/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <gtest/gtest.h>

#include <elf.h>
#include <limits.h>
#include <malloc.h>
#include <pthread.h>
#include <semaphore.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/auxv.h>
#include <sys/cdefs.h>
#include <sys/prctl.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

#include <algorithm>
#include <atomic>
#include <functional>
#include <string>
#include <thread>
#include <unordered_map>
#include <utility>
#include <vector>

#include <tinyxml2.h>

#include <android-base/file.h>
#include <android-base/test_utils.h>

#include "utils.h"

#if defined(__BIONIC__)

#include "SignalUtils.h"
#include "dlext_private.h"

#include "platform/bionic/malloc.h"
#include "platform/bionic/mte.h"
#include "platform/bionic/reserved_signals.h"
#include "private/bionic_config.h"

#define HAVE_REALLOCARRAY 1

#elif defined(__GLIBC__)

#define HAVE_REALLOCARRAY __GLIBC_PREREQ(2, 26)

#elif defined(ANDROID_HOST_MUSL)

#define HAVE_REALLOCARRAY 1

#endif

TEST(malloc, malloc_std) {
  // Simple malloc test.
  void *ptr = malloc(100);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(100U, malloc_usable_size(ptr));
  free(ptr);
}

TEST(malloc, malloc_overflow) {
  SKIP_WITH_HWASAN;
  errno = 0;
  ASSERT_EQ(nullptr, malloc(SIZE_MAX));
  ASSERT_ERRNO(ENOMEM);
}

TEST(malloc, calloc_std) {
  // Simple calloc test.
  size_t alloc_len = 100;
  char *ptr = (char *)calloc(1, alloc_len);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(alloc_len, malloc_usable_size(ptr));
  for (size_t i = 0; i < alloc_len; i++) {
    ASSERT_EQ(0, ptr[i]);
  }
  free(ptr);
}

TEST(malloc, calloc_mem_init_disabled) {
#if defined(__BIONIC__)
  // calloc should still zero memory if mem-init is disabled.
  // With jemalloc the mallopts will fail but that shouldn't affect the
  // execution of the test.
  mallopt(M_THREAD_DISABLE_MEM_INIT, 1);
  size_t alloc_len = 100;
  char *ptr = reinterpret_cast<char*>(calloc(1, alloc_len));
  for (size_t i = 0; i < alloc_len; i++) {
    ASSERT_EQ(0, ptr[i]);
  }
  free(ptr);
  mallopt(M_THREAD_DISABLE_MEM_INIT, 0);
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

TEST(malloc, calloc_illegal) {
  SKIP_WITH_HWASAN;
  errno = 0;
  ASSERT_EQ(nullptr, calloc(-1, 100));
  ASSERT_ERRNO(ENOMEM);
}

TEST(malloc, calloc_overflow) {
  SKIP_WITH_HWASAN;
  errno = 0;
  ASSERT_EQ(nullptr, calloc(1, SIZE_MAX));
  ASSERT_ERRNO(ENOMEM);
  errno = 0;
  ASSERT_EQ(nullptr, calloc(SIZE_MAX, SIZE_MAX));
  ASSERT_ERRNO(ENOMEM);
  errno = 0;
  ASSERT_EQ(nullptr, calloc(2, SIZE_MAX));
  ASSERT_ERRNO(ENOMEM);
  errno = 0;
  ASSERT_EQ(nullptr, calloc(SIZE_MAX, 2));
  ASSERT_ERRNO(ENOMEM);
}

TEST(malloc, memalign_multiple) {
  SKIP_WITH_HWASAN << "hwasan requires power of 2 alignment";
  // Memalign test where the alignment is any value.
  for (size_t i = 0; i <= 12; i++) {
    for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) {
      char *ptr = reinterpret_cast<char*>(memalign(alignment, 100));
      ASSERT_TRUE(ptr != nullptr) << "Failed at alignment " << alignment;
      ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment;
      ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % ((1U << i)))
          << "Failed at alignment " << alignment;
      free(ptr);
    }
  }
}

TEST(malloc, memalign_overflow) {
  SKIP_WITH_HWASAN;
  ASSERT_EQ(nullptr, memalign(4096, SIZE_MAX));
}

TEST(malloc, memalign_non_power2) {
  SKIP_WITH_HWASAN;
  void* ptr;
  for (size_t align = 0; align <= 256; align++) {
    ptr = memalign(align, 1024);
    ASSERT_TRUE(ptr != nullptr) << "Failed at align " << align;
    free(ptr);
  }
}

TEST(malloc, memalign_realloc) {
  // Memalign and then realloc the pointer a couple of times.
  for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) {
    char *ptr = (char*)memalign(alignment, 100);
    ASSERT_TRUE(ptr != nullptr);
    ASSERT_LE(100U, malloc_usable_size(ptr));
    ASSERT_EQ(0U, (intptr_t)ptr % alignment);
    memset(ptr, 0x23, 100);

    ptr = (char*)realloc(ptr, 200);
    ASSERT_TRUE(ptr != nullptr);
    ASSERT_LE(200U, malloc_usable_size(ptr));
    ASSERT_TRUE(ptr != nullptr);
    for (size_t i = 0; i < 100; i++) {
      ASSERT_EQ(0x23, ptr[i]);
    }
    memset(ptr, 0x45, 200);

    ptr = (char*)realloc(ptr, 300);
    ASSERT_TRUE(ptr != nullptr);
    ASSERT_LE(300U, malloc_usable_size(ptr));
    for (size_t i = 0; i < 200; i++) {
      ASSERT_EQ(0x45, ptr[i]);
    }
    memset(ptr, 0x67, 300);

    ptr = (char*)realloc(ptr, 250);
    ASSERT_TRUE(ptr != nullptr);
    ASSERT_LE(250U, malloc_usable_size(ptr));
    for (size_t i = 0; i < 250; i++) {
      ASSERT_EQ(0x67, ptr[i]);
    }
    free(ptr);
  }
}

TEST(malloc, malloc_realloc_larger) {
  // Realloc to a larger size, malloc is used for the original allocation.
  char *ptr = (char *)malloc(100);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(100U, malloc_usable_size(ptr));
  memset(ptr, 67, 100);

  ptr = (char *)realloc(ptr, 200);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(200U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 100; i++) {
    ASSERT_EQ(67, ptr[i]);
  }
  free(ptr);
}

TEST(malloc, malloc_realloc_smaller) {
  // Realloc to a smaller size, malloc is used for the original allocation.
  char *ptr = (char *)malloc(200);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(200U, malloc_usable_size(ptr));
  memset(ptr, 67, 200);

  ptr = (char *)realloc(ptr, 100);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(100U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 100; i++) {
    ASSERT_EQ(67, ptr[i]);
  }
  free(ptr);
}

TEST(malloc, malloc_multiple_realloc) {
  // Multiple reallocs, malloc is used for the original allocation.
  char *ptr = (char *)malloc(200);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(200U, malloc_usable_size(ptr));
  memset(ptr, 0x23, 200);

  ptr = (char *)realloc(ptr, 100);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(100U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 100; i++) {
    ASSERT_EQ(0x23, ptr[i]);
  }

  ptr = (char*)realloc(ptr, 50);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(50U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 50; i++) {
    ASSERT_EQ(0x23, ptr[i]);
  }

  ptr = (char*)realloc(ptr, 150);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(150U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 50; i++) {
    ASSERT_EQ(0x23, ptr[i]);
  }
  memset(ptr, 0x23, 150);

  ptr = (char*)realloc(ptr, 425);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(425U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 150; i++) {
    ASSERT_EQ(0x23, ptr[i]);
  }
  free(ptr);
}

