// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "harness/compat.h" #include #include #include #include #include #include "procs.h" #include "harness/conversions.h" #include "harness/typeWrappers.h" // clang-format off const cl_mem_flags flag_set[] = { CL_MEM_ALLOC_HOST_PTR, CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR, CL_MEM_USE_HOST_PTR, CL_MEM_COPY_HOST_PTR, 0 }; const char *flag_set_names[] = { "CL_MEM_ALLOC_HOST_PTR", "CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR", "CL_MEM_USE_HOST_PTR", "CL_MEM_COPY_HOST_PTR", "0" }; // clang-format on int test_enqueue_map_buffer(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements) { int error; const size_t bufferSize = 256 * 256; MTdataHolder d{ gRandomSeed }; BufferOwningPtr hostPtrData{ malloc(bufferSize) }; BufferOwningPtr referenceData{ malloc(bufferSize) }; BufferOwningPtr finalData{ malloc(bufferSize) }; for (size_t src_flag_id = 0; src_flag_id < ARRAY_SIZE(flag_set); src_flag_id++) { clMemWrapper memObject; log_info("Testing with cl_mem_flags src: %s\n", flag_set_names[src_flag_id]); generate_random_data(kChar, (unsigned int)bufferSize, d, hostPtrData); memcpy(referenceData, hostPtrData, bufferSize); void *hostPtr = nullptr; cl_mem_flags flags = flag_set[src_flag_id]; bool hasHostPtr = (flags & CL_MEM_USE_HOST_PTR) || (flags & CL_MEM_COPY_HOST_PTR); if (hasHostPtr) hostPtr = hostPtrData; memObject = clCreateBuffer(context, flags, bufferSize, hostPtr, &error); test_error(error, "Unable to create testing buffer"); if (!hasHostPtr) { error = clEnqueueWriteBuffer(queue, memObject, CL_TRUE, 0, bufferSize, hostPtrData, 0, NULL, NULL); test_error(error, "clEnqueueWriteBuffer failed"); } for (int i = 0; i < 128; i++) { size_t offset = (size_t)random_in_range(0, (int)bufferSize - 1, d); size_t length = (size_t)random_in_range(1, (int)(bufferSize - offset), d); cl_char *mappedRegion = (cl_char *)clEnqueueMapBuffer( queue, memObject, CL_TRUE, CL_MAP_READ | CL_MAP_WRITE, offset, length, 0, NULL, NULL, &error); if (error != CL_SUCCESS) { print_error(error, "clEnqueueMapBuffer call failed"); log_error("\tOffset: %d Length: %d\n", (int)offset, (int)length); return -1; } // Write into the region for (size_t j = 0; j < length; j++) { cl_char spin = (cl_char)genrand_int32(d); // Test read AND write in one swipe cl_char value = mappedRegion[j]; value = spin - value; mappedRegion[j] = value; // Also update the initial data array value = referenceData[offset + j]; value = spin - value; referenceData[offset + j] = value; } // Unmap error = clEnqueueUnmapMemObject(queue, memObject, mappedRegion, 0, NULL, NULL); test_error(error, "Unable to unmap buffer"); } // Final validation: read actual values of buffer and compare against // our reference error = clEnqueueReadBuffer(queue, memObject, CL_TRUE, 0, bufferSize, finalData, 0, NULL, NULL); test_error(error, "Unable to read results"); for (size_t q = 0; q < bufferSize; q++) { if (referenceData[q] != finalData[q]) { log_error( "ERROR: Sample %d did not validate! Got %d, expected %d\n", (int)q, (int)finalData[q], (int)referenceData[q]); return -1; } } } // cl_mem flags return 0; } int test_enqueue_map_image(cl_device_id deviceID, cl_context context, cl_command_queue queue, int num_elements) { int error; cl_image_format format = { CL_RGBA, CL_UNSIGNED_INT32 }; const size_t imageSize = 256; const size_t imageDataSize = imageSize * imageSize * 4 * sizeof(cl_uint); PASSIVE_REQUIRE_IMAGE_SUPPORT(deviceID) BufferOwningPtr hostPtrData{ malloc(imageDataSize) }; BufferOwningPtr referenceData{ malloc(imageDataSize) }; BufferOwningPtr finalData{ malloc(imageDataSize) }; MTdataHolder d{ gRandomSeed }; for (size_t src_flag_id = 0; src_flag_id < ARRAY_SIZE(flag_set); src_flag_id++) { clMemWrapper memObject; log_info("Testing with cl_mem_flags src: %s\n", flag_set_names[src_flag_id]); generate_random_data(kUInt, (unsigned int)(imageSize * imageSize * 4), d, hostPtrData); memcpy(referenceData, hostPtrData, imageDataSize); cl_mem_flags flags = flag_set[src_flag_id]; bool hasHostPtr = (flags & CL_MEM_USE_HOST_PTR) || (flags & CL_MEM_COPY_HOST_PTR); void *hostPtr = nullptr; if (hasHostPtr) hostPtr = hostPtrData; memObject = create_image_2d(context, CL_MEM_READ_WRITE | flags, &format, imageSize, imageSize, 0, hostPtr, &error); test_error(error, "Unable to create testing buffer"); if (!hasHostPtr) { size_t write_origin[3] = { 0, 0, 0 }, write_region[3] = { imageSize, imageSize, 1 }; error = clEnqueueWriteImage(queue, memObject, CL_TRUE, write_origin, write_region, 0, 0, hostPtrData, 0, NULL, NULL); test_error(error, "Unable to write to testing buffer"); } for (int i = 0; i < 128; i++) { size_t offset[3], region[3]; size_t rowPitch; offset[0] = (size_t)random_in_range(0, (int)imageSize - 1, d); region[0] = (size_t)random_in_range(1, (int)(imageSize - offset[0] - 1), d); offset[1] = (size_t)random_in_range(0, (int)imageSize - 1, d); region[1] = (size_t)random_in_range(1, (int)(imageSize - offset[1] - 1), d); offset[2] = 0; region[2] = 1; cl_uint *mappedRegion = (cl_uint *)clEnqueueMapImage( queue, memObject, CL_TRUE, CL_MAP_READ | CL_MAP_WRITE, offset, region, &rowPitch, NULL, 0, NULL, NULL, &error); if (error != CL_SUCCESS) { print_error(error, "clEnqueueMapImage call failed"); log_error("\tOffset: %d,%d Region: %d,%d\n", (int)offset[0], (int)offset[1], (int)region[0], (int)region[1]); return -1; } // Write into the region cl_uint *mappedPtr = mappedRegion; for (size_t y = 0; y < region[1]; y++) { for (size_t x = 0; x < region[0] * 4; x++) { cl_int spin = (cl_int)random_in_range(16, 1024, d); cl_int value; // Test read AND write in one swipe value = mappedPtr[(y * rowPitch / sizeof(cl_uint)) + x]; value = spin - value; mappedPtr[(y * rowPitch / sizeof(cl_uint)) + x] = value; // Also update the initial data array value = referenceData[((offset[1] + y) * imageSize + offset[0]) * 4 + x]; value = spin - value; referenceData[((offset[1] + y) * imageSize + offset[0]) * 4 + x] = value; } } // Unmap error = clEnqueueUnmapMemObject(queue, memObject, mappedRegion, 0, NULL, NULL); test_error(error, "Unable to unmap buffer"); } // Final validation: read actual values of buffer and compare against // our reference size_t finalOrigin[3] = { 0, 0, 0 }, finalRegion[3] = { imageSize, imageSize, 1 }; error = clEnqueueReadImage(queue, memObject, CL_TRUE, finalOrigin, finalRegion, 0, 0, finalData, 0, NULL, NULL); test_error(error, "Unable to read results"); for (size_t q = 0; q < imageSize * imageSize * 4; q++) { if (referenceData[q] != finalData[q]) { log_error( "ERROR: Sample %d (coord %d,%d) did not validate! Got " "%d, expected %d\n", (int)q, (int)((q / 4) % imageSize), (int)((q / 4) / imageSize), (int)finalData[q], (int)referenceData[q]); return -1; } } } // cl_mem_flags return 0; }