growth_multiplier, runtime_options.GetOrDefault(Opt::StopForNativeAllocs), runtime_options.GetOrDefault(Opt::MemoryMaximumSize), runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity), GetBootClassPath(), GetBootClassPathLocations(), GetBootClassPathFiles(), GetBootClassPathImageFiles(), GetBootClassPathVdexFiles(), GetBootClassPathOatFiles(), image_locations_, instruction_set_, // Override the collector type to CC if the read barrier config. gUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_, background_gc, runtime_options.GetOrDefault(Opt::LargeObjectSpace), runtime_options.GetOrDefault(Opt::LargeObjectThreshold), runtime_options.GetOrDefault(Opt::ParallelGCThreads), runtime_options.GetOrDefault(Opt::ConcGCThreads), runtime_options.Exists(Opt::LowMemoryMode), runtime_options.GetOrDefault(Opt::LongPauseLogThreshold), runtime_options.GetOrDefault(Opt::LongGCLogThreshold), runtime_options.Exists(Opt::IgnoreMaxFootprint), runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs), runtime_options.GetOrDefault(Opt::UseTLAB), xgc_option.verify_pre_gc_heap_, xgc_option.verify_pre_sweeping_heap_, xgc_option.verify_post_gc_heap_, xgc_option.verify_pre_gc_rosalloc_, xgc_option.verify_pre_sweeping_rosalloc_, xgc_option.verify_post_gc_rosalloc_, xgc_option.gcstress_, xgc_option.measure_, runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM), use_generational_cc, runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs), runtime_options.Exists(Opt::DumpRegionInfoBeforeGC), runtime_options.Exists(Opt::DumpRegionInfoAfterGC)); dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown); bool has_explicit_jdwp_options = runtime_options.Get(Opt::JdwpOptions) != nullptr; jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions); jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider), IsJavaDebuggable()); switch (jdwp_provider_) { case JdwpProvider::kNone: { VLOG(jdwp) << "Disabling all JDWP support."; if (!jdwp_options_.empty()) { bool has_transport = jdwp_options_.find("transport") != std::string::npos; std::string adb_connection_args = std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_; if (has_explicit_jdwp_options) { LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable " << "jdwp with one of:" << std::endl << " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so " << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl << (has_transport ? "" : adb_connection_args); } } break; } case JdwpProvider::kAdbConnection: { constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so" : "libadbconnection.so"; plugins_.push_back(Plugin::Create(plugin_name)); break; } case JdwpProvider::kUnset: { LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!"; } } callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback()); jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options)); if (IsAotCompiler()) { // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in // this case. // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns // null and we don't create the jit. jit_options_->SetUseJitCompilation(false); jit_options_->SetSaveProfilingInfo(false); } // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but // can't be trimmed as easily. const bool use_malloc = IsAotCompiler(); if (use_malloc) { arena_pool_.reset(new MallocArenaPool()); jit_arena_pool_.reset(new MallocArenaPool()); } else { arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false)); jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata")); } // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold // when we have 64 bit ArtMethod pointers. const bool low_4gb = IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA); if (gUseUserfaultfd) { linear_alloc_arena_pool_.reset(new GcVisitedArenaPool(low_4gb, IsZygote())); } else if (low_4gb) { linear_alloc_arena_pool_.reset(new MemMapArenaPool(low_4gb)); } linear_alloc_.reset(CreateLinearAlloc()); startup_linear_alloc_.store(CreateLinearAlloc(), std::memory_order_relaxed); small_lrt_allocator_ = new jni::SmallLrtAllocator(); BlockSignals(); InitPlatformSignalHandlers(); // Change the implicit checks flags based on runtime architecture. switch (kRuntimeISA) { case InstructionSet::kArm64: implicit_suspend_checks_ = true; FALLTHROUGH_INTENDED; case InstructionSet::kArm: case InstructionSet::kThumb2: case InstructionSet::kRiscv64: case InstructionSet::kX86: case InstructionSet::kX86_64: implicit_null_checks_ = true; // Historical note: Installing stack protection was not playing well with Valgrind. implicit_so_checks_ = true; break; default: // Keep the defaults. break; } fault_manager.Init(!no_sig_chain_); if (!no_sig_chain_) { if (HandlesSignalsInCompiledCode()) { // These need to be in a specific order. The null point check handler must be // after the suspend check and stack overflow check handlers. // // Note: the instances attach themselves to the fault manager and are handled by it. The // manager will delete the instance on Shutdown(). if (implicit_suspend_checks_) { new SuspensionHandler(&fault_manager); } if (implicit_so_checks_) { new StackOverflowHandler(&fault_manager); } if (implicit_null_checks_) { new NullPointerHandler(&fault_manager); } if (kEnableJavaStackTraceHandler) { new JavaStackTraceHandler(&fault_manager); } if (interpreter::CanRuntimeUseNterp()) { // Nterp code can use signal handling just like the compiled managed code. OatQuickMethodHeader* nterp_header = OatQuickMethodHeader::NterpMethodHeader; fault_manager.AddGeneratedCodeRange(nterp_header->GetCode(), nterp_header->GetCodeSize()); } } } verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold); std::string error_msg; java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg); if (java_vm_.get() == nullptr) { LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg; return false; } // Add the JniEnv handler. // TODO Refactor this stuff. java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler); Thread::Startup(); // ClassLinker needs an attached thread, but we can't fully attach a thread without creating // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main // thread, we do not get a java peer. Thread* self = Thread::Attach("main", false, nullptr, false, /* should_run_callbacks= */ true); CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId); CHECK(self != nullptr); self->SetIsRuntimeThread(IsAotCompiler()); // Set us to runnable so tools using a runtime can allocate and GC by default self->TransitionFromSuspendedToRunnable(); // Now we're attached, we can take the heap locks and validate the heap. GetHeap()->EnableObjectValidation(); CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U); if (UNLIKELY(IsAotCompiler())) { class_linker_ = new AotClassLinker(intern_table_); } else { class_linker_ = new ClassLinker( intern_table_, runtime_options.GetOrDefault(Opt::FastClassNotFoundException)); } if (GetHeap()->HasBootImageSpace()) { bool result = class_linker_->InitFromBootImage(&error_msg); if (!result) { LOG(ERROR) << "Could