TEST(malloc, calloc_realloc_larger) {
  // Realloc to a larger size, calloc is used for the original allocation.
  char *ptr = (char *)calloc(1, 100);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(100U, malloc_usable_size(ptr));

  ptr = (char *)realloc(ptr, 200);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(200U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 100; i++) {
    ASSERT_EQ(0, ptr[i]);
  }
  free(ptr);
}

TEST(malloc, calloc_realloc_smaller) {
  // Realloc to a smaller size, calloc is used for the original allocation.
  char *ptr = (char *)calloc(1, 200);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(200U, malloc_usable_size(ptr));

  ptr = (char *)realloc(ptr, 100);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(100U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 100; i++) {
    ASSERT_EQ(0, ptr[i]);
  }
  free(ptr);
}

TEST(malloc, calloc_multiple_realloc) {
  // Multiple reallocs, calloc is used for the original allocation.
  char *ptr = (char *)calloc(1, 200);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(200U, malloc_usable_size(ptr));

  ptr = (char *)realloc(ptr, 100);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(100U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 100; i++) {
    ASSERT_EQ(0, ptr[i]);
  }

  ptr = (char*)realloc(ptr, 50);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(50U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 50; i++) {
    ASSERT_EQ(0, ptr[i]);
  }

  ptr = (char*)realloc(ptr, 150);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(150U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 50; i++) {
    ASSERT_EQ(0, ptr[i]);
  }
  memset(ptr, 0, 150);

  ptr = (char*)realloc(ptr, 425);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_LE(425U, malloc_usable_size(ptr));
  for (size_t i = 0; i < 150; i++) {
    ASSERT_EQ(0, ptr[i]);
  }
  free(ptr);
}

TEST(malloc, realloc_overflow) {
  SKIP_WITH_HWASAN;
  errno = 0;
  ASSERT_EQ(nullptr, realloc(nullptr, SIZE_MAX));
  ASSERT_ERRNO(ENOMEM);
  void* ptr = malloc(100);
  ASSERT_TRUE(ptr != nullptr);
  errno = 0;
  ASSERT_EQ(nullptr, realloc(ptr, SIZE_MAX));
  ASSERT_ERRNO(ENOMEM);
  free(ptr);
}

#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
extern "C" void* pvalloc(size_t);
extern "C" void* valloc(size_t);
#endif

TEST(malloc, pvalloc_std) {
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
  size_t pagesize = sysconf(_SC_PAGESIZE);
  void* ptr = pvalloc(100);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
  ASSERT_LE(pagesize, malloc_usable_size(ptr));
  free(ptr);
#else
  GTEST_SKIP() << "pvalloc not supported.";
#endif
}

TEST(malloc, pvalloc_overflow) {
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
  ASSERT_EQ(nullptr, pvalloc(SIZE_MAX));
#else
  GTEST_SKIP() << "pvalloc not supported.";
#endif
}

TEST(malloc, valloc_std) {
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
  size_t pagesize = sysconf(_SC_PAGESIZE);
  void* ptr = valloc(100);
  ASSERT_TRUE(ptr != nullptr);
  ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0);
  free(ptr);
#else
  GTEST_SKIP() << "valloc not supported.";
#endif
}

TEST(malloc, valloc_overflow) {
#if defined(HAVE_DEPRECATED_MALLOC_FUNCS)
  ASSERT_EQ(nullptr, valloc(SIZE_MAX));
#else
  GTEST_SKIP() << "valloc not supported.";
#endif
}

TEST(malloc, malloc_info) {
#ifdef __BIONIC__
  SKIP_WITH_HWASAN; // hwasan does not implement malloc_info

  TemporaryFile tf;
  ASSERT_TRUE(tf.fd != -1);
  FILE* fp = fdopen(tf.fd, "w+");
  tf.release();
  ASSERT_TRUE(fp != nullptr);
  ASSERT_EQ(0, malloc_info(0, fp));
  ASSERT_EQ(0, fclose(fp));

  std::string contents;
  ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));

  tinyxml2::XMLDocument doc;
  ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));

  auto root = doc.FirstChildElement();
  ASSERT_NE(nullptr, root);
  ASSERT_STREQ("malloc", root->Name());
  std::string version(root->Attribute("version"));
  if (version == "jemalloc-1") {
    auto arena = root->FirstChildElement();
    for (; arena != nullptr; arena = arena->NextSiblingElement()) {
      int val;

      ASSERT_STREQ("heap", arena->Name());
      ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
      ASSERT_EQ(tinyxml2::XML_SUCCESS,
                arena->FirstChildElement("allocated-large")->QueryIntText(&val));
      ASSERT_EQ(tinyxml2::XML_SUCCESS,
                arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
      ASSERT_EQ(tinyxml2::XML_SUCCESS,
                arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
      ASSERT_EQ(tinyxml2::XML_SUCCESS,
                arena->FirstChildElement("bins-total")->QueryIntText(&val));

      auto bin = arena->FirstChildElement("bin");
      for (; bin != nullptr; bin = bin ->NextSiblingElement()) {
        if (strcmp(bin->Name(), "bin") == 0) {
          ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val));
          ASSERT_EQ(tinyxml2::XML_SUCCESS,
                    bin->FirstChildElement("allocated")->QueryIntText(&val));
          ASSERT_EQ(tinyxml2::XML_SUCCESS,
                    bin->FirstChildElement("nmalloc")->QueryIntText(&val));
          ASSERT_EQ(tinyxml2::XML_SUCCESS,
                    bin->FirstChildElement("ndalloc")->QueryIntText(&val));
        }
      }
    }
  } else if (version == "scudo-1") {
    auto element = root->FirstChildElement();
    for (; element != nullptr; element = element->NextSiblingElement()) {
      int val;

      ASSERT_STREQ("alloc", element->Name());
      ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &val));
      ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &val));
    }
  } else {
    // Do not verify output for debug malloc.
    ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version;
  }
#endif
}

TEST(malloc, malloc_info_matches_mallinfo) {
#ifdef __BIONIC__
  SKIP_WITH_HWASAN; // hwasan does not implement malloc_info

  TemporaryFile tf;
  ASSERT_TRUE(tf.fd != -1);
  FILE* fp = fdopen(tf.fd, "w+");
  tf.release();
  ASSERT_TRUE(fp != nullptr);
  size_t mallinfo_before_allocated_bytes = mallinfo().uordblks;
  ASSERT_EQ(0, malloc_info(0, fp));
  size_t mallinfo_after_allocated_bytes = mallinfo().uordblks;
  ASSERT_EQ(0, fclose(fp));

  std::string contents;
  ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));

  tinyxml2::XMLDocument doc;
  ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));

  size_t total_allocated_bytes = 0;
  auto root = doc.FirstChildElement();
  ASSERT_NE(nullptr, root);
  ASSERT_STREQ("malloc", root->Name());
  std::string version(root->Attribute("version"));
  if (version == "jemalloc-1") {
    auto arena = root->FirstChildElement();
    for (; arena != nullptr; arena = arena->NextSiblingElement()) {
      int val;

