// // Copyright (c) 2017 The Khronos Group Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "../testBase.h" struct image_kernel_data { cl_int width; cl_int height; cl_int depth; cl_int widthDim; cl_int heightDim; cl_int depthDim; cl_int channelType; cl_int channelOrder; cl_int expectedChannelType; cl_int expectedChannelOrder; }; static const char *methodTestKernelPattern = "typedef struct {\n" " int width;\n" " int height;\n" " int depth;\n" " int widthDim;\n" " int heightDim;\n" " int depthDim;\n" " int channelType;\n" " int channelOrder;\n" " int expectedChannelType;\n" " int expectedChannelOrder;\n" " } image_kernel_data;\n" " %s\n" "__kernel void sample_kernel( %s image%dd%s_t input, __global " "image_kernel_data *outData )\n" "{\n" " outData->width = get_image_width( input );\n" " outData->height = get_image_height( input );\n" "%s\n" " int%d dim = get_image_dim( input );\n" " outData->widthDim = dim.x;\n" " outData->heightDim = dim.y;\n" "%s\n" " outData->channelType = get_image_channel_data_type( input );\n" " outData->channelOrder = get_image_channel_order( input );\n" "\n" " outData->expectedChannelType = %s;\n" " outData->expectedChannelOrder = %s;\n" "}"; static const char *depthKernelLine = " outData->depth = get_image_depth( input );\n"; static const char *depthDimKernelLine = " outData->depthDim = dim.z;\n"; int test_get_image_info_single(cl_context context, cl_command_queue queue, image_descriptor *imageInfo, MTdata d, cl_mem_flags flags) { int error = 0; clProgramWrapper program; clKernelWrapper kernel; clMemWrapper image, outDataBuffer; char programSrc[ 10240 ]; image_kernel_data outKernelData; // Generate some data to test against BufferOwningPtr imageValues; generate_random_image_data( imageInfo, imageValues, d ); // Construct testing source if( gDebugTrace ) log_info( " - Creating image %d by %d...\n", (int)imageInfo->width, (int)imageInfo->height ); if( imageInfo->depth != 0 ) image = create_image_3d(context, flags, imageInfo->format, imageInfo->width, imageInfo->height, imageInfo->depth, 0, 0, NULL, &error); else image = create_image_2d(context, flags, imageInfo->format, imageInfo->width, imageInfo->height, 0, NULL, &error); if( image == NULL ) { log_error( "ERROR: Unable to create image of size %d x %d x %d (%s)", (int)imageInfo->width, (int)imageInfo->height, (int)imageInfo->depth, IGetErrorString( error ) ); return -1; } char channelTypeConstantString[256] = {0}; char channelOrderConstantString[256] = {0}; const char* channelTypeName = GetChannelTypeName( imageInfo->format->image_channel_data_type ); const char* channelOrderName = GetChannelOrderName( imageInfo->format->image_channel_order ); const char *image_access_qualifier = (flags == CL_MEM_READ_ONLY) ? "read_only" : "write_only"; const char *cl_khr_3d_image_writes_enabler = ""; if ((flags != CL_MEM_READ_ONLY) && (imageInfo->depth != 0)) cl_khr_3d_image_writes_enabler = "#pragma OPENCL EXTENSION cl_khr_3d_image_writes : enable"; if(channelTypeName && strlen(channelTypeName)) sprintf(channelTypeConstantString, "CLK_%s", &channelTypeName[3]); // replace CL_* with CLK_* if(channelOrderName && strlen(channelOrderName)) sprintf(channelOrderConstantString, "CLK_%s", &channelOrderName[3]); // replace CL_* with CLK_* // Create a program to run against sprintf(programSrc, methodTestKernelPattern, cl_khr_3d_image_writes_enabler, image_access_qualifier, (imageInfo->depth != 0) ? 3 : 2, (imageInfo->format->image_channel_order == CL_DEPTH) ? "_depth" : "", (imageInfo->depth != 0) ? depthKernelLine : "", (imageInfo->depth != 0) ? 4 : 2, (imageInfo->depth != 0) ? depthDimKernelLine : "", channelTypeConstantString, channelOrderConstantString); //log_info("-----------------------------------\n%s\n", programSrc); error = clFinish(queue); if (error) print_error(error, "clFinish failed.\n"); const char *ptr = programSrc; error = create_single_kernel_helper(context, &program, &kernel, 1, &ptr, "sample_kernel"); test_error( error, "Unable to create kernel to test against" ); // Create an output buffer outDataBuffer = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(outKernelData), NULL, &error); test_error( error, "Unable to create output buffer" ); // Set up arguments and run error = clSetKernelArg( kernel, 0, sizeof( image ), &image ); test_error( error, "Unable to set kernel argument" ); error = clSetKernelArg( kernel, 1, sizeof( outDataBuffer ), &outDataBuffer ); test_error( error, "Unable to set kernel argument" ); size_t threads[1] = { 1 }, localThreads[1] = { 1 }; error = clEnqueueNDRangeKernel( queue, kernel, 1, NULL, threads, localThreads, 0, NULL, NULL ); test_error( error, "Unable to run kernel" ); error = clEnqueueReadBuffer( queue, outDataBuffer, CL_TRUE, 0, sizeof( outKernelData ), &outKernelData, 0, NULL, NULL ); test_error( error, "Unable to read data buffer" ); // Verify the results now if( outKernelData.width != (cl_int)imageInfo->width ) { log_error( "ERROR: Returned width did not validate (expected %d, got %d)\n", (int)imageInfo->width, (int)outKernelData.width ); error = -1; } if( outKernelData.height != (cl_int)imageInfo->height ) { log_error( "ERROR: Returned height did not validate (expected %d, got %d)\n", (int)imageInfo->height, (int)outKernelData.height ); error = -1; } if( ( imageInfo->depth != 0 ) && ( outKernelData.depth != (cl_int)imageInfo->depth ) ) { log_error( "ERROR: Returned depth did not validate (expected %d, got %d)\n", (int)imageInfo->depth, (int)outKernelData.depth ); error = -1; } if( outKernelData.widthDim != (cl_int)imageInfo->width ) { log_error( "ERROR: Returned width from get_image_dim did not validate (expected %d, got %d)\n", (int)imageInfo->width, (int)outKernelData.widthDim ); error = -1; } if( outKernelData.heightDim != (cl_int)imageInfo->height ) { log_error( "ERROR: Returned height from get_image_dim did not validate (expected %d, got %d)\n", (int)imageInfo->height, (int)outKernelData.heightDim ); error = -1; } if( ( imageInfo->depth != 0 ) && ( outKernelData.depthDim != (cl_int)imageInfo->depth ) ) { log_error( "ERROR: Returned depth from get_image_dim did not validate (expected %d, got %d)\n", (int)imageInfo->depth, (int)outKernelData.depthDim ); error = -1; } if( outKernelData.channelType != (cl_int)outKernelData.expectedChannelType ) { log_error( "ERROR: Returned channel type did not validate (expected %s (%d), got %d)\n", GetChannelTypeName( imageInfo->format->image_channel_data_type ), (int)outKernelData.expectedChannelType, (int)outKernelData.channelType ); error = -1; } if( outKernelData.channelOrder != (cl_int)outKernelData.expectedChannelOrder ) { log_error( "ERROR: Returned channel order did not validate (expected %s (%d), got %d)\n", GetChannelOrderName( imageInfo->format->image_channel_order ), (int)outKernelData.expectedChannelOrder, (int)outKernelData.channelOrder ); error = -1; } if( clFinish(queue) != CL_SUCCESS ) { log_error( "ERROR: CL Finished failed in %s \n", __FUNCTION__); error = -1; } return error; } int test_get_image_info_2D(cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format, cl_mem_flags flags) { size_t maxWidth, maxHeight; cl_ulong maxAllocSize, memSize; image_descriptor imageInfo = { 0 }; RandomSeed seed( gRandomSeed ); size_t pixelSize; imageInfo.type = CL_MEM_OBJECT_IMAGE2D; imageInfo.format = format; imageInfo.depth = imageInfo.slicePitch = 0; pixelSize = get_pixel_size( imageInfo.format ); int error = clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE2D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL ); error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL ); test_error( error, "Unable to get max image 2D size from device" ); if (memSize > (cl_ulong)SIZE_MAX) { memSize = (cl_ulong)SIZE_MAX; maxAllocSize = (cl_ulong)SIZE_MAX; } if( gTestSmallImages ) { for( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ ) { imageInfo.rowPitch = imageInfo.width * pixelSize; for( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ ) { if( gDebugTrace ) log_info( " at size %d,%d\n", (int)imageInfo.width, (int)imageInfo.height ); int ret = test_get_image_info_single(context, queue, &imageInfo, seed, flags); if( ret ) return -1; } } } else if( gTestMaxImages ) { // Try a specific set of maximum sizes size_t numbeOfSizes; size_t sizes[100][3]; get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, 1, 1, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE2D, imageInfo.format); for( size_t idx = 0; idx < numbeOfSizes; idx++ ) { imageInfo.width = sizes[ idx ][ 0 ]; imageInfo.height = sizes[ idx ][ 1 ]; imageInfo.rowPitch = imageInfo.width * pixelSize; log_info( "Testing %d x %d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ]); if( gDebugTrace ) log_info( " at max size %d,%d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ] ); if (test_get_image_info_single(context, queue, &imageInfo, seed, flags)) return -1; } } else { for( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ ) { cl_ulong size; // Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that // image, the result array, plus offset arrays, will fit in the global ram space do { imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed ); imageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed ); imageInfo.rowPitch = imageInfo.width * pixelSize; size_t extraWidth = (int)random_log_in_range( 0, 64, seed ); imageInfo.rowPitch += extraWidth; do { extraWidth++; imageInfo.rowPitch += extraWidth; } while ((imageInfo.rowPitch % pixelSize) != 0); size = (cl_ulong)imageInfo.rowPitch * (cl_ulong)imageInfo.height * 4; } while( size > maxAllocSize || ( size * 3 ) > memSize ); if( gDebugTrace ) log_info( " at size %d,%d (row pitch %d) out of %d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.rowPitch, (int)maxWidth, (int)maxHeight ); int ret = test_get_image_info_single(context, queue, &imageInfo, seed, flags); if( ret ) return -1; } } return 0; }