not initialize from image: " << error_msg; return false; } if (kIsDebugBuild) { for (auto image_space : GetHeap()->GetBootImageSpaces()) { image_space->VerifyImageAllocations(); } } { ScopedTrace trace2("AddImageStringsToTable"); for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) { GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor()); } } const size_t total_components = gc::space::ImageSpace::GetNumberOfComponents( ArrayRef(heap_->GetBootImageSpaces())); if (total_components != GetBootClassPath().size()) { // The boot image did not contain all boot class path components. Load the rest. CHECK_LT(total_components, GetBootClassPath().size()); size_t start = total_components; DCHECK_LT(start, GetBootClassPath().size()); std::vector> extra_boot_class_path; if (runtime_options.Exists(Opt::BootClassPathDexList)) { extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList)); } else { ArrayRef bcp_files = start < GetBootClassPathFiles().size() ? ArrayRef(GetBootClassPathFiles()).SubArray(start) : ArrayRef(); OpenBootDexFiles(ArrayRef(GetBootClassPath()).SubArray(start), ArrayRef(GetBootClassPathLocations()).SubArray(start), bcp_files, &extra_boot_class_path); } class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path)); } if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) { // Deoptimize the boot image if debuggable as the code may have been compiled non-debuggable. // Also deoptimize if we are profiling the boot class path. ScopedThreadSuspension sts(self, ThreadState::kNative); ScopedSuspendAll ssa(__FUNCTION__); DeoptimizeBootImage(); } } else { std::vector> boot_class_path; if (runtime_options.Exists(Opt::BootClassPathDexList)) { boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList)); } else { OpenBootDexFiles(ArrayRef(GetBootClassPath()), ArrayRef(GetBootClassPathLocations()), ArrayRef(GetBootClassPathFiles()), &boot_class_path); } if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) { LOG(ERROR) << "Could not initialize without image: " << error_msg; return false; } // TODO: Should we move the following to InitWithoutImage? SetInstructionSet(instruction_set_); for (uint32_t i = 0; i < kCalleeSaveSize; i++) { CalleeSaveType type = CalleeSaveType(i); if (!HasCalleeSaveMethod(type)) { SetCalleeSaveMethod(CreateCalleeSaveMethod(), type); } } } // Now that the boot image space is set, cache the boot classpath checksums, // to be used when validating oat files. ArrayRef image_spaces(GetHeap()->GetBootImageSpaces()); ArrayRef bcp_dex_files(GetClassLinker()->GetBootClassPath()); boot_class_path_checksums_ = gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces, bcp_dex_files); CHECK(class_linker_ != nullptr); if (runtime_options.Exists(Opt::MethodTrace)) { trace_config_.reset(new TraceConfig()); trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile); trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize); trace_config_->trace_mode = Trace::TraceMode::kMethodTracing; trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ? TraceOutputMode::kStreaming : TraceOutputMode::kFile; trace_config_->clock_source = runtime_options.GetOrDefault(Opt::MethodTraceClock); } // TODO: Remove this in a follow up CL. This isn't used anywhere. Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock)); if (GetHeap()->HasBootImageSpace()) { const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader(); ObjPtr> boot_image_live_objects = ObjPtr>::DownCast( image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects)); pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot( boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable()); DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass() ->DescriptorEquals("Ljava/lang/OutOfMemoryError;")); pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot( boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable()); DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass() ->DescriptorEquals("Ljava/lang/OutOfMemoryError;")); pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot( boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable()); DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass() ->DescriptorEquals("Ljava/lang/OutOfMemoryError;")); pre_allocated_NoClassDefFoundError_ = GcRoot( boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable()); DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass() ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;")); } else { // Pre-allocate an OutOfMemoryError for the case when we fail to // allocate the exception to be thrown. CreatePreAllocatedException(self, this, &pre_allocated_OutOfMemoryError_when_throwing_exception_, "Ljava/lang/OutOfMemoryError;", "OutOfMemoryError thrown while trying to throw an exception; " "no stack trace available"); // Pre-allocate an OutOfMemoryError for the double-OOME case. CreatePreAllocatedException(self, this, &pre_allocated_OutOfMemoryError_when_throwing_oome_, "Ljava/lang/OutOfMemoryError;", "OutOfMemoryError thrown while trying to throw OutOfMemoryError; " "no stack trace available"); // Pre-allocate an OutOfMemoryError for the case when we fail to // allocate while handling a stack overflow. CreatePreAllocatedException(self, this, &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, "Ljava/lang/OutOfMemoryError;", "OutOfMemoryError thrown while trying to handle a stack overflow; " "no stack trace available"); // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class // ahead of checking the application's class loader. CreatePreAllocatedException(self, this, &pre_allocated_NoClassDefFoundError_, "Ljava/lang/NoClassDefFoundError;", "Class not found using the boot class loader; " "no stack trace available"); } // Class-roots are setup, we can now finish initializing the JniIdManager. GetJniIdManager()->Init(self); InitMetrics(); // Runtime initialization is largely done now. // We load plugins first since that can modify the runtime state slightly. // Load all plugins { // The init method of plugins expect the state of the thread to be non runnable. ScopedThreadSuspension sts(self, ThreadState::kNative); for (auto& plugin : plugins_) { std::string err; if (!plugin.Load(&err)) { LOG(FATAL) << plugin << " failed to load: " << err; } } } // Look for a native bridge. // // The intended flow here is, in the case of a running system: // // Runtime::Init() (zygote): // LoadNativeBridge -> dlopen from cmd line parameter. // | // V // Runtime::Start() (zygote): // No-op wrt native bridge. // | // | start app // V // DidForkFromZygote(action) // action = kUnload -> dlclose native bridge. // action = kInitialize -> initialize library // // // The intended flow here is, in the case of a simple dalvikvm call: // // Runtime::Init(): // LoadNativeBridge -> dlopen from cmd line parameter. // | // V // Runtime::Start(): // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given. // No-op wrt native