      ASSERT_STREQ("heap", arena->Name());
      ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val));
      ASSERT_EQ(tinyxml2::XML_SUCCESS,
                arena->FirstChildElement("allocated-large")->QueryIntText(&val));
      total_allocated_bytes += val;
      ASSERT_EQ(tinyxml2::XML_SUCCESS,
                arena->FirstChildElement("allocated-huge")->QueryIntText(&val));
      total_allocated_bytes += val;
      ASSERT_EQ(tinyxml2::XML_SUCCESS,
                arena->FirstChildElement("allocated-bins")->QueryIntText(&val));
      total_allocated_bytes += val;
      ASSERT_EQ(tinyxml2::XML_SUCCESS,
                arena->FirstChildElement("bins-total")->QueryIntText(&val));
    }
    // The total needs to be between the mallinfo call before and after
    // since malloc_info allocates some memory.
    EXPECT_LE(mallinfo_before_allocated_bytes, total_allocated_bytes);
    EXPECT_GE(mallinfo_after_allocated_bytes, total_allocated_bytes);
  } else if (version == "scudo-1") {
    auto element = root->FirstChildElement();
    for (; element != nullptr; element = element->NextSiblingElement()) {
      ASSERT_STREQ("alloc", element->Name());
      int size;
      ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &size));
      int count;
      ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &count));
      total_allocated_bytes += size * count;
    }
    // Scudo only gives the information on the primary, so simply make
    // sure that the value is non-zero.
    EXPECT_NE(0U, total_allocated_bytes);
  } else {
    // Do not verify output for debug malloc.
    ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version;
  }
#endif
}

TEST(malloc, calloc_usable_size) {
  for (size_t size = 1; size <= 2048; size++) {
    void* pointer = malloc(size);
    ASSERT_TRUE(pointer != nullptr);
    memset(pointer, 0xeb, malloc_usable_size(pointer));
    free(pointer);

    // We should get a previous pointer that has been set to non-zero.
    // If calloc does not zero out all of the data, this will fail.
    uint8_t* zero_mem = reinterpret_cast<uint8_t*>(calloc(1, size));
    ASSERT_TRUE(pointer != nullptr);
    size_t usable_size = malloc_usable_size(zero_mem);
    for (size_t i = 0; i < usable_size; i++) {
      ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i;
    }
    free(zero_mem);
  }
}

TEST(malloc, malloc_0) {
  void* p = malloc(0);
  ASSERT_TRUE(p != nullptr);
  free(p);
}

TEST(malloc, calloc_0_0) {
  void* p = calloc(0, 0);
  ASSERT_TRUE(p != nullptr);
  free(p);
}

TEST(malloc, calloc_0_1) {
  void* p = calloc(0, 1);
  ASSERT_TRUE(p != nullptr);
  free(p);
}

TEST(malloc, calloc_1_0) {
  void* p = calloc(1, 0);
  ASSERT_TRUE(p != nullptr);
  free(p);
}

TEST(malloc, realloc_nullptr_0) {
  // realloc(nullptr, size) is actually malloc(size).
  void* p = realloc(nullptr, 0);
  ASSERT_TRUE(p != nullptr);
  free(p);
}

TEST(malloc, realloc_0) {
  void* p = malloc(1024);
  ASSERT_TRUE(p != nullptr);
  // realloc(p, 0) is actually free(p).
  void* p2 = realloc(p, 0);
  ASSERT_TRUE(p2 == nullptr);
}

constexpr size_t MAX_LOOPS = 200;

// Make sure that memory returned by malloc is aligned to allow these data types.
TEST(malloc, verify_alignment) {
  uint32_t** values_32 = new uint32_t*[MAX_LOOPS];
  uint64_t** values_64 = new uint64_t*[MAX_LOOPS];
  long double** values_ldouble = new long double*[MAX_LOOPS];
  // Use filler to attempt to force the allocator to get potentially bad alignments.
  void** filler = new void*[MAX_LOOPS];

  for (size_t i = 0; i < MAX_LOOPS; i++) {
    // Check uint32_t pointers.
    filler[i] = malloc(1);
    ASSERT_TRUE(filler[i] != nullptr);

    values_32[i] = reinterpret_cast<uint32_t*>(malloc(sizeof(uint32_t)));
    ASSERT_TRUE(values_32[i] != nullptr);
    *values_32[i] = i;
    ASSERT_EQ(*values_32[i], i);
    ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_32[i]) & (sizeof(uint32_t) - 1));

    free(filler[i]);
  }

  for (size_t i = 0; i < MAX_LOOPS; i++) {
    // Check uint64_t pointers.
    filler[i] = malloc(1);
    ASSERT_TRUE(filler[i] != nullptr);

    values_64[i] = reinterpret_cast<uint64_t*>(malloc(sizeof(uint64_t)));
    ASSERT_TRUE(values_64[i] != nullptr);
    *values_64[i] = 0x1000 + i;
    ASSERT_EQ(*values_64[i], 0x1000 + i);
    ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_64[i]) & (sizeof(uint64_t) - 1));

    free(filler[i]);
  }

  for (size_t i = 0; i < MAX_LOOPS; i++) {
    // Check long double pointers.
    filler[i] = malloc(1);
    ASSERT_TRUE(filler[i] != nullptr);

    values_ldouble[i] = reinterpret_cast<long double*>(malloc(sizeof(long double)));
    ASSERT_TRUE(values_ldouble[i] != nullptr);
    *values_ldouble[i] = 5.5 + i;
    ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i);
    // 32 bit glibc has a long double size of 12 bytes, so hardcode the
    // required alignment to 0x7.
#if !defined(__BIONIC__) && !defined(__LP64__)
    ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & 0x7);
#else
    ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & (sizeof(long double) - 1));
#endif

    free(filler[i]);
  }

  for (size_t i = 0; i < MAX_LOOPS; i++) {
    free(values_32[i]);
    free(values_64[i]);
    free(values_ldouble[i]);
  }

  delete[] filler;
  delete[] values_32;
  delete[] values_64;
  delete[] values_ldouble;
}

TEST(malloc, mallopt_smoke) {
#if defined(__BIONIC__)
  errno = 0;
  ASSERT_EQ(0, mallopt(-1000, 1));
  // mallopt doesn't set errno.
  ASSERT_ERRNO(0);
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

TEST(malloc, mallopt_decay) {
#if defined(__BIONIC__)
  SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
  ASSERT_EQ(1, mallopt(M_DECAY_TIME, -1));
  ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
  ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
  ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1));
  ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0));
  ASSERT_EQ(1, mallopt(M_DECAY_TIME, -1));
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

TEST(malloc, mallopt_purge) {
#if defined(__BIONIC__)
  SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
  ASSERT_EQ(1, mallopt(M_PURGE, 0));
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

TEST(malloc, mallopt_purge_all) {
#if defined(__BIONIC__)
  SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
  ASSERT_EQ(1, mallopt(M_PURGE_ALL, 0));
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

TEST(malloc, mallopt_log_stats) {
#if defined(__BIONIC__)
  SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
  ASSERT_EQ(1, mallopt(M_LOG_STATS, 0));
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

