//===-- Utility class to test different flavors of fma --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef LLVM_LIBC_TEST_SRC_MATH_FMATEST_H #define LLVM_LIBC_TEST_SRC_MATH_FMATEST_H #include "src/__support/FPUtil/FPBits.h" #include "src/stdlib/rand.h" #include "src/stdlib/srand.h" #include "test/UnitTest/FEnvSafeTest.h" #include "test/UnitTest/FPMatcher.h" #include "test/UnitTest/Test.h" #include "utils/MPFRWrapper/MPFRUtils.h" namespace mpfr = LIBC_NAMESPACE::testing::mpfr; template class FmaTestTemplate : public LIBC_NAMESPACE::testing::FEnvSafeTest { private: using Func = T (*)(T, T, T); using FPBits = LIBC_NAMESPACE::fputil::FPBits; using StorageType = typename FPBits::StorageType; const T min_subnormal = FPBits::min_subnormal(Sign::POS).get_val(); const T min_normal = FPBits::min_normal(Sign::POS).get_val(); const T max_normal = FPBits::max_normal(Sign::POS).get_val(); const T inf = FPBits::inf(Sign::POS).get_val(); const T neg_inf = FPBits::inf(Sign::NEG).get_val(); const T zero = FPBits::zero(Sign::POS).get_val(); const T neg_zero = FPBits::zero(Sign::NEG).get_val(); const T nan = FPBits::quiet_nan().get_val(); static constexpr StorageType MAX_NORMAL = FPBits::max_normal().uintval(); static constexpr StorageType MIN_NORMAL = FPBits::min_normal().uintval(); static constexpr StorageType MAX_SUBNORMAL = FPBits::max_subnormal().uintval(); static constexpr StorageType MIN_SUBNORMAL = FPBits::min_subnormal().uintval(); StorageType get_random_bit_pattern() { StorageType bits{0}; for (StorageType i = 0; i < sizeof(StorageType) / 2; ++i) { bits = (bits << 2) + static_cast(LIBC_NAMESPACE::rand()); } return bits; } public: void test_special_numbers(Func func) { EXPECT_FP_EQ(func(zero, zero, zero), zero); EXPECT_FP_EQ(func(zero, neg_zero, neg_zero), neg_zero); EXPECT_FP_EQ(func(inf, inf, zero), inf); EXPECT_FP_EQ(func(neg_inf, inf, neg_inf), neg_inf); EXPECT_FP_EQ(func(inf, zero, zero), nan); EXPECT_FP_EQ(func(inf, neg_inf, inf), nan); EXPECT_FP_EQ(func(nan, zero, inf), nan); EXPECT_FP_EQ(func(inf, neg_inf, nan), nan); // Test underflow rounding up. EXPECT_FP_EQ(func(T(0.5), min_subnormal, min_subnormal), FPBits(StorageType(2)).get_val()); // Test underflow rounding down. T v = FPBits(MIN_NORMAL + StorageType(1)).get_val(); EXPECT_FP_EQ(func(T(1) / T(MIN_NORMAL << 1), v, min_normal), v); // Test overflow. T z = max_normal; EXPECT_FP_EQ(func(T(1.75), z, -z), T(0.75) * z); // Exact cancellation. EXPECT_FP_EQ(func(T(3.0), T(5.0), -T(15.0)), T(0.0)); EXPECT_FP_EQ(func(T(-3.0), T(5.0), T(15.0)), T(0.0)); } void test_subnormal_range(Func func) { constexpr StorageType COUNT = 100'001; constexpr StorageType STEP = (MAX_SUBNORMAL - MIN_SUBNORMAL) / COUNT; LIBC_NAMESPACE::srand(1); for (StorageType v = MIN_SUBNORMAL, w = MAX_SUBNORMAL; v <= MAX_SUBNORMAL && w >= MIN_SUBNORMAL; v += STEP, w -= STEP) { T x = FPBits(get_random_bit_pattern()).get_val(), y = FPBits(v).get_val(), z = FPBits(w).get_val(); mpfr::TernaryInput input{x, y, z}; ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Fma, input, func(x, y, z), 0.5); } } void test_normal_range(Func func) { constexpr StorageType COUNT = 100'001; constexpr StorageType STEP = (MAX_NORMAL - MIN_NORMAL) / COUNT; LIBC_NAMESPACE::srand(1); for (StorageType v = MIN_NORMAL, w = MAX_NORMAL; v <= MAX_NORMAL && w >= MIN_NORMAL; v += STEP, w -= STEP) { T x = FPBits(v).get_val(), y = FPBits(w).get_val(), z = FPBits(get_random_bit_pattern()).get_val(); mpfr::TernaryInput input{x, y, z}; ASSERT_MPFR_MATCH_ALL_ROUNDING(mpfr::Operation::Fma, input, func(x, y, z), 0.5); } } }; #endif // LLVM_LIBC_TEST_SRC_MATH_FMATEST_H