/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include "drm-uapi/amdgpu_drm.h" #include "util/detect_os.h" #include "util/os_time.h" #include "util/u_memory.h" #include "ac_debug.h" #include "radv_amdgpu_bo.h" #include "radv_amdgpu_cs.h" #include "radv_amdgpu_winsys.h" #include "radv_debug.h" #include "radv_radeon_winsys.h" #include "sid.h" #include "vk_alloc.h" #include "vk_drm_syncobj.h" #include "vk_sync.h" #include "vk_sync_dummy.h" /* Some BSDs don't define ENODATA (and ENODATA is replaced with different error * codes in the kernel). */ #if DETECT_OS_OPENBSD #define ENODATA ENOTSUP #elif DETECT_OS_FREEBSD || DETECT_OS_DRAGONFLY #define ENODATA ECONNREFUSED #endif /* Maximum allowed total number of submitted IBs. */ #define RADV_MAX_IBS_PER_SUBMIT 192 enum { VIRTUAL_BUFFER_HASH_TABLE_SIZE = 1024 }; struct radv_amdgpu_ib { struct radeon_winsys_bo *bo; unsigned cdw; unsigned offset; /* VA offset */ bool is_external; /* Not owned by the current CS object. */ }; struct radv_amdgpu_cs_ib_info { int64_t flags; uint64_t ib_mc_address; uint32_t size; enum amd_ip_type ip_type; }; struct radv_amdgpu_cs { struct radeon_cmdbuf base; struct radv_amdgpu_winsys *ws; struct radv_amdgpu_cs_ib_info ib; struct radeon_winsys_bo *ib_buffer; uint8_t *ib_mapped; unsigned max_num_buffers; unsigned num_buffers; struct drm_amdgpu_bo_list_entry *handles; struct radv_amdgpu_ib *ib_buffers; unsigned num_ib_buffers; unsigned max_num_ib_buffers; unsigned *ib_size_ptr; VkResult status; struct radv_amdgpu_cs *chained_to; bool use_ib; bool is_secondary; int buffer_hash_table[1024]; unsigned hw_ip; unsigned num_virtual_buffers; unsigned max_num_virtual_buffers; struct radeon_winsys_bo **virtual_buffers; int *virtual_buffer_hash_table; }; struct radv_winsys_sem_counts { uint32_t syncobj_count; uint32_t timeline_syncobj_count; uint32_t *syncobj; uint64_t *points; }; struct radv_winsys_sem_info { bool cs_emit_signal; bool cs_emit_wait; struct radv_winsys_sem_counts wait; struct radv_winsys_sem_counts signal; }; static void radeon_emit_unchecked(struct radeon_cmdbuf *cs, uint32_t value) { cs->buf[cs->cdw++] = value; } static uint32_t radv_amdgpu_ctx_queue_syncobj(struct radv_amdgpu_ctx *ctx, unsigned ip, unsigned ring); static inline struct radv_amdgpu_cs * radv_amdgpu_cs(struct radeon_cmdbuf *base) { return (struct radv_amdgpu_cs *)base; } static bool ring_can_use_ib_bos(const struct radv_amdgpu_winsys *ws, enum amd_ip_type ip_type) { return ws->use_ib_bos && (ip_type == AMD_IP_GFX || ip_type == AMD_IP_COMPUTE); } struct radv_amdgpu_cs_request { /** Specify HW IP block type to which to send the IB. */ unsigned ip_type; /** IP instance index if there are several IPs of the same type. */ unsigned ip_instance; /** * Specify ring index of the IP. We could have several rings * in the same IP. E.g. 0 for SDMA0 and 1 for SDMA1. */ uint32_t ring; /** * BO list handles used by this request. */ struct drm_amdgpu_bo_list_entry *handles; uint32_t num_handles; /** Number of IBs to submit in the field ibs. */ uint32_t number_of_ibs; /** * IBs to submit. Those IBs will be submitted together as single entity */ struct radv_amdgpu_cs_ib_info *ibs; /** * The returned sequence number for the command submission */ uint64_t seq_no; }; static VkResult radv_amdgpu_cs_submit(struct radv_amdgpu_ctx *ctx, struct radv_amdgpu_cs_request *request, struct radv_winsys_sem_info *sem_info); static void radv_amdgpu_request_to_fence(struct radv_amdgpu_ctx *ctx, struct radv_amdgpu_fence *fence, struct radv_amdgpu_cs_request *req) { fence->fence.context = ctx->ctx; fence->fence.ip_type = req->ip_type; fence->fence.ip_instance = req->ip_instance; fence->fence.ring = req->ring; fence->fence.fence = req->seq_no; } static struct radv_amdgpu_cs_ib_info radv_amdgpu_cs_ib_to_info(struct radv_amdgpu_cs *cs, struct radv_amdgpu_ib ib) { struct radv_amdgpu_cs_ib_info info = { .flags = 0, .ip_type = cs->hw_ip, .ib_mc_address = radv_amdgpu_winsys_bo(ib.bo)->base.va + ib.offset, .size = ib.cdw, }; return info; } static void radv_amdgpu_cs_destroy(struct radeon_cmdbuf *rcs) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(rcs); if (cs->ib_buffer) cs->ws->base.buffer_destroy(&cs->ws->base, cs->ib_buffer); for (unsigned i = 0; i < cs->num_ib_buffers; ++i) { if (cs->ib_buffers[i].is_external) continue; cs->ws->base.buffer_destroy(&cs->ws->base, cs->ib_buffers[i].bo); } free(cs->ib_buffers); free(cs->virtual_buffers); free(cs->virtual_buffer_hash_table); free(cs->handles); free(cs); } static void radv_amdgpu_init_cs(struct radv_amdgpu_cs *cs, enum amd_ip_type ip_type) { for (int i = 0; i < ARRAY_SIZE(cs->buffer_hash_table); ++i) cs->buffer_hash_table[i] = -1; cs->hw_ip = ip_type; } static enum radeon_bo_domain radv_amdgpu_cs_domain(const struct radeon_winsys *_ws) { const struct radv_amdgpu_winsys *ws = (const struct radv_amdgpu_winsys *)_ws; bool enough_vram = ws->info.all_vram_visible || p_atomic_read_relaxed(&ws->allocated_vram_vis) * 2 <= (uint64_t)ws->info.vram_vis_size_kb * 1024; /* Bandwidth should be equivalent to at least PCIe 3.0 x8. * If there is no PCIe info, assume there is enough bandwidth. */ bool enough_bandwidth = !ws->info.has_pcie_bandwidth_info || ws->info.pcie_bandwidth_mbps >= 8 * 0.985 * 1024; bool use_sam = (enough_vram && enough_bandwidth && ws->info.has_dedicated_vram && !(ws->perftest & RADV_PERFTEST_NO_SAM)) || (ws->perftest & RADV_PERFTEST_SAM); return use_sam ? RADEON_DOMAIN_VRAM : RADEON_DOMAIN_GTT; } static VkResult radv_amdgpu_cs_bo_create(struct radv_amdgpu_cs *cs, uint32_t ib_size) { struct radeon_winsys *ws = &cs->ws->base; /* Avoid memcpy from VRAM when a secondary cmdbuf can't always rely on IB2. */ const bool can_always_use_ib2 = cs->ws->info.gfx_level >= GFX8 && cs->hw_ip == AMD_IP_GFX; const bool avoid_vram = cs->is_secondary && !can_always_use_ib2; const enum radeon_bo_domain domain = avoid_vram ? RADEON_DOMAIN_GTT : radv_amdgpu_cs_domain(ws); const enum radeon_bo_flag gtt_wc_flag = avoid_vram ? 0 : RADEON_FLAG_GTT_WC; const enum radeon_bo_flag flags = RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING | RADEON_FLAG_READ_ONLY | gtt_wc_flag; return ws->buffer_create(ws, ib_size, cs->ws->info.ip[cs->hw_ip].ib_alignment, domain, flags, RADV_BO_PRIORITY_CS, 0, &cs->ib_buffer); } static VkResult radv_amdgpu_cs_get_new_ib(struct radeon_cmdbuf *_cs, uint32_t ib_size) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); VkResult result; result = radv_amdgpu_cs_bo_create(cs, ib_size); if (result != VK_SUCCESS) return result; cs->ib_mapped = cs->ws->base.buffer_map(cs->ib_buffer); if (!cs->ib_mapped) { cs->ws->base.buffer_destroy(&cs->ws->base, cs->ib_buffer); return