// Verify that all of the mallopt values are unique.
TEST(malloc, mallopt_unique_params) {
#if defined(__BIONIC__)
  std::vector<std::pair<int, std::string>> params{
      std::make_pair(M_DECAY_TIME, "M_DECAY_TIME"),
      std::make_pair(M_PURGE, "M_PURGE"),
      std::make_pair(M_PURGE_ALL, "M_PURGE_ALL"),
      std::make_pair(M_MEMTAG_TUNING, "M_MEMTAG_TUNING"),
      std::make_pair(M_THREAD_DISABLE_MEM_INIT, "M_THREAD_DISABLE_MEM_INIT"),
      std::make_pair(M_CACHE_COUNT_MAX, "M_CACHE_COUNT_MAX"),
      std::make_pair(M_CACHE_SIZE_MAX, "M_CACHE_SIZE_MAX"),
      std::make_pair(M_TSDS_COUNT_MAX, "M_TSDS_COUNT_MAX"),
      std::make_pair(M_BIONIC_ZERO_INIT, "M_BIONIC_ZERO_INIT"),
      std::make_pair(M_BIONIC_SET_HEAP_TAGGING_LEVEL, "M_BIONIC_SET_HEAP_TAGGING_LEVEL"),
      std::make_pair(M_LOG_STATS, "M_LOG_STATS"),
  };

  std::unordered_map<int, std::string> all_params;
  for (const auto& param : params) {
    EXPECT_TRUE(all_params.count(param.first) == 0)
        << "mallopt params " << all_params[param.first] << " and " << param.second
        << " have the same value " << param.first;
    all_params.insert(param);
  }
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

#if defined(__BIONIC__)
static void GetAllocatorVersion(bool* allocator_scudo) {
  TemporaryFile tf;
  ASSERT_TRUE(tf.fd != -1);
  FILE* fp = fdopen(tf.fd, "w+");
  tf.release();
  ASSERT_TRUE(fp != nullptr);
  if (malloc_info(0, fp) != 0) {
    *allocator_scudo = false;
    return;
  }
  ASSERT_EQ(0, fclose(fp));

  std::string contents;
  ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents));

  tinyxml2::XMLDocument doc;
  ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str()));

  auto root = doc.FirstChildElement();
  ASSERT_NE(nullptr, root);
  ASSERT_STREQ("malloc", root->Name());
  std::string version(root->Attribute("version"));
  *allocator_scudo = (version == "scudo-1");
}
#endif

TEST(malloc, mallopt_scudo_only_options) {
#if defined(__BIONIC__)
  SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
  bool allocator_scudo;
  GetAllocatorVersion(&allocator_scudo);
  if (!allocator_scudo) {
    GTEST_SKIP() << "scudo allocator only test";
  }
  ASSERT_EQ(1, mallopt(M_CACHE_COUNT_MAX, 100));
  ASSERT_EQ(1, mallopt(M_CACHE_SIZE_MAX, 1024 * 1024 * 2));
  ASSERT_EQ(1, mallopt(M_TSDS_COUNT_MAX, 8));
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

TEST(malloc, reallocarray_overflow) {
#if HAVE_REALLOCARRAY
  // Values that cause overflow to a result small enough (8 on LP64) that malloc would "succeed".
  size_t a = static_cast<size_t>(INTPTR_MIN + 4);
  size_t b = 2;

  errno = 0;
  ASSERT_TRUE(reallocarray(nullptr, a, b) == nullptr);
  ASSERT_ERRNO(ENOMEM);

  errno = 0;
  ASSERT_TRUE(reallocarray(nullptr, b, a) == nullptr);
  ASSERT_ERRNO(ENOMEM);
#else
  GTEST_SKIP() << "reallocarray not available";
#endif
}

TEST(malloc, reallocarray) {
#if HAVE_REALLOCARRAY
  void* p = reallocarray(nullptr, 2, 32);
  ASSERT_TRUE(p != nullptr);
  ASSERT_GE(malloc_usable_size(p), 64U);
#else
  GTEST_SKIP() << "reallocarray not available";
#endif
}

TEST(malloc, mallinfo) {
#if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL)
  SKIP_WITH_HWASAN << "hwasan does not implement mallinfo";
  static size_t sizes[] = {
    8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000
  };

  static constexpr size_t kMaxAllocs = 50;

  for (size_t size : sizes) {
    // If some of these allocations are stuck in a thread cache, then keep
    // looping until we make an allocation that changes the total size of the
    // memory allocated.
    // jemalloc implementations counts the thread cache allocations against
    // total memory allocated.
    void* ptrs[kMaxAllocs] = {};
    bool pass = false;
    for (size_t i = 0; i < kMaxAllocs; i++) {
      size_t allocated = mallinfo().uordblks;
      ptrs[i] = malloc(size);
      ASSERT_TRUE(ptrs[i] != nullptr);
      size_t new_allocated = mallinfo().uordblks;
      if (allocated != new_allocated) {
        size_t usable_size = malloc_usable_size(ptrs[i]);
        // Only check if the total got bigger by at least allocation size.
        // Sometimes the mallinfo numbers can go backwards due to compaction
        // and/or freeing of cached data.
        if (new_allocated >= allocated + usable_size) {
          pass = true;
          break;
        }
      }
    }
    for (void* ptr : ptrs) {
      free(ptr);
    }
    ASSERT_TRUE(pass)
        << "For size " << size << " allocated bytes did not increase after "
        << kMaxAllocs << " allocations.";
  }
#else
  GTEST_SKIP() << "glibc is broken";
#endif
}

TEST(malloc, mallinfo2) {
#if defined(__BIONIC__) || defined(ANDROID_HOST_MUSL)
  SKIP_WITH_HWASAN << "hwasan does not implement mallinfo2";
  static size_t sizes[] = {8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000};

  static constexpr size_t kMaxAllocs = 50;

  for (size_t size : sizes) {
    // If some of these allocations are stuck in a thread cache, then keep
    // looping until we make an allocation that changes the total size of the
    // memory allocated.
    // jemalloc implementations counts the thread cache allocations against
    // total memory allocated.
    void* ptrs[kMaxAllocs] = {};
    bool pass = false;
    for (size_t i = 0; i < kMaxAllocs; i++) {
      struct mallinfo info = mallinfo();
      struct mallinfo2 info2 = mallinfo2();
      // Verify that mallinfo and mallinfo2 are exactly the same.
      ASSERT_EQ(static_cast<size_t>(info.arena), info2.arena);
      ASSERT_EQ(static_cast<size_t>(info.ordblks), info2.ordblks);
      ASSERT_EQ(static_cast<size_t>(info.smblks), info2.smblks);
      ASSERT_EQ(static_cast<size_t>(info.hblks), info2.hblks);
      ASSERT_EQ(static_cast<size_t>(info.hblkhd), info2.hblkhd);
      ASSERT_EQ(static_cast<size_t>(info.usmblks), info2.usmblks);
      ASSERT_EQ(static_cast<size_t>(info.fsmblks), info2.fsmblks);
      ASSERT_EQ(static_cast<size_t>(info.uordblks), info2.uordblks);
      ASSERT_EQ(static_cast<size_t>(info.fordblks), info2.fordblks);
      ASSERT_EQ(static_cast<size_t>(info.keepcost), info2.keepcost);

      size_t allocated = info2.uordblks;
      ptrs[i] = malloc(size);
      ASSERT_TRUE(ptrs[i] != nullptr);