bridge. { std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge); is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name); } // Startup agents // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more. for (auto& agent_spec : agent_specs_) { // TODO Check err int res = 0; std::string err = ""; ti::LoadError error; std::unique_ptr agent = agent_spec.Load(&res, &error, &err); if (agent != nullptr) { agents_.push_back(std::move(agent)); continue; } switch (error) { case ti::LoadError::kInitializationError: LOG(FATAL) << "Unable to initialize agent!"; UNREACHABLE(); case ti::LoadError::kLoadingError: LOG(ERROR) << "Unable to load an agent: " << err; continue; case ti::LoadError::kNoError: break; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } { ScopedObjectAccess soa(self); callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents); } if (IsZygote() && IsPerfettoHprofEnabled()) { constexpr const char* plugin_name = kIsDebugBuild ? "libperfetto_hprofd.so" : "libperfetto_hprof.so"; // Load eagerly in Zygote to improve app startup times. This will make // subsequent dlopens for the library no-ops. dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL); } VLOG(startup) << "Runtime::Init exiting"; return true; } void Runtime::InitMetrics() { metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags(); metrics_reporter_ = metrics::MetricsReporter::Create(metrics_config, this); } void Runtime::RequestMetricsReport(bool synchronous) { if (metrics_reporter_) { metrics_reporter_->RequestMetricsReport(synchronous); } } bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) { // Is the plugin already loaded? for (const Plugin& p : plugins_) { if (p.GetLibrary() == plugin_name) { return true; } } Plugin new_plugin = Plugin::Create(plugin_name); if (!new_plugin.Load(error_msg)) { return false; } plugins_.push_back(std::move(new_plugin)); return true; } bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) { constexpr const char* plugin_name = kIsDebugBuild ? "libperfetto_hprofd.so" : "libperfetto_hprof.so"; return EnsurePluginLoaded(plugin_name, error_msg); } static bool EnsureJvmtiPlugin(Runtime* runtime, std::string* error_msg) { // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed. DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable()) << "Being debuggable requires that jdwp (i.e. debugging) is allowed."; // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are // specifically allowed. if (!Dbg::IsJdwpAllowed()) { *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable"; return false; } constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so"; return runtime->EnsurePluginLoaded(plugin_name, error_msg); } // Attach a new agent and add it to the list of runtime agents // // TODO: once we decide on the threading model for agents, // revisit this and make sure we're doing this on the right thread // (and we synchronize access to any shared data structures like "agents_") // void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) { std::string error_msg; if (!EnsureJvmtiPlugin(this, &error_msg)) { LOG(WARNING) << "Could not load plugin: " << error_msg; ScopedObjectAccess soa(Thread::Current()); ThrowIOException("%s", error_msg.c_str()); return; } ti::AgentSpec agent_spec(agent_arg); int res = 0; ti::LoadError error; std::unique_ptr agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg); if (agent != nullptr) { agents_.push_back(std::move(agent)); } else { LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg; ScopedObjectAccess soa(Thread::Current()); ThrowIOException("%s", error_msg.c_str()); } } void Runtime::InitNativeMethods() { VLOG(startup) << "Runtime::InitNativeMethods entering"; Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); // Must be in the kNative state for calling native methods (JNI_OnLoad code). CHECK_EQ(self->GetState(), ThreadState::kNative); // Then set up libjavacore / libopenjdk / libicu_jni ,which are just // a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can // just use System.loadLibrary, but libcore can't because it's the library // that implements System.loadLibrary! // // By setting calling class to java.lang.Object, the caller location for these // JNI libs is core-oj.jar in the ART APEX, and hence they are loaded from the // com_android_art linker namespace. jclass java_lang_Object; { // Use global JNI reference to keep the local references empty. If we allocated a // local reference here, the `PushLocalFrame(128)` that these internal libraries do // in their `JNI_OnLoad()` would reserve a lot of unnecessary space due to rounding. ScopedObjectAccess soa(self); java_lang_Object = reinterpret_cast( GetJavaVM()->AddGlobalRef(self, GetClassRoot(GetClassLinker()))); } // libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from // libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405 { std::string error_msg; if (!java_vm_->LoadNativeLibrary( env, "libicu_jni.so", nullptr, java_lang_Object, &error_msg)) { LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg; } } { std::string error_msg; if (!java_vm_->LoadNativeLibrary( env, "libjavacore.so", nullptr, java_lang_Object, &error_msg)) { LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg; } } { constexpr const char* kOpenJdkLibrary = kIsDebugBuild ? "libopenjdkd.so" : "libopenjdk.so"; std::string error_msg; if (!java_vm_->LoadNativeLibrary( env, kOpenJdkLibrary, nullptr, java_lang_Object, &error_msg)) { LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg; } } env->DeleteGlobalRef(java_lang_Object); // Initialize well known classes that may invoke runtime native methods. WellKnownClasses::LateInit(env); VLOG(startup) << "Runtime::InitNativeMethods exiting"; } void Runtime::ReclaimArenaPoolMemory() { arena_pool_->LockReclaimMemory(); } void Runtime::InitThreadGroups(Thread* self) { ScopedObjectAccess soa(self); ArtField* main_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup; ArtField* system_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup; // Note: This is running before `ClassLinker::RunRootClinits()`, so we cannot rely on // `ThreadGroup` and `Thread` being initialized. // TODO: Clean up initialization order after all well-known methods are converted to `ArtMethod*` // (and therefore the `WellKnownClasses::Init()` shall not initialize any classes). StackHandleScope<2u> hs(self); Handle thread_group_class = hs.NewHandle(main_thread_group_field->GetDeclaringClass()); bool initialized = GetClassLinker()->EnsureInitialized( self, thread_group_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true); CHECK(initialized); Handle thread_class = hs.NewHandle(WellKnownClasses::java_lang_Thread.Get()); initialized = GetClassLinker()->EnsureInitialized( self, thread_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true); CHECK(initialized); main_thread_group_ = soa.Vm()->AddGlobalRef(self, main_thread_group_field->GetObject(thread_group_class.Get())); CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler()); system_thread_group_ = soa.Vm()->AddGlobalRef(self, system_thread_group_field->GetObject(thread_group_class.Get())); CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler()); } jobject Runtime::GetMainThreadGroup() const { CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler()); return main_thread_group_; } jobject Runtime::GetSystemThreadGroup() const { CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler()); return system_thread_group_; } jobject Runtime::GetSystemClassLoader() const { CHECK_IMPLIES(system_class_loader_ == nullptr, IsAotCompiler()); return system_class_loader_; } void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) { register_dalvik_system_DexFile(env); register_dalvik_system_BaseDexClassLoader(env); register_dalvik_system_VMDebug(env); real_register_dalvik_system_VMRuntime(env); register_dalvik_system_VMStack(env); register_dalvik_system_ZygoteHooks(env); register_java_lang_Class(env); register_java_lang_Object(env); register_java_lang_invoke_MethodHandle(env); register_java_lang_invoke_MethodHandleImpl(env); register_java_lang_ref_FinalizerReference(env); register_java_lang_reflect_Array(env); register_java_lang_reflect_Constructor(env); register_java_lang_reflect_Executable(env); register_java_lang_reflect_Field(env); register_java_lang_reflect_Method(env); register_java_lang_reflect_Parameter(env); register_java_lang_reflect_Proxy(env); register_java_lang_ref_Reference(env); register_java_lang_StackStreamFactory(env); register_java_lang_String(env); register_java_lang_StringFactory(env); register_java_lang_System(env); register_java_lang_Thread(env); register_java_lang_Throwable(env); register_java_lang_VMClassLoader(env); register_java_util_concurrent_atomic_AtomicLong(env); register_jdk_internal_misc_Unsafe(env); register_libcore_io_Memory(env); register_libcore_util_CharsetUtils(env); register_org_apache_harmony_dalvik_ddmc_DdmServer(env); register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env); register_sun_misc_Unsafe(env); } std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) { os << GetDeoptimizationKindName(kind); return os; } void Runtime::DumpDeoptimizations(std::ostream& os) { for (size_t i = 0; i <= static_cast(DeoptimizationKind::kLast); ++i) { if (deoptimization_counts_[i] != 0) { os << "Number of " << GetDeoptimizationKindName(static_cast(i)) << " deoptimizations: " << deoptimization_counts_[i] << "\n"; } } } std::optional Runtime::SiqQuitNanoTime() const { return signal_catcher_ != nullptr ? signal_catcher_->SiqQuitNanoTime() : std::nullopt; } void Runtime::DumpForSigQuit(std::ostream& os) { // Print backtraces first since they are important do diagnose ANRs, // and ANRs can often be trimmed to limit upload size. thread_list_->DumpForSigQuit(os); GetClassLinker()->DumpForSigQuit(os); GetInternTable()->DumpForSigQuit(os); GetJavaVM()->DumpForSigQuit(os); GetHeap()->DumpForSigQuit(os); oat_file_manager_->DumpForSigQuit(os); if (GetJit() != nullptr) { GetJit()->DumpForSigQuit(os); } else { os << "Running non JIT\n"; } DumpDeoptimizations(os); TrackedAllocators::Dump(os); GetMetrics()->DumpForSigQuit(os); os << "\n"; BaseMutex::DumpAll(os); // Inform anyone else who is interested in SigQuit. { ScopedObjectAccess soa(Thread::Current()); callbacks_->SigQuit(); } } void Runtime::DumpLockHolders(std::ostream& os) { pid_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid(); pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner(); pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner(); pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner(); if ((mutator_lock_owner | thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) { os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n" << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n" << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n" << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n"; } } void Runtime::SetStatsEnabled(bool new_state) { Thread* self = Thread::Current(); MutexLock mu(self, *Locks::instrument_entrypoints_lock_); if (new_state == true) { GetStats()->Clear(~0); // TODO: wouldn't it make more sense to clear _all_ threads' stats? self->GetStats()->Clear(~0); if (stats_enabled_ != new_state) { GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked(); } } else if (stats_enabled_ != new_state) { GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked(); } stats_enabled_ = new_state; } void Runtime::ResetStats(int kinds) { GetStats()->Clear(kinds & 0xffff); // TODO: wouldn't it make more sense to clear _all_ threads' stats? Thread::Current()->GetStats()->Clear(kinds >> 16); } uint64_t Runtime::GetStat(int kind) { RuntimeStats* stats; if (kind < (1<<16)) { stats = GetStats(); } else { stats = Thread::Current()->GetStats(); kind >>= 16; } switch (kind) { case KIND_ALLOCATED_OBJECTS: return stats->allocated_objects; case KIND_ALLOCATED_BYTES: return stats->allocated_bytes; case KIND_FREED_OBJECTS: return stats->freed_objects; case KIND_FREED_BYTES: return stats->freed_bytes; case KIND_GC_INVOCATIONS: return stats->gc_for_alloc_count; case KIND_CLASS_INIT_COUNT: return stats->class_init_count; case KIND_CLASS_INIT_TIME: return stats->class_init_time_ns; case KIND_EXT_ALLOCATED_OBJECTS: case KIND_EXT_ALLOCATED_BYTES: case KIND_EXT_FREED_OBJECTS: case KIND_EXT_FREED_BYTES: return 0; // backward compatibility default: LOG(FATAL) << "Unknown statistic " << kind; UNREACHABLE(); } } void Runtime::BlockSignals() { SignalSet signals; signals.Add(SIGPIPE); // SIGQUIT is used to dump the runtime's state (including stack traces). signals.Add(SIGQUIT); // SIGUSR1 is used to initiate a GC. signals.Add(SIGUSR1); signals.Block(); } bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group, bool create_peer, bool should_run_callbacks) { ScopedTrace trace(__FUNCTION__); Thread* self = Thread::Attach(thread_name, as_daemon, thread_group, create_peer, should_run_callbacks); // Run ThreadGroup.add to notify the group that this thread is now started. if (self != nullptr && create_peer && !IsAotCompiler()) { ScopedObjectAccess soa(self); self->NotifyThreadGroup(soa, thread_group); } return self != nullptr; } void Runtime::DetachCurrentThread(bool should_run_callbacks) { ScopedTrace trace(__FUNCTION__); Thread* self = Thread::Current(); if (self == nullptr) { LOG(FATAL) << "attempting to detach thread that is not attached"; } if (self->HasManagedStack()) { LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code"; } thread_list_->Unregister(self, should_run_callbacks); } mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() { mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read(); if (oome == nullptr) { LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception"; } return oome; } mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() { mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read(); if (oome == nullptr) { LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME"; } return oome; } mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() { mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read(); if (oome == nullptr) { LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow"; } return oome; } mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() { mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read(); if (ncdfe == nullptr) { LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError"; } return ncdfe; } void Runtime::VisitConstantRoots(RootVisitor* visitor) { // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are // null. BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal)); const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize(); if (HasResolutionMethod()) { resolution_method_->VisitRoots(buffered_visitor, pointer_size); } if (HasImtConflictMethod()) { imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size); } if (imt_unimplemented_method_ != nullptr) { imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size); } for (uint32_t i = 0; i < kCalleeSaveSize; ++i) { auto* m = reinterpret_cast(callee_save_methods_[i]); if (m != nullptr) { m->VisitRoots(buffered_visitor, pointer_size); } } } void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) { // Userfaultfd compaction updates intern-tables and class-tables page-by-page // via LinearAlloc. So don't visit them here. if (GetHeap()->IsPerformingUffdCompaction()) { class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/false); } else { intern_table_->VisitRoots(visitor, flags); class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/true); } jni_id_manager_->VisitRoots(visitor); heap_->VisitAllocationRecords(visitor); if (jit_ != nullptr) { jit_->VisitRoots(visitor); } if ((flags & kVisitRootFlagNewRoots) == 0) { // Guaranteed to have no new roots in the constant roots. VisitConstantRoots(visitor); } } void Runtime::VisitNonThreadRoots(RootVisitor* visitor) { java_vm_->VisitRoots(visitor); sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); pre_allocated_OutOfMemoryError_when_throwing_exception_ .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); pre_allocated_OutOfMemoryError_when_throwing_oome_ .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); VisitImageRoots(visitor); class_linker_->VisitTransactionRoots(visitor); } void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) { VisitThreadRoots(visitor, flags); VisitNonThreadRoots(visitor); } void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) { thread_list_->VisitRoots(visitor, flags); } void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { VisitNonConcurrentRoots(visitor, flags); VisitConcurrentRoots(visitor, flags); } void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) { thread_list_->VisitReflectiveTargets(visitor); heap_->VisitReflectiveTargets(visitor); jni_id_manager_->VisitReflectiveTargets(visitor); callbacks_->VisitReflectiveTargets(visitor); } void Runtime::VisitImageRoots(RootVisitor* visitor) { // We only confirm that image roots are unchanged. if (kIsDebugBuild) { for (auto* space : GetHeap()->GetContinuousSpaces()) { if (space->IsImageSpace()) { auto* image_space = space->AsImageSpace(); const auto& image_header = image_space->GetImageHeader(); for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) { mirror::Object* obj = image_header.GetImageRoot(static_cast(i)).Ptr(); if (obj != nullptr) { mirror::Object* after_obj = obj; visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass)); CHECK_EQ(after_obj, obj); } } } } } } static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) REQUIRES_SHARED(Locks::mutator_lock_) { const PointerSize image_pointer_size = class_linker->GetImagePointerSize(); const size_t method_alignment = ArtMethod::Alignment(image_pointer_size); const size_t method_size = ArtMethod::Size(image_pointer_size); LengthPrefixedArray* method_array = class_linker->AllocArtMethodArray( Thread::Current(), linear_alloc, 1); ArtMethod* method = &method_array->At(0, method_size, method_alignment); CHECK(method != nullptr); method->SetDexMethodIndex(dex::kDexNoIndex); CHECK(method->IsRuntimeMethod()); return method; } ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) { ClassLinker* const class_linker = GetClassLinker(); ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc); // When compiling, the code pointer will get set later when the image is loaded. const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); if (IsAotCompiler()) { method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); } else { method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub()); } // Create empty conflict table. method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc), pointer_size); return method; } void Runtime::SetImtConflictMethod(ArtMethod* method) { CHECK(method != nullptr); CHECK(method->IsRuntimeMethod()); imt_conflict_method_ = method; } ArtMethod* Runtime::CreateResolutionMethod() { auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc()); // When compiling, the code pointer will get set later when the image is loaded. if (IsAotCompiler()) { PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); method->SetEntryPointFromJniPtrSize(nullptr, pointer_size); } else { method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub()); } return method; } ArtMethod* Runtime::CreateCalleeSaveMethod() { auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc()); PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); DCHECK_NE(instruction_set_, InstructionSet::kNone); DCHECK(method->IsRuntimeMethod()); return method; } void Runtime::DisallowNewSystemWeaks() { CHECK(!gUseReadBarrier); monitor_list_->DisallowNewMonitors(); intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites); java_vm_->DisallowNewWeakGlobals(); heap_->DisallowNewAllocationRecords(); if (GetJit() != nullptr) { GetJit()->GetCodeCache()->DisallowInlineCacheAccess(); } // All other generic system-weak holders. for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { holder->Disallow(); } } void Runtime::AllowNewSystemWeaks() { CHECK(!gUseReadBarrier); monitor_list_->AllowNewMonitors(); intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping. java_vm_->AllowNewWeakGlobals(); heap_->AllowNewAllocationRecords(); if (GetJit() != nullptr) { GetJit()->GetCodeCache()->AllowInlineCacheAccess(); } // All other generic system-weak holders. for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { holder->Allow(); } } void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) { // This is used for the read barrier case that uses the thread-local // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled // (see ThreadList::RunCheckpoint). monitor_list_->BroadcastForNewMonitors(); intern_table_->BroadcastForNewInterns(); java_vm_->BroadcastForNewWeakGlobals(); heap_->BroadcastForNewAllocationRecords(); if (GetJit() != nullptr) { GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess(); } // All other generic system-weak holders. for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { holder->Broadcast(broadcast_for_checkpoint); } } void Runtime::SetInstructionSet(InstructionSet instruction_set) { instruction_set_ = instruction_set; switch (instruction_set) { case InstructionSet::kThumb2: // kThumb2 is the same as kArm, use the canonical value. instruction_set_ = InstructionSet::kArm; break; case InstructionSet::kArm: case InstructionSet::kArm64: case InstructionSet::kRiscv64: case InstructionSet::kX86: case InstructionSet::kX86_64: break; default: UNIMPLEMENTED(FATAL) << instruction_set_; UNREACHABLE(); } } void Runtime::ClearInstructionSet() { instruction_set_ = InstructionSet::kNone; } void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) { DCHECK_LT(static_cast(type), kCalleeSaveSize); CHECK(method != nullptr); callee_save_methods_[static_cast(type)] = reinterpret_cast(method); } void Runtime::ClearCalleeSaveMethods() { for (size_t i = 0; i < kCalleeSaveSize; ++i) { callee_save_methods_[i] = reinterpret_cast(nullptr); } } void Runtime::RegisterAppInfo(const std::string& package_name, const std::vector& code_paths, const std::string& profile_output_filename, const std::string& ref_profile_filename, int32_t code_type) { app_info_.RegisterAppInfo( package_name, code_paths, profile_output_filename, ref_profile_filename, AppInfo::FromVMRuntimeConstants(code_type)); if (metrics_reporter_ != nullptr) { metrics_reporter_->NotifyAppInfoUpdated(&app_info_); } if (jit_.get() == nullptr) { // We are not JITing. Nothing to do. return; } VLOG(profiler) << "Register app with " << profile_output_filename << " " << android::base::Join(code_paths, ':'); VLOG(profiler) << "Reference profile is: " << ref_profile_filename; if (profile_output_filename.empty()) { LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty."; return; } if (code_paths.empty()) { LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty."; return; } // Framework calls this method for all split APKs. Ignore the calls for the ones with no dex code // so that we don't unnecessarily create profiles for them or write bootclasspath profiling info // to those profiles. bool has_code = false; for (const std::string& path : code_paths) { std::string error_msg; std::optional checksum; std::vector dex_locations; DexFileLoader loader(path); if (!loader.GetMultiDexChecksum(&checksum, &error_msg)) { LOG(WARNING) << error_msg; continue; } if (checksum.has_value()) { has_code = true; break; } } if (!has_code) { VLOG(profiler) << ART_FORMAT( "JIT profile information will not be recorded: no dex code in '{}'.", android::base::Join(code_paths, ',')); return; } jit_->StartProfileSaver(profile_output_filename, code_paths, ref_profile_filename); } void Runtime::SetFaultMessage(const std::string& message) { std::string* new_msg = new std::string(message); std::string* cur_msg = fault_message_.exchange(new_msg); delete cur_msg; } std::string Runtime::GetFaultMessage() { // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete // the string in parallel. std::string* cur_msg = fault_message_.exchange(nullptr); // Make a copy of the string. std::string ret = cur_msg == nullptr ? "" : *cur_msg; // Put the message back if it hasn't been updated. std::string* null_str = nullptr; if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) { // Already replaced. delete cur_msg; } return ret; } void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector* argv) const { if (GetInstrumentation()->InterpretOnly()) { argv->push_back("--compiler-filter=verify"); } // Make the dex2oat instruction set match that of the launching runtime. If we have multiple // architecture support, dex2oat may be compiled as a different instruction-set than that // currently being executed. std::string instruction_set("--instruction-set="); instruction_set += GetInstructionSetString(kRuntimeISA); argv->push_back(instruction_set); if (InstructionSetFeatures::IsRuntimeDetectionSupported()) { argv->push_back("--instruction-set-features=runtime"); } else { std::unique_ptr features( InstructionSetFeatures::FromCppDefines()); std::string feature_string("--instruction-set-features="); feature_string += features->GetFeatureString(); argv->push_back(feature_string); } } void Runtime::CreateJit() { DCHECK(jit_code_cache_ == nullptr); DCHECK(jit_ == nullptr); if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) { DCHECK(!jit_options_->UseJitCompilation()); } if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) { return; } if (IsSafeMode()) { LOG(INFO) << "Not creating JIT because of SafeMode."; return; } std::string error_msg; bool profiling_only = !jit_options_->UseJitCompilation(); jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only, /*rwx_memory_allowed=*/ true, IsZygote(), &error_msg)); if (jit_code_cache_.get() == nullptr) { LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg; return; } jit_ = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get()); jit_->CreateThreadPool(); } bool Runtime::CanRelocate() const { return !IsAotCompiler(); } bool Runtime::IsCompilingBootImage() const { return IsCompiler() && compiler_callbacks_->IsBootImage(); } void Runtime::SetResolutionMethod(ArtMethod* method) { CHECK(method != nullptr); CHECK(method->IsRuntimeMethod()) << method; resolution_method_ = method; } void Runtime::SetImtUnimplementedMethod(ArtMethod* method) { CHECK(method != nullptr); CHECK(method->IsRuntimeMethod()); imt_unimplemented_method_ = method; } void Runtime::FixupConflictTables() { // We can only do this after the class linker is created. const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize(); if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) { imt_unimplemented_method_->SetImtConflictTable( ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size), pointer_size); } if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) { imt_conflict_method_->SetImtConflictTable( ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size), pointer_size); } } void Runtime::DisableVerifier() { verify_ = verifier::VerifyMode::kNone; } bool Runtime::IsVerificationEnabled() const { return verify_ == verifier::VerifyMode::kEnable || verify_ == verifier::VerifyMode::kSoftFail; } bool Runtime::IsVerificationSoftFail() const { return verify_ == verifier::VerifyMode::kSoftFail; } bool Runtime::IsAsyncDeoptimizeable(ArtMethod* method, uintptr_t code) const { if (OatQuickMethodHeader::NterpMethodHeader != nullptr) { if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) { return true; } } // We only support async deopt (ie the compiled code is not explicitly asking for // deopt, but something else like the debugger) in debuggable JIT code. // We could look at the oat file where `code` is being defined, // and check whether it's been compiled debuggable, but we decided to // only rely on the JIT for debuggable apps. // The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private // region as well. if (GetJit() != nullptr && GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast(code))) { // If the code is JITed code