VK_ERROR_OUT_OF_DEVICE_MEMORY; } cs->ib.ib_mc_address = radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va; cs->base.buf = (uint32_t *)cs->ib_mapped; cs->base.cdw = 0; cs->base.reserved_dw = 0; cs->base.max_dw = ib_size / 4 - 4; cs->ib.size = 0; cs->ib.ip_type = cs->hw_ip; if (cs->use_ib) cs->ib_size_ptr = &cs->ib.size; cs->ws->base.cs_add_buffer(&cs->base, cs->ib_buffer); return VK_SUCCESS; } static unsigned radv_amdgpu_cs_get_initial_size(struct radv_amdgpu_winsys *ws, enum amd_ip_type ip_type) { const uint32_t ib_alignment = ws->info.ip[ip_type].ib_alignment; assert(util_is_power_of_two_nonzero(ib_alignment)); return align(20 * 1024 * 4, ib_alignment); } static struct radeon_cmdbuf * radv_amdgpu_cs_create(struct radeon_winsys *ws, enum amd_ip_type ip_type, bool is_secondary) { struct radv_amdgpu_cs *cs; uint32_t ib_size = radv_amdgpu_cs_get_initial_size(radv_amdgpu_winsys(ws), ip_type); cs = calloc(1, sizeof(struct radv_amdgpu_cs)); if (!cs) return NULL; cs->is_secondary = is_secondary; cs->ws = radv_amdgpu_winsys(ws); radv_amdgpu_init_cs(cs, ip_type); cs->use_ib = ring_can_use_ib_bos(cs->ws, ip_type); VkResult result = radv_amdgpu_cs_get_new_ib(&cs->base, ib_size); if (result != VK_SUCCESS) { free(cs); return NULL; } return &cs->base; } static uint32_t get_nop_packet(struct radv_amdgpu_cs *cs) { switch (cs->hw_ip) { case AMDGPU_HW_IP_GFX: case AMDGPU_HW_IP_COMPUTE: return cs->ws->info.gfx_ib_pad_with_type2 ? PKT2_NOP_PAD : PKT3_NOP_PAD; case AMDGPU_HW_IP_DMA: return cs->ws->info.gfx_level == GFX6 ? 0xF0000000 : SDMA_NOP_PAD; case AMDGPU_HW_IP_UVD: case AMDGPU_HW_IP_UVD_ENC: return PKT2_NOP_PAD; case AMDGPU_HW_IP_VCN_DEC: return 0x81FF; case AMDGPU_HW_IP_VCN_ENC: return 0; /* NOPs are illegal in encode, so don't pad */ default: unreachable("Unknown IP type"); } } static void radv_amdgpu_cs_add_ib_buffer(struct radv_amdgpu_cs *cs, struct radeon_winsys_bo *bo, uint32_t offset, uint32_t cdw, bool is_external) { if (cs->num_ib_buffers == cs->max_num_ib_buffers) { unsigned max_num_ib_buffers = MAX2(1, cs->max_num_ib_buffers * 2); struct radv_amdgpu_ib *ib_buffers = realloc(cs->ib_buffers, max_num_ib_buffers * sizeof(*ib_buffers)); if (!ib_buffers) { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } cs->max_num_ib_buffers = max_num_ib_buffers; cs->ib_buffers = ib_buffers; } cs->ib_buffers[cs->num_ib_buffers].bo = bo; cs->ib_buffers[cs->num_ib_buffers].offset = offset; cs->ib_buffers[cs->num_ib_buffers].is_external = is_external; cs->ib_buffers[cs->num_ib_buffers++].cdw = cdw; } static void radv_amdgpu_restore_last_ib(struct radv_amdgpu_cs *cs) { struct radv_amdgpu_ib *ib = &cs->ib_buffers[--cs->num_ib_buffers]; assert(!ib->is_external); cs->ib_buffer = ib->bo; } static void radv_amdgpu_cs_grow(struct radeon_cmdbuf *_cs, size_t min_size) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); if (cs->status != VK_SUCCESS) { cs->base.cdw = 0; return; } const uint32_t ib_alignment = cs->ws->info.ip[cs->hw_ip].ib_alignment; cs->ws->base.cs_finalize(_cs); uint64_t ib_size = MAX2(min_size * 4 + 16, cs->base.max_dw * 4 * 2); /* max that fits in the chain size field. */ ib_size = align(MIN2(ib_size, 0xfffff), ib_alignment); VkResult result = radv_amdgpu_cs_bo_create(cs, ib_size); if (result != VK_SUCCESS) { cs->base.cdw = 0; cs->status = VK_ERROR_OUT_OF_DEVICE_MEMORY; radv_amdgpu_restore_last_ib(cs); } cs->ib_mapped = cs->ws->base.buffer_map(cs->ib_buffer); if (!cs->ib_mapped) { cs->ws->base.buffer_destroy(&cs->ws->base, cs->ib_buffer); cs->base.cdw = 0; /* VK_ERROR_MEMORY_MAP_FAILED is not valid for vkEndCommandBuffer. */ cs->status = VK_ERROR_OUT_OF_DEVICE_MEMORY; radv_amdgpu_restore_last_ib(cs); } cs->ws->base.cs_add_buffer(&cs->base, cs->ib_buffer); if (cs->use_ib) { cs->base.buf[cs->base.cdw - 4] = PKT3(PKT3_INDIRECT_BUFFER, 2, 0); cs->base.buf[cs->base.cdw - 3] = radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va; cs->base.buf[cs->base.cdw - 2] = radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va >> 32; cs->base.buf[cs->base.cdw - 1] = S_3F2_CHAIN(1) | S_3F2_VALID(1); cs->ib_size_ptr = cs->base.buf + cs->base.cdw - 1; } cs->base.buf = (uint32_t *)cs->ib_mapped; cs->base.cdw = 0; cs->base.reserved_dw = 0; cs->base.max_dw = ib_size / 4 - 4; } static VkResult radv_amdgpu_cs_finalize(struct radeon_cmdbuf *_cs) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); enum amd_ip_type ip_type = cs->hw_ip; assert(cs->base.cdw <= cs->base.reserved_dw); uint32_t ib_pad_dw_mask = MAX2(3, cs->ws->info.ip[ip_type].ib_pad_dw_mask); uint32_t nop_packet = get_nop_packet(cs); if (cs->use_ib) { /* Ensure that with the 4 dword reservation we subtract from max_dw we always * have 4 nops at the end for chaining. */ while (!cs->base.cdw || (cs->base.cdw & ib_pad_dw_mask) != ib_pad_dw_mask - 3) radeon_emit_unchecked(&cs->base, nop_packet); radeon_emit_unchecked(&cs->base, nop_packet); radeon_emit_unchecked(&cs->base, nop_packet); radeon_emit_unchecked(&cs->base, nop_packet); radeon_emit_unchecked(&cs->base, nop_packet); *cs->ib_size_ptr |= cs->base.cdw; } else { /* Pad the CS with NOP packets. */ bool pad = true; /* Don't pad on VCN encode/unified as no NOPs */ if (ip_type == AMDGPU_HW_IP_VCN_ENC) pad = false; /* Don't add padding to 0 length UVD due to kernel */ if (ip_type == AMDGPU_HW_IP_UVD && cs->base.cdw == 0) pad = false; if (pad) { while (!cs->base.cdw || (cs->base.cdw & ib_pad_dw_mask)) radeon_emit_unchecked(&cs->base, nop_packet); } } /* Append the current (last) IB to the array of IB buffers. */ radv_amdgpu_cs_add_ib_buffer(cs, cs->ib_buffer, 0, cs->use_ib ? G_3F2_IB_SIZE(*cs->ib_size_ptr) : cs->base.cdw, false); /* Prevent freeing this BO twice. */ cs->ib_buffer = NULL; cs->chained_to = NULL; assert(cs->base.cdw <= cs->base.max_dw + 4); return cs->status; } static void radv_amdgpu_cs_reset(struct radeon_cmdbuf *_cs) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); cs->base.cdw = 0; cs->base.reserved_dw = 0; cs->status = VK_SUCCESS; for (unsigned i = 0; i < cs->num_buffers; ++i) { unsigned hash = cs->handles[i].bo_handle & (ARRAY_SIZE(cs->buffer_hash_table) - 1); cs->buffer_hash_table[hash] = -1; } for (unsigned i = 0; i < cs->num_virtual_buffers; ++i) { unsigned hash = ((uintptr_t)cs->virtual_buffers[i] >> 6) & (VIRTUAL_BUFFER_HASH_TABLE_SIZE - 1); cs->virtual_buffer_hash_table[hash] = -1; } cs->num_buffers = 0; cs->num_virtual_buffers = 0; /* When the CS is finalized and IBs are not allowed, use last IB. */ assert(cs->ib_buffer || cs->num_ib_buffers); if (!cs->ib_buffer) radv_amdgpu_restore_last_ib(cs); cs->ws->base.cs_add_buffer(&cs->base, cs->ib_buffer); for (unsigned i = 0; i < cs->num_ib_buffers; ++i) { if (cs->ib_buffers[i].is_external) continue; cs->ws->base.buffer_destroy(&cs->ws->base, cs->ib_buffers[i].bo); } cs->num_ib_buffers = 0; cs->ib.ib_mc_address = radv_amdgpu_winsys_bo(cs->ib_buffer)->base.va; cs->ib.size = 0; if (cs->use_ib) cs->ib_size_ptr = &cs->ib.size; } static void radv_amdgpu_cs_unchain(struct radeon_cmdbuf *cs) { struct radv_amdgpu_cs *acs = radv_amdgpu_cs(cs); if (!acs->chained_to) return; assert(cs->cdw <= cs->max_dw + 4); acs->chained_to = NULL; cs->buf[cs->cdw - 4] = PKT3_NOP_PAD; cs->buf[cs->cdw - 3] = PKT3_NOP_PAD; cs->buf[cs->cdw - 2] = PKT3_NOP_PAD; cs->buf[cs->cdw - 1] = PKT3_NOP_PAD; } static bool radv_amdgpu_cs_chain(struct radeon_cmdbuf *cs, struct radeon_cmdbuf *next_cs, bool pre_ena) { /* Chains together two CS (command stream) objects by editing * the end of the first CS to add a command that jumps to the * second CS. * * After this, it is enough to submit the first CS to the GPU * and not necessary to submit the second CS because it is already * executed by the first. */ struct radv_amdgpu_cs *acs = radv_amdgpu_cs(cs); struct radv_amdgpu_cs *next_acs = radv_amdgpu_cs(next_cs); /* Only some HW IP types have packets that we can use for chaining. */ if (!acs->use_ib) return false; assert(cs->cdw <= cs->max_dw + 4); acs->chained_to = next_acs; cs->buf[cs->cdw - 4] = PKT3(PKT3_INDIRECT_BUFFER, 2, 0); cs->buf[cs->cdw - 3] = next_acs->ib.ib_mc_address; cs->buf[cs->cdw - 2] = next_acs->ib.ib_mc_address >> 32; cs->buf[cs->cdw - 1] = S_3F2_CHAIN(1) | S_3F2_VALID(1) | S_3F2_PRE_ENA(pre_ena) | next_acs->ib.size; return true; } static int radv_amdgpu_cs_find_buffer(struct radv_amdgpu_cs *cs, uint32_t bo) { unsigned hash = bo & (ARRAY_SIZE(cs->buffer_hash_table) - 1); int index = cs->buffer_hash_table[hash]; if (index == -1) return -1; if (cs->handles[index].bo_handle == bo) return index; for (unsigned i = 0; i < cs->num_buffers; ++i) { if (cs->handles[i].bo_handle == bo) { cs->buffer_hash_table[hash] = i; return i; } } return -1; } static void radv_amdgpu_cs_add_buffer_internal(struct radv_amdgpu_cs *cs, uint32_t bo, uint8_t priority) { unsigned hash; int index = radv_amdgpu_cs_find_buffer(cs, bo); if (index != -1) return; if (cs->num_buffers == cs->max_num_buffers) { unsigned new_count = MAX2(1, cs->max_num_buffers * 2); struct drm_amdgpu_bo_list_entry *new_entries = realloc(cs->handles, new_count * sizeof(struct drm_amdgpu_bo_list_entry)); if (new_entries) { cs->max_num_buffers = new_count; cs->handles = new_entries; } else { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } } cs->handles[cs->num_buffers].bo_handle = bo; cs->handles[cs->num_buffers].bo_priority = priority; hash = bo & (ARRAY_SIZE(cs->buffer_hash_table) - 1); cs->buffer_hash_table[hash] = cs->num_buffers; ++cs->num_buffers; } static void radv_amdgpu_cs_add_virtual_buffer(struct radeon_cmdbuf *_cs, struct radeon_winsys_bo *bo) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); unsigned hash = ((uintptr_t)bo >> 6) & (VIRTUAL_BUFFER_HASH_TABLE_SIZE - 1); if (!cs->virtual_buffer_hash_table) { int *virtual_buffer_hash_table = malloc(VIRTUAL_BUFFER_HASH_TABLE_SIZE * sizeof(int)); if (!virtual_buffer_hash_table) { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } cs->virtual_buffer_hash_table = virtual_buffer_hash_table; for (int i = 0; i < VIRTUAL_BUFFER_HASH_TABLE_SIZE; ++i) cs->virtual_buffer_hash_table[i] = -1; } if (cs->virtual_buffer_hash_table[hash] >= 0) { int idx = cs->virtual_buffer_hash_table[hash]; if (cs->virtual_buffers[idx] == bo) { return; } for (unsigned i = 0; i < cs->num_virtual_buffers; ++i) { if (cs->virtual_buffers[i] == bo) { cs->virtual_buffer_hash_table[hash] = i; return; } } } if (cs->max_num_virtual_buffers <= cs->num_virtual_buffers) { unsigned max_num_virtual_buffers = MAX2(2, cs->max_num_virtual_buffers * 2); struct radeon_winsys_bo **virtual_buffers = realloc(cs->virtual_buffers, sizeof(struct radeon_winsys_bo *) * max_num_virtual_buffers); if (!virtual_buffers) { cs->status = VK_ERROR_OUT_OF_HOST_MEMORY; return; } cs->max_num_virtual_buffers = max_num_virtual_buffers; cs->virtual_buffers = virtual_buffers; } cs->virtual_buffers[cs->num_virtual_buffers] = bo; cs->virtual_buffer_hash_table[hash] = cs->num_virtual_buffers; ++cs->num_virtual_buffers; } static void radv_amdgpu_cs_add_buffer(struct radeon_cmdbuf *_cs, struct radeon_winsys_bo *_bo) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); struct radv_amdgpu_winsys_bo *bo = radv_amdgpu_winsys_bo(_bo); if (cs->status != VK_SUCCESS) return; if (bo->is_virtual) { radv_amdgpu_cs_add_virtual_buffer(_cs, _bo); return; } radv_amdgpu_cs_add_buffer_internal(cs, bo->bo_handle, bo->priority); } static void radv_amdgpu_cs_execute_secondary(struct radeon_cmdbuf *_parent, struct radeon_cmdbuf *_child, bool allow_ib2) { struct radv_amdgpu_cs *parent = radv_amdgpu_cs(_parent); struct radv_amdgpu_cs *child = radv_amdgpu_cs(_child); struct radv_amdgpu_winsys *ws = parent->ws; const bool use_ib2 = parent->use_ib && allow_ib2 && parent->hw_ip == AMD_IP_GFX; if (parent->status != VK_SUCCESS || child->status != VK_SUCCESS) return; for (unsigned i = 0; i < child->num_buffers; ++i) { radv_amdgpu_cs_add_buffer_internal(parent, child->handles[i].bo_handle, child->handles[i].bo_priority); } for (unsigned i = 0; i < child->num_virtual_buffers; ++i) { radv_amdgpu_cs_add_buffer(&parent->base, child->virtual_buffers[i]); } if (use_ib2) { if (parent->base.cdw + 4 > parent->base.max_dw) radv_amdgpu_cs_grow(&parent->base, 4); parent->base.reserved_dw = MAX2(parent->base.reserved_dw, parent->base.cdw + 4); /* Not setting the CHAIN bit will launch an IB2. */ radeon_emit(&parent->base, PKT3(PKT3_INDIRECT_BUFFER, 2, 0)); radeon_emit(&parent->base, child->ib.ib_mc_address); radeon_emit(&parent->base, child->ib.ib_mc_address >> 32); radeon_emit(&parent->base, child->ib.size); } else { assert(parent->use_ib == child->use_ib); /* Grow the current CS and copy the contents of the secondary CS. */ for (unsigned i = 0; i < child->num_ib_buffers; i++) { struct radv_amdgpu_ib *ib = &child->ib_buffers[i]; uint32_t cdw = ib->cdw; uint8_t *mapped; /* Do not copy the original chain link for IBs. */ if (child->use_ib) cdw -= 4; assert(!ib->is_external); if (parent->base.cdw + cdw > parent->base.max_dw) radv_amdgpu_cs_grow(&parent->base, cdw); parent->base.reserved_dw = MAX2(parent->base.reserved_dw, parent->base.cdw + cdw); mapped = ws->base.buffer_map(ib->bo); if (!mapped) { parent->status = VK_ERROR_OUT_OF_DEVICE_MEMORY; return; } memcpy(parent->base.buf + parent->base.cdw, mapped, 4 * cdw); parent->base.cdw += cdw; } } } static void radv_amdgpu_cs_execute_ib(struct radeon_cmdbuf *_cs, struct radeon_winsys_bo *bo, const uint64_t offset, const