      info = mallinfo();
      info2 = mallinfo2();
      // Verify that mallinfo and mallinfo2 are exactly the same.
      ASSERT_EQ(static_cast<size_t>(info.arena), info2.arena);
      ASSERT_EQ(static_cast<size_t>(info.ordblks), info2.ordblks);
      ASSERT_EQ(static_cast<size_t>(info.smblks), info2.smblks);
      ASSERT_EQ(static_cast<size_t>(info.hblks), info2.hblks);
      ASSERT_EQ(static_cast<size_t>(info.hblkhd), info2.hblkhd);
      ASSERT_EQ(static_cast<size_t>(info.usmblks), info2.usmblks);
      ASSERT_EQ(static_cast<size_t>(info.fsmblks), info2.fsmblks);
      ASSERT_EQ(static_cast<size_t>(info.uordblks), info2.uordblks);
      ASSERT_EQ(static_cast<size_t>(info.fordblks), info2.fordblks);
      ASSERT_EQ(static_cast<size_t>(info.keepcost), info2.keepcost);

      size_t new_allocated = info2.uordblks;
      if (allocated != new_allocated) {
        size_t usable_size = malloc_usable_size(ptrs[i]);
        // Only check if the total got bigger by at least allocation size.
        // Sometimes the mallinfo2 numbers can go backwards due to compaction
        // and/or freeing of cached data.
        if (new_allocated >= allocated + usable_size) {
          pass = true;
          break;
        }
      }
    }
    for (void* ptr : ptrs) {
      free(ptr);
    }
    ASSERT_TRUE(pass) << "For size " << size << " allocated bytes did not increase after "
                      << kMaxAllocs << " allocations.";
  }
#else
  GTEST_SKIP() << "glibc is broken";
#endif
}

template <typename Type>
void __attribute__((optnone)) VerifyAlignment(Type* floating) {
  size_t expected_alignment = alignof(Type);
  if (expected_alignment != 0) {
    ASSERT_EQ(0U, (expected_alignment - 1) & reinterpret_cast<uintptr_t>(floating))
        << "Expected alignment " << expected_alignment << " ptr value "
        << static_cast<void*>(floating);
  }
}

template <typename Type>
void __attribute__((optnone)) TestAllocateType() {
  // The number of allocations to do in a row. This is to attempt to
  // expose the worst case alignment for native allocators that use
  // bins.
  static constexpr size_t kMaxConsecutiveAllocs = 100;

  // Verify using new directly.
  Type* types[kMaxConsecutiveAllocs];
  for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
    types[i] = new Type;
    VerifyAlignment(types[i]);
    if (::testing::Test::HasFatalFailure()) {
      return;
    }
  }
  for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
    delete types[i];
  }

  // Verify using malloc.
  for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
    types[i] = reinterpret_cast<Type*>(malloc(sizeof(Type)));
    ASSERT_TRUE(types[i] != nullptr);
    VerifyAlignment(types[i]);
    if (::testing::Test::HasFatalFailure()) {
      return;
    }
  }
  for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) {
    free(types[i]);
  }

  // Verify using a vector.
  std::vector<Type> type_vector(kMaxConsecutiveAllocs);
  for (size_t i = 0; i < type_vector.size(); i++) {
    VerifyAlignment(&type_vector[i]);
    if (::testing::Test::HasFatalFailure()) {
      return;
    }
  }
}

#if defined(__ANDROID__)
static void __attribute__((optnone)) AndroidVerifyAlignment(size_t alloc_size, size_t aligned_bytes) {
  void* ptrs[100];
  uintptr_t mask = aligned_bytes - 1;
  for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) {
    ptrs[i] = malloc(alloc_size);
    ASSERT_TRUE(ptrs[i] != nullptr);
    ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptrs[i]) & mask)
        << "Expected at least " << aligned_bytes << " byte alignment: size "
        << alloc_size << " actual ptr " << ptrs[i];
  }
}
#endif

void AlignCheck() {
  // See http://www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm#dr_445
  // for a discussion of type alignment.
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<float>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<double>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<long double>());

  ASSERT_NO_FATAL_FAILURE(TestAllocateType<char>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<char16_t>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<char32_t>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<wchar_t>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<signed char>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<short int>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<int>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<long int>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<long long int>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned char>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned short int>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned int>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long int>());
  ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long long int>());

#if defined(__ANDROID__)
  // On Android, there is a lot of code that expects certain alignments:
  //  1. Allocations of a size that rounds up to a multiple of 16 bytes
  //     must have at least 16 byte alignment.
  //  2. Allocations of a size that rounds up to a multiple of 8 bytes and
  //     not 16 bytes, are only required to have at least 8 byte alignment.
  // In addition, on Android clang has been configured for 64 bit such that:
  //  3. Allocations <= 8 bytes must be aligned to at least 8 bytes.
  //  4. Allocations > 8 bytes must be aligned to at least 16 bytes.
  // For 32 bit environments, only the first two requirements must be met.

  // See http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2293.htm for
  // a discussion of this alignment mess. The code below is enforcing
  // strong-alignment, since who knows what code depends on this behavior now.
  // As mentioned before, for 64 bit this will enforce the higher
  // requirement since clang expects this behavior on Android now.
  for (size_t i = 1; i <= 128; i++) {
#if defined(__LP64__)
    if (i <= 8) {
      AndroidVerifyAlignment(i, 8);
    } else {
      AndroidVerifyAlignment(i, 16);
    }
#else
    size_t rounded = (i + 7) & ~7;
    if ((rounded % 16) == 0) {
      AndroidVerifyAlignment(i, 16);
    } else {
      AndroidVerifyAlignment(i, 8);
    }
#endif
    if (::testing::Test::HasFatalFailure()) {
      return;
    }
  }
#endif
}

TEST(malloc, align_check) {
  AlignCheck();
}

// Jemalloc doesn't pass this test right now, so leave it as disabled.
TEST(malloc, DISABLED_alloc_after_fork) {
  // Both of these need to be a power of 2.
  static constexpr size_t kMinAllocationSize = 8;
  static constexpr size_t kMaxAllocationSize = 2097152;

  static constexpr size_t kNumAllocatingThreads = 5;
  static constexpr size_t kNumForkLoops = 100;

  std::atomic_bool stop;

  // Create threads that simply allocate and free different sizes.
  std::vector<std::thread*> threads;
  for (size_t i = 0; i < kNumAllocatingThreads; i++) {
    std::thread* t = new std::thread([&stop] {
      while (!stop) {
        for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) {
          void* ptr;
          DoNotOptimize(ptr = malloc(size));
          free(ptr);
        }
      }
    });
    threads.push_back(t);
  }

  // Create a thread to fork and allocate.
  for (size_t i = 0; i < kNumForkLoops; i++) {
    pid_t pid;
    if ((pid = fork()) == 0) {
      for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) {
        void* ptr;
        DoNotOptimize(ptr = malloc(size));
        ASSERT_TRUE(ptr != nullptr);
        // Make sure we can touch all of the allocation.
        memset(ptr, 0x1, size);
        ASSERT_LE(size, malloc_usable_size(ptr));
        free(ptr);
      }
      _exit(10);
    }
    ASSERT_NE(-1, pid);
    AssertChildExited(pid, 10);
  }

  stop = true;
  for (auto thread : threads) {
    thread->join();
    delete thread;
  }
}

TEST(android_mallopt, error_on_unexpected_option) {
#if defined(__BIONIC__)
  const int unrecognized_option = -1;
  errno = 0;
  EXPECT_EQ(false, android_mallopt(unrecognized_option, nullptr, 0));
  EXPECT_ERRNO(ENOTSUP);
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

bool IsDynamic() {
#if defined(__LP64__)
  Elf64_Ehdr ehdr;
#else
  Elf32_Ehdr ehdr;
#endif
  std::string path(android::base::GetExecutablePath());

  int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC);
  if (fd == -1) {
    // Assume dynamic on error.
    return true;
  }
  bool read_completed = android::base::ReadFully(fd, &ehdr, sizeof(ehdr));
  close(fd);
  // Assume dynamic in error cases.
  return !read_completed || ehdr.e_type == ET_DYN;
}