then check if it was compiled as debuggable. const OatQuickMethodHeader* header = method->GetOatQuickMethodHeader(code); return CodeInfo::IsDebuggable(header->GetOptimizedCodeInfoPtr()); } return false; } LinearAlloc* Runtime::CreateLinearAlloc() { ArenaPool* pool = linear_alloc_arena_pool_.get(); return pool != nullptr ? new LinearAlloc(pool, gUseUserfaultfd) : new LinearAlloc(arena_pool_.get(), /*track_allocs=*/ false); } class Runtime::SetupLinearAllocForZygoteFork : public AllocatorVisitor { public: explicit SetupLinearAllocForZygoteFork(Thread* self) : self_(self) {} bool Visit(LinearAlloc* alloc) override { alloc->SetupForPostZygoteFork(self_); return true; } private: Thread* self_; }; void Runtime::SetupLinearAllocForPostZygoteFork(Thread* self) { if (gUseUserfaultfd) { // Setup all the linear-allocs out there for post-zygote fork. This will // basically force the arena allocator to ask for a new arena for the next // allocation. All arenas allocated from now on will be in the userfaultfd // visited space. if (GetLinearAlloc() != nullptr) { GetLinearAlloc()->SetupForPostZygoteFork(self); } if (GetStartupLinearAlloc() != nullptr) { GetStartupLinearAlloc()->SetupForPostZygoteFork(self); } { Locks::mutator_lock_->AssertNotHeld(self); ReaderMutexLock mu2(self, *Locks::mutator_lock_); ReaderMutexLock mu3(self, *Locks::classlinker_classes_lock_); SetupLinearAllocForZygoteFork visitor(self); GetClassLinker()->VisitAllocators(&visitor); } static_cast(GetLinearAllocArenaPool())->SetupPostZygoteMode(); } } double Runtime::GetHashTableMinLoadFactor() const { return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor; } double Runtime::GetHashTableMaxLoadFactor() const { return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor; } void Runtime::UpdateProcessState(ProcessState process_state) { ProcessState old_process_state = process_state_; process_state_ = process_state; GetHeap()->UpdateProcessState(old_process_state, process_state); } void Runtime::RegisterSensitiveThread() const { Thread::SetJitSensitiveThread(); } // Returns true if JIT compilations are enabled. GetJit() will be not null in this case. bool Runtime::UseJitCompilation() const { return (jit_ != nullptr) && jit_->UseJitCompilation(); } void Runtime::EnvSnapshot::TakeSnapshot() { char** env = GetEnviron(); for (size_t i = 0; env[i] != nullptr; ++i) { name_value_pairs_.emplace_back(new std::string(env[i])); } // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers // for quick use by GetSnapshot. This avoids allocation and copying cost at Exec. c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]); for (size_t i = 0; env[i] != nullptr; ++i) { c_env_vector_[i] = const_cast(name_value_pairs_[i]->c_str()); } c_env_vector_[name_value_pairs_.size()] = nullptr; } char** Runtime::EnvSnapshot::GetSnapshot() const { return c_env_vector_.get(); } void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) { gc::ScopedGCCriticalSection gcs(Thread::Current(), gc::kGcCauseAddRemoveSystemWeakHolder, gc::kCollectorTypeAddRemoveSystemWeakHolder); // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in // a critical section. system_weak_holders_.push_back(holder); } void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) { gc::ScopedGCCriticalSection gcs(Thread::Current(), gc::kGcCauseAddRemoveSystemWeakHolder, gc::kCollectorTypeAddRemoveSystemWeakHolder); auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder); if (it != system_weak_holders_.end()) { system_weak_holders_.erase(it); } } RuntimeCallbacks* Runtime::GetRuntimeCallbacks() { return callbacks_.get(); } // Used to update boot image to not use AOT code. This is used when transitioning the runtime to // java debuggable. This visitor re-initializes the entry points without using AOT code. This also // disables shared hotness counters so the necessary methods can be JITed more efficiently. class DeoptimizeBootImageClassVisitor : public ClassVisitor { public: explicit DeoptimizeBootImageClassVisitor(instrumentation::Instrumentation* instrumentation) : instrumentation_(instrumentation) {} bool operator()(ObjPtr klass) override REQUIRES(Locks::mutator_lock_) { DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())); auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); for (auto& m : klass->GetMethods(pointer_size)) { const void* code = m.GetEntryPointFromQuickCompiledCode(); if (!m.IsInvokable()) { continue; } // For java debuggable runtimes we also deoptimize native methods. For other cases (boot // image profiling) we don't need to deoptimize native methods. If this changes also // update Instrumentation::CanUseAotCode. bool deoptimize_native_methods = Runtime::Current()->IsJavaDebuggable(); if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) && (!m.IsNative() || deoptimize_native_methods) && !m.IsProxyMethod()) { instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr); } if (Runtime::Current()->GetJit() != nullptr && Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) && (!m.IsNative() || deoptimize_native_methods)) { DCHECK(!m.IsProxyMethod()); instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr); } if (m.IsPreCompiled()) { // Precompilation is incompatible with debuggable, so clear the flag // and update the entrypoint in case it has been compiled. m.ClearPreCompiled(); instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr); } // Clear MemorySharedAccessFlags so the boot class methods can be JITed better. m.ClearMemorySharedMethod(); } return true; } private: instrumentation::Instrumentation* const instrumentation_; }; void Runtime::SetRuntimeDebugState(RuntimeDebugState state) { if (state != RuntimeDebugState::kJavaDebuggableAtInit) { // We never change the state if we started as a debuggable runtime. DCHECK(runtime_debug_state_ != RuntimeDebugState::kJavaDebuggableAtInit); } runtime_debug_state_ = state; } void Runtime::DeoptimizeBootImage() { // If we've already started and we are setting this runtime to debuggable, // we patch entry points of methods in boot image to interpreter bridge, as // boot image code may be AOT compiled as not debuggable. DeoptimizeBootImageClassVisitor visitor(GetInstrumentation()); GetClassLinker()->VisitClasses(&visitor); jit::Jit* jit = GetJit(); if (jit != nullptr) { // Code previously compiled may not be compiled debuggable. jit->GetCodeCache()->TransitionToDebuggable(); } } Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage() : thread_pool_(Runtime::Current()->AcquireThreadPool()) {} Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() { Runtime::Current()->ReleaseThreadPool(); } bool Runtime::DeleteThreadPool() { // Make sure workers are started to prevent thread shutdown errors. WaitForThreadPoolWorkersToStart(); std::unique_ptr thread_pool; { MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); if (thread_pool_ref_count_ == 0) { thread_pool = std::move(thread_pool_); } } return thread_pool != nullptr; } ThreadPool* Runtime::AcquireThreadPool() { MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); ++thread_pool_ref_count_; return thread_pool_.get(); } void Runtime::ReleaseThreadPool() { MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); CHECK_GT(thread_pool_ref_count_, 0u); --thread_pool_ref_count_; } void Runtime::WaitForThreadPoolWorkersToStart() { // Need to make sure workers are created before deleting the pool. ScopedThreadPoolUsage stpu; if (stpu.GetThreadPool() != nullptr) { stpu.GetThreadPool()->WaitForWorkersToBeCreated(); } } void Runtime::ResetStartupCompleted() { startup_completed_.store(false, std::memory_order_seq_cst); } bool Runtime::NotifyStartupCompleted() { DCHECK(!IsZygote()); bool expected = false; if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) { // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to // once externally. For this reason there are no asserts. return false; } VLOG(startup) << app_info_; ProfileSaver::NotifyStartupCompleted(); if (metrics_reporter_ != nullptr) { metrics_reporter_->NotifyStartupCompleted(); } return true; } void Runtime::NotifyDexFileLoaded() { if (metrics_reporter_ != nullptr) { metrics_reporter_->NotifyAppInfoUpdated(&app_info_); } } bool Runtime::GetStartupCompleted() const { return startup_completed_.load(std::memory_order_seq_cst); } void Runtime::SetSignalHookDebuggable(bool value) { SkipAddSignalHandler(value); } void Runtime::SetJniIdType(JniIdType t) { CHECK(CanSetJniIdType()) << "Not allowed to change id type!"; if (t == GetJniIdType()) { return; } jni_ids_indirection_ = t; JNIEnvExt::ResetFunctionTable(); WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv()); } bool Runtime::IsSystemServerProfiled() const { return IsSystemServer() && jit_options_->GetSaveProfilingInfo(); } bool Runtime::GetOatFilesExecutable() const { return !IsAotCompiler() && !IsSystemServerProfiled(); } void Runtime::MadviseFileForRange(size_t madvise_size_limit_bytes, size_t map_size_bytes, const uint8_t* map_begin, const uint8_t* map_end, const std::string& file_name) { map_begin = AlignDown(map_begin, gPageSize); map_size_bytes = RoundUp(map_size_bytes, gPageSize); #ifdef ART_TARGET_ANDROID // Short-circuit the madvise optimization for background processes. This // avoids IO and memory contention with foreground processes, particularly // those involving app startup. // Note: We can only safely short-circuit the madvise on T+, as it requires // the framework to always immediately notify ART of process states. static const int kApiLevel = android_get_device_api_level(); const bool accurate_process_state_at_startup = kApiLevel >= __ANDROID_API_T__; if (accurate_process_state_at_startup) { const Runtime* runtime = Runtime::Current(); if (runtime != nullptr && !runtime->InJankPerceptibleProcessState()) { return; } } #endif // ART_TARGET_ANDROID // Ideal blockTransferSize for madvising files (128KiB) static constexpr size_t kIdealIoTransferSizeBytes = 128*1024; size_t target_size_bytes = std::min(map_size_bytes, madvise_size_limit_bytes); if (target_size_bytes > 0) { ScopedTrace madvising_trace("madvising " + file_name + " size=" + std::to_string(target_size_bytes)); // Based on requested size (target_size_bytes) const uint8_t* target_pos = map_begin + target_size_bytes; // Clamp endOfFile if its past map_end if (target_pos > map_end) { target_pos = map_end; } // Madvise the whole file up to target_pos in chunks of // kIdealIoTransferSizeBytes (to MADV_WILLNEED) // Note: // madvise(MADV_WILLNEED) will prefetch max(fd readahead size, optimal // block size for device) per call, hence the need for chunks. (128KB is a // good default.) for (const uint8_t* madvise_start = map_begin; madvise_start < target_pos; madvise_start += kIdealIoTransferSizeBytes) { void* madvise_addr = const_cast(reinterpret_cast(madvise_start)); size_t madvise_length = std::min(kIdealIoTransferSizeBytes, static_cast(target_pos - madvise_start)); int status = madvise(madvise_addr, madvise_length, MADV_WILLNEED); // In case of error we stop madvising rest of the file if (status < 0) { LOG(ERROR) << "Failed to madvise file " << file_name << " for size:" << map_size_bytes << ": " << strerror(errno); break; } } } } // Return whether a boot image has a profile. This means we'll need to pre-JIT // methods in that profile for performance. bool Runtime::HasImageWithProfile() const { for (gc::space::ImageSpace* space : GetHeap()->GetBootImageSpaces()) { if (!space->GetProfileFiles().empty()) { return true; } } return false; } void Runtime::AppendToBootClassPath(const std::string& filename, const std::string& location) { DCHECK(!DexFileLoader::IsMultiDexLocation(filename)); boot_class_path_.push_back(filename); if (!boot_class_path_locations_.empty()) { DCHECK(!DexFileLoader::IsMultiDexLocation(location)); boot_class_path_locations_.push_back(location); } } void Runtime::AppendToBootClassPath( const std::string& filename, const std::string& location, const std::vector>& dex_files) { AppendToBootClassPath(filename, location); ScopedObjectAccess soa(Thread::Current()); for (const std::unique_ptr& dex_file : dex_files) { // The first element must not be at a multi-dex location, while other elements must be. DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()), dex_file.get() == dex_files.begin()->get()); GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file.get()); } } void Runtime::AppendToBootClassPath(const std::string& filename, const std::string& location, const std::vector& dex_files) { AppendToBootClassPath(filename, location); ScopedObjectAccess soa(Thread::Current()); for (const art::DexFile* dex_file : dex_files) { // The first element must not be at a multi-dex location, while other elements must be. DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()), dex_file == *dex_files.begin()); GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file); } } void Runtime::AppendToBootClassPath( const std::string& filename, const std::string& location, const std::vector>>& dex_files_and_cache) { AppendToBootClassPath(filename, location); ScopedObjectAccess soa(Thread::Current()); for (const auto& [dex_file, dex_cache] : dex_files_and_cache) { // The first element must not be at a multi-dex location, while other elements must be. DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()), dex_file == dex_files_and_cache.begin()->first); GetClassLinker()->AppendToBootClassPath(dex_file, dex_cache); } } void Runtime::AddExtraBootDexFiles(const std::string& filename, const std::string& location, std::vector>&& dex_files) { AppendToBootClassPath(filename, location); ScopedObjectAccess soa(Thread::Current()); if (kIsDebugBuild) { for (const std::unique_ptr& dex_file : dex_files) { // The first element must not be at a multi-dex location, while other elements must be. DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()), dex_file.get() == dex_files.begin()->get()); } } GetClassLinker()->AddExtraBootDexFiles(Thread::Current(), std::move(dex_files)); } } // namespace art