TEST(android_mallopt, init_zygote_child_profiling) {
#if defined(__BIONIC__)
  // Successful call.
  errno = 0;
  if (IsDynamic()) {
    EXPECT_EQ(true, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
    EXPECT_ERRNO(0);
  } else {
    // Not supported in static executables.
    EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
    EXPECT_ERRNO(ENOTSUP);
  }

  // Unexpected arguments rejected.
  errno = 0;
  char unexpected = 0;
  EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, &unexpected, 1));
  if (IsDynamic()) {
    EXPECT_ERRNO(EINVAL);
  } else {
    EXPECT_ERRNO(ENOTSUP);
  }
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

#if defined(__BIONIC__)
template <typename FuncType>
void CheckAllocationFunction(FuncType func) {
  // Assumes that no more than 108MB of memory is allocated before this.
  size_t limit = 128 * 1024 * 1024;
  ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
  if (!func(20 * 1024 * 1024))
    exit(1);
  if (func(128 * 1024 * 1024))
    exit(1);
  exit(0);
}
#endif

TEST(android_mallopt, set_allocation_limit) {
#if defined(__BIONIC__)
  EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(bytes, 1) != nullptr; }),
              testing::ExitedWithCode(0), "");
  EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(1, bytes) != nullptr; }),
              testing::ExitedWithCode(0), "");
  EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return malloc(bytes) != nullptr; }),
              testing::ExitedWithCode(0), "");
  EXPECT_EXIT(CheckAllocationFunction(
                  [](size_t bytes) { return memalign(sizeof(void*), bytes) != nullptr; }),
              testing::ExitedWithCode(0), "");
  EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) {
                void* ptr;
                return posix_memalign(&ptr, sizeof(void *), bytes) == 0;
              }),
              testing::ExitedWithCode(0), "");
  EXPECT_EXIT(CheckAllocationFunction(
                  [](size_t bytes) { return aligned_alloc(sizeof(void*), bytes) != nullptr; }),
              testing::ExitedWithCode(0), "");
  EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) {
                void* p = malloc(1024 * 1024);
                return realloc(p, bytes) != nullptr;
              }),
              testing::ExitedWithCode(0), "");
#if !defined(__LP64__)
  EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return pvalloc(bytes) != nullptr; }),
              testing::ExitedWithCode(0), "");
  EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return valloc(bytes) != nullptr; }),
              testing::ExitedWithCode(0), "");
#endif
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

TEST(android_mallopt, set_allocation_limit_multiple) {
#if defined(__BIONIC__)
  // Only the first set should work.
  size_t limit = 256 * 1024 * 1024;
  ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
  limit = 32 * 1024 * 1024;
  ASSERT_FALSE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

#if defined(__BIONIC__)
static constexpr size_t kAllocationSize = 8 * 1024 * 1024;

static size_t GetMaxAllocations() {
  size_t max_pointers = 0;
  void* ptrs[20];
  for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) {
    ptrs[i] = malloc(kAllocationSize);
    if (ptrs[i] == nullptr) {
      max_pointers = i;
      break;
    }
  }
  for (size_t i = 0; i < max_pointers; i++) {
    free(ptrs[i]);
  }
  return max_pointers;
}

static void VerifyMaxPointers(size_t max_pointers) {
  // Now verify that we can allocate the same number as before.
  void* ptrs[20];
  for (size_t i = 0; i < max_pointers; i++) {
    ptrs[i] = malloc(kAllocationSize);
    ASSERT_TRUE(ptrs[i] != nullptr) << "Failed to allocate on iteration " << i;
  }

  // Make sure the next allocation still fails.
  ASSERT_TRUE(malloc(kAllocationSize) == nullptr);
  for (size_t i = 0; i < max_pointers; i++) {
    free(ptrs[i]);
  }
}
#endif

TEST(android_mallopt, set_allocation_limit_realloc_increase) {
#if defined(__BIONIC__)
  size_t limit = 128 * 1024 * 1024;
  ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));

  size_t max_pointers = GetMaxAllocations();
  ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";

  void* memory = malloc(10 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);

  // Increase size.
  memory = realloc(memory, 20 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);
  memory = realloc(memory, 40 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);
  memory = realloc(memory, 60 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);
  memory = realloc(memory, 80 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);
  // Now push past limit.
  memory = realloc(memory, 130 * 1024 * 1024);
  ASSERT_TRUE(memory == nullptr);

  VerifyMaxPointers(max_pointers);
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

TEST(android_mallopt, set_allocation_limit_realloc_decrease) {
#if defined(__BIONIC__)
  size_t limit = 100 * 1024 * 1024;
  ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));

  size_t max_pointers = GetMaxAllocations();
  ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";

  void* memory = malloc(80 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);

  // Decrease size.
  memory = realloc(memory, 60 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);
  memory = realloc(memory, 40 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);
  memory = realloc(memory, 20 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);
  memory = realloc(memory, 10 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);
  free(memory);

  VerifyMaxPointers(max_pointers);
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

TEST(android_mallopt, set_allocation_limit_realloc_free) {
#if defined(__BIONIC__)
  size_t limit = 100 * 1024 * 1024;
  ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));

  size_t max_pointers = GetMaxAllocations();
  ASSERT_TRUE(max_pointers != 0) << "Limit never reached.";

  void* memory = malloc(60 * 1024 * 1024);
  ASSERT_TRUE(memory != nullptr);

  memory = realloc(memory, 0);
  ASSERT_TRUE(memory == nullptr);

  VerifyMaxPointers(max_pointers);
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

#if defined(__BIONIC__)
static void SetAllocationLimitMultipleThreads() {
  static constexpr size_t kNumThreads = 4;
  std::atomic_bool start_running = false;
  std::atomic<size_t> num_running;
  std::atomic<size_t> num_successful;
  std::unique_ptr<std::thread> threads[kNumThreads];
  for (size_t i = 0; i < kNumThreads; i++) {
    threads[i].reset(new std::thread([&num_running, &start_running, &num_successful] {
      ++num_running;
      while (!start_running) {
      }
      size_t limit = 500 * 1024 * 1024;
      if (android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))) {
        ++num_successful;
      }
    }));
  }

  // Wait until all of the threads have started.
  while (num_running != kNumThreads)
    ;

  // Now start all of the threads setting the mallopt at once.
  start_running = true;

  // Send hardcoded signal (BIONIC_SIGNAL_PROFILER with value 0) to trigger
  // heapprofd handler. This will verify that changing the limit while
  // the allocation handlers are being changed at the same time works,
  // or that the limit handler is changed first and this also works properly.
  union sigval signal_value {};
  ASSERT_EQ(0, sigqueue(getpid(), BIONIC_SIGNAL_PROFILER, signal_value));

  // Wait for all of the threads to finish.
  for (size_t i = 0; i < kNumThreads; i++) {
    threads[i]->join();
  }
  ASSERT_EQ(1U, num_successful) << "Only one thread should be able to set the limit.";
  _exit(0);
}
#endif

TEST(android_mallopt, set_allocation_limit_multiple_threads) {
#if defined(__BIONIC__)
  if (IsDynamic()) {
    ASSERT_TRUE(android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0));
  }

  // Run this a number of times as a stress test.
  for (size_t i = 0; i < 100; i++) {
    // Not using ASSERT_EXIT because errors messages are not displayed.
    pid_t pid;
    if ((pid = fork()) == 0) {
      ASSERT_NO_FATAL_FAILURE(SetAllocationLimitMultipleThreads());
    }
    ASSERT_NE(-1, pid);
    int status;
    ASSERT_EQ(pid, wait(&status));
    ASSERT_EQ(0, WEXITSTATUS(status));
  }
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

#if defined(__BIONIC__)
using Mode = android_mallopt_gwp_asan_options_t::Mode;
TEST(android_mallopt, DISABLED_multiple_enable_gwp_asan) {
  android_mallopt_gwp_asan_options_t options;
  options.program_name = "";  // Don't infer GWP-ASan options from sysprops.
  options.mode = Mode::APP_MANIFEST_NEVER;
  // GWP-ASan should already be enabled. Trying to enable or disable it should
  // always pass.
  ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options)));
  options.mode = Mode::APP_MANIFEST_DEFAULT;
  ASSERT_TRUE(android_mallopt(M_INITIALIZE_GWP_ASAN, &options, sizeof(options)));
}
#endif  // defined(__BIONIC__)

TEST(android_mallopt, multiple_enable_gwp_asan) {
#if defined(__BIONIC__)
  // Always enable GWP-Asan, with default options.
  RunGwpAsanTest("*.DISABLED_multiple_enable_gwp_asan");
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

TEST(android_mallopt, memtag_stack_is_on) {
#if defined(__BIONIC__)
  bool memtag_stack;
  EXPECT_TRUE(android_mallopt(M_MEMTAG_STACK_IS_ON, &memtag_stack, sizeof(memtag_stack)));
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

void TestHeapZeroing(int num_iterations, int (*get_alloc_size)(int iteration)) {
  std::vector<void*> allocs;
  constexpr int kMaxBytesToCheckZero = 64;
  const char kBlankMemory[kMaxBytesToCheckZero] = {};

  for (int i = 0; i < num_iterations; ++i) {
    int size = get_alloc_size(i);
    allocs.push_back(malloc(size));
    memset(allocs.back(), 'X', std::min(size, kMaxBytesToCheckZero));
  }

  for (void* alloc : allocs) {
    free(alloc);
  }
  allocs.clear();

  for (int i = 0; i < num_iterations; ++i) {
    int size = get_alloc_size(i);
    allocs.push_back(malloc(size));
    ASSERT_EQ(0, memcmp(allocs.back(), kBlankMemory, std::min(size, kMaxBytesToCheckZero)));
  }

  for (void* alloc : allocs) {
    free(alloc);
  }
}

TEST(malloc, zero_init) {
#if defined(__BIONIC__)
  SKIP_WITH_HWASAN << "hwasan does not implement mallopt";
  bool allocator_scudo;
  GetAllocatorVersion(&allocator_scudo);
  if (!allocator_scudo) {
    GTEST_SKIP() << "scudo allocator only test";
  }

  mallopt(M_BIONIC_ZERO_INIT, 1);

  // Test using a block of 4K small (1-32 byte) allocations.
  TestHeapZeroing(/* num_iterations */ 0x1000, [](int iteration) -> int {
    return 1 + iteration % 32;
  });

  // Also test large allocations that land in the scudo secondary, as this is
  // the only part of Scudo that's changed by enabling zero initialization with
  // MTE. Uses 32 allocations, totalling 60MiB memory. Decay time (time to
  // release secondary allocations back to the OS) was modified to 0ms/1ms by
  // mallopt_decay. Ensure that we delay for at least a second before releasing
  // pages to the OS in order to avoid implicit zeroing by the kernel.
  mallopt(M_DECAY_TIME, 1);
  TestHeapZeroing(/* num_iterations */ 32, [](int iteration) -> int {
    return 1 << (19 + iteration % 4);
  });

#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

// Note that MTE is enabled on cc_tests on devices that support MTE.
TEST(malloc, disable_mte) {
#if defined(__BIONIC__)
  if (!mte_supported()) {
    GTEST_SKIP() << "This function can only be tested with MTE";
  }

  sem_t sem;
  ASSERT_EQ(0, sem_init(&sem, 0, 0));

  pthread_t thread;
  ASSERT_EQ(0, pthread_create(
                   &thread, nullptr,
                   [](void* ptr) -> void* {
                     auto* sem = reinterpret_cast<sem_t*>(ptr);
                     sem_wait(sem);
                     return reinterpret_cast<void*>(prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
                   },
                   &sem));

  ASSERT_EQ(1, mallopt(M_BIONIC_SET_HEAP_TAGGING_LEVEL, M_HEAP_TAGGING_LEVEL_NONE));
  ASSERT_EQ(0, sem_post(&sem));

  int my_tagged_addr_ctrl = prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0);
  ASSERT_EQ(static_cast<unsigned long>(PR_MTE_TCF_NONE), my_tagged_addr_ctrl & PR_MTE_TCF_MASK);

  void* retval;
  ASSERT_EQ(0, pthread_join(thread, &retval));
  int thread_tagged_addr_ctrl = reinterpret_cast<uintptr_t>(retval);
  ASSERT_EQ(my_tagged_addr_ctrl, thread_tagged_addr_ctrl);
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

TEST(malloc, allocation_slack) {
#if defined(__BIONIC__)
  SKIP_WITH_NATIVE_BRIDGE;  // http://b/189606147

  bool allocator_scudo;
  GetAllocatorVersion(&allocator_scudo);
  if (!allocator_scudo) {
    GTEST_SKIP() << "scudo allocator only test";
  }

  // Test that older target SDK levels let you access a few bytes off the end of
  // a large allocation.
  android_set_application_target_sdk_version(29);
  auto p = std::make_unique<char[]>(131072);
  volatile char *vp = p.get();
  volatile char oob ATTRIBUTE_UNUSED = vp[131072];
#else
  GTEST_SKIP() << "bionic extension";
#endif
}

// Regression test for b/206701345 -- scudo bug, MTE only.
// Fix: https://reviews.llvm.org/D105261
// Fix: https://android-review.googlesource.com/c/platform/external/scudo/+/1763655
TEST(malloc, realloc_mte_crash_b206701345) {
  // We want to hit in-place realloc at the very end of an mmap-ed region.  Not
  // all size classes allow such placement - mmap size has to be divisible by
  // the block size. At the time of writing this could only be reproduced with
  // 64 byte size class (i.e. 48 byte allocations), but that may change in the
  // future. Try several different classes at the lower end.
  std::vector<void*> ptrs(10000);
  for (int i = 1; i < 32; ++i) {
    size_t sz = 16 * i - 1;
    for (void*& p : ptrs) {
      p = realloc(malloc(sz), sz + 1);
    }

    for (void* p : ptrs) {
      free(p);
    }
  }
}

void VerifyAllocationsAreZero(std::function<void*(size_t)> alloc_func, std::string function_name,
                              std::vector<size_t>& test_sizes, size_t max_allocations) {
  // Vector of zero'd data used for comparisons. Make it twice the largest size.
  std::vector<char> zero(test_sizes.back() * 2, 0);

  SCOPED_TRACE(testing::Message() << function_name << " failed to zero memory");

  for (size_t test_size : test_sizes) {
    std::vector<void*> ptrs(max_allocations);
    for (size_t i = 0; i < ptrs.size(); i++) {
      SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i);
      ptrs[i] = alloc_func(test_size);
      ASSERT_TRUE(ptrs[i] != nullptr);
      size_t alloc_size = malloc_usable_size(ptrs[i]);
      ASSERT_LE(alloc_size, zero.size());
      ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size));

      // Set the memory to non-zero to make sure if the pointer
      // is reused it's still zero.
      memset(ptrs[i], 0xab, alloc_size);
    }
    // Free the pointers.
    for (size_t i = 0; i < ptrs.size(); i++) {
      free(ptrs[i]);
    }
    for (size_t i = 0; i < ptrs.size(); i++) {
      SCOPED_TRACE(testing::Message() << "size " << test_size << " at iteration " << i);
      ptrs[i] = malloc(test_size);
      ASSERT_TRUE(ptrs[i] != nullptr);
      size_t alloc_size = malloc_usable_size(ptrs[i]);
      ASSERT_LE(alloc_size, zero.size());
      ASSERT_EQ(0, memcmp(ptrs[i], zero.data(), alloc_size));
    }
    // Free all of the pointers later to maximize the chance of reusing from
    // the first loop.
    for (size_t i = 0; i < ptrs.size(); i++) {
      free(ptrs[i]);
    }
  }
}

// Verify that small and medium allocations are always zero.
// @CddTest = 9.7/C-4-1
TEST(malloc, zeroed_allocations_small_medium_sizes) {
#if !defined(__BIONIC__)
  GTEST_SKIP() << "Only valid on bionic";
#endif

  if (IsLowRamDevice()) {
    GTEST_SKIP() << "Skipped on low memory devices.";
  }

  constexpr size_t kMaxAllocations = 1024;
  std::vector<size_t> test_sizes = {16, 48, 128, 1024, 4096, 65536};
  VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes,
                           kMaxAllocations);

  VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign",
                           test_sizes, kMaxAllocations);

  VerifyAllocationsAreZero(
      [](size_t size) -> void* {
        void* ptr;
        if (posix_memalign(&ptr, 64, size) == 0) {
          return ptr;
        }
        return nullptr;
      },
      "posix_memalign", test_sizes, kMaxAllocations);
}

// Verify that large allocations are always zero.
// @CddTest = 9.7/C-4-1
TEST(malloc, zeroed_allocations_large_sizes) {
#if !defined(__BIONIC__)
  GTEST_SKIP() << "Only valid on bionic";
#endif

  if (IsLowRamDevice()) {
    GTEST_SKIP() << "Skipped on low memory devices.";
  }

  constexpr size_t kMaxAllocations = 20;
  std::vector<size_t> test_sizes = {1000000, 2000000, 3000000, 4000000};
  VerifyAllocationsAreZero([](size_t size) -> void* { return malloc(size); }, "malloc", test_sizes,
                           kMaxAllocations);

  VerifyAllocationsAreZero([](size_t size) -> void* { return memalign(64, size); }, "memalign",
                           test_sizes, kMaxAllocations);

  VerifyAllocationsAreZero(
      [](size_t size) -> void* {
        void* ptr;
        if (posix_memalign(&ptr, 64, size) == 0) {
          return ptr;
        }
        return nullptr;
      },
      "posix_memalign", test_sizes, kMaxAllocations);
}

// Verify that reallocs are zeroed when expanded.
// @CddTest = 9.7/C-4-1
TEST(malloc, zeroed_allocations_realloc) {
#if !defined(__BIONIC__)
  GTEST_SKIP() << "Only valid on bionic";
#endif

  if (IsLowRamDevice()) {
    GTEST_SKIP() << "Skipped on low memory devices.";
  }

  // Vector of zero'd data used for comparisons.
  constexpr size_t kMaxMemorySize = 131072;
  std::vector<char> zero(kMaxMemorySize, 0);

  constexpr size_t kMaxAllocations = 1024;
  std::vector<size_t> test_sizes = {16, 48, 128, 1024, 4096, 65536};
  // Do a number of allocations and set them to non-zero.
  for (size_t test_size : test_sizes) {
    std::vector<void*> ptrs(kMaxAllocations);
    for (size_t i = 0; i < kMaxAllocations; i++) {
      ptrs[i] = malloc(test_size);
      ASSERT_TRUE(ptrs[i] != nullptr);

      // Set the memory to non-zero to make sure if the pointer
      // is reused it's still zero.
      memset(ptrs[i], 0xab, malloc_usable_size(ptrs[i]));
    }
    // Free the pointers.
    for (size_t i = 0; i < kMaxAllocations; i++) {
      free(ptrs[i]);
    }
  }

  // Do the reallocs to a larger size and verify the rest of the allocation
  // is zero.
  constexpr size_t kInitialSize = 8;
  for (size_t test_size : test_sizes) {
    std::vector<void*> ptrs(kMaxAllocations);
    for (size_t i = 0; i < kMaxAllocations; i++) {
      ptrs[i] = malloc(kInitialSize);
      ASSERT_TRUE(ptrs[i] != nullptr);
      size_t orig_alloc_size = malloc_usable_size(ptrs[i]);

      ptrs[i] = realloc(ptrs[i], test_size);
      ASSERT_TRUE(ptrs[i] != nullptr);
      size_t new_alloc_size = malloc_usable_size(ptrs[i]);
      char* ptr = reinterpret_cast<char*>(ptrs[i]);
      ASSERT_EQ(0, memcmp(&ptr[orig_alloc_size], zero.data(), new_alloc_size - orig_alloc_size))
          << "realloc from " << kInitialSize << " to size " << test_size << " at iteration " << i;
    }
    for (size_t i = 0; i < kMaxAllocations; i++) {
      free(ptrs[i]);
    }
  }
}

TEST(android_mallopt, get_decay_time_enabled_errors) {
#if defined(__BIONIC__)
  errno = 0;
  EXPECT_FALSE(android_mallopt(M_GET_DECAY_TIME_ENABLED, nullptr, sizeof(bool)));
  EXPECT_ERRNO(EINVAL);

  errno = 0;
  int value;
  EXPECT_FALSE(android_mallopt(M_GET_DECAY_TIME_ENABLED, &value, sizeof(value)));
  EXPECT_ERRNO(EINVAL);
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}

TEST(android_mallopt, get_decay_time_enabled) {
#if defined(__BIONIC__)
  SKIP_WITH_HWASAN << "hwasan does not implement mallopt";

  EXPECT_EQ(1, mallopt(M_DECAY_TIME, 0));

  bool value;
  EXPECT_TRUE(android_mallopt(M_GET_DECAY_TIME_ENABLED, &value, sizeof(value)));
  EXPECT_FALSE(value);

  EXPECT_EQ(1, mallopt(M_DECAY_TIME, 1));
  EXPECT_TRUE(android_mallopt(M_GET_DECAY_TIME_ENABLED, &value, sizeof(value)));
  EXPECT_TRUE(value);

  EXPECT_EQ(1, mallopt(M_DECAY_TIME, -1));
  EXPECT_TRUE(android_mallopt(M_GET_DECAY_TIME_ENABLED, &value, sizeof(value)));
  EXPECT_FALSE(value);
#else
  GTEST_SKIP() << "bionic-only test";
#endif
}