uint32_t cdw, const bool predicate) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(_cs); const uint64_t va = bo->va + offset; if (cs->status != VK_SUCCESS) return; if (cs->hw_ip == AMD_IP_GFX && cs->use_ib) { radeon_emit(&cs->base, PKT3(PKT3_INDIRECT_BUFFER, 2, predicate)); radeon_emit(&cs->base, va); radeon_emit(&cs->base, va >> 32); radeon_emit(&cs->base, cdw); } else { const uint32_t ib_size = radv_amdgpu_cs_get_initial_size(cs->ws, cs->hw_ip); VkResult result; /* Finalize the current CS without chaining to execute the external IB. */ radv_amdgpu_cs_finalize(_cs); radv_amdgpu_cs_add_ib_buffer(cs, bo, offset, cdw, true); /* Start a new CS which isn't chained to any previous CS. */ result = radv_amdgpu_cs_get_new_ib(_cs, ib_size); if (result != VK_SUCCESS) { cs->base.cdw = 0; cs->status = result; } } } static unsigned radv_amdgpu_count_cs_bo(struct radv_amdgpu_cs *start_cs) { unsigned num_bo = 0; for (struct radv_amdgpu_cs *cs = start_cs; cs; cs = cs->chained_to) { num_bo += cs->num_buffers; for (unsigned j = 0; j < cs->num_virtual_buffers; ++j) num_bo += radv_amdgpu_winsys_bo(cs->virtual_buffers[j])->bo_count; } return num_bo; } static unsigned radv_amdgpu_count_cs_array_bo(struct radeon_cmdbuf **cs_array, unsigned num_cs) { unsigned num_bo = 0; for (unsigned i = 0; i < num_cs; ++i) { num_bo += radv_amdgpu_count_cs_bo(radv_amdgpu_cs(cs_array[i])); } return num_bo; } static unsigned radv_amdgpu_add_cs_to_bo_list(struct radv_amdgpu_cs *cs, struct drm_amdgpu_bo_list_entry *handles, unsigned num_handles) { if (!cs->num_buffers) return num_handles; if (num_handles == 0 && !cs->num_virtual_buffers) { memcpy(handles, cs->handles, cs->num_buffers * sizeof(struct drm_amdgpu_bo_list_entry)); return cs->num_buffers; } int unique_bo_so_far = num_handles; for (unsigned j = 0; j < cs->num_buffers; ++j) { bool found = false; for (unsigned k = 0; k < unique_bo_so_far; ++k) { if (handles[k].bo_handle == cs->handles[j].bo_handle) { found = true; break; } } if (!found) { handles[num_handles] = cs->handles[j]; ++num_handles; } } for (unsigned j = 0; j < cs->num_virtual_buffers; ++j) { struct radv_amdgpu_winsys_bo *virtual_bo = radv_amdgpu_winsys_bo(cs->virtual_buffers[j]); u_rwlock_rdlock(&virtual_bo->lock); for (unsigned k = 0; k < virtual_bo->bo_count; ++k) { struct radv_amdgpu_winsys_bo *bo = virtual_bo->bos[k]; bool found = false; for (unsigned m = 0; m < num_handles; ++m) { if (handles[m].bo_handle == bo->bo_handle) { found = true; break; } } if (!found) { handles[num_handles].bo_handle = bo->bo_handle; handles[num_handles].bo_priority = bo->priority; ++num_handles; } } u_rwlock_rdunlock(&virtual_bo->lock); } return num_handles; } static unsigned radv_amdgpu_add_cs_array_to_bo_list(struct radeon_cmdbuf **cs_array, unsigned num_cs, struct drm_amdgpu_bo_list_entry *handles, unsigned num_handles) { for (unsigned i = 0; i < num_cs; ++i) { for (struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i]); cs; cs = cs->chained_to) { num_handles = radv_amdgpu_add_cs_to_bo_list(cs, handles, num_handles); } } return num_handles; } static unsigned radv_amdgpu_copy_global_bo_list(struct radv_amdgpu_winsys *ws, struct drm_amdgpu_bo_list_entry *handles) { for (uint32_t i = 0; i < ws->global_bo_list.count; i++) { handles[i].bo_handle = ws->global_bo_list.bos[i]->bo_handle; handles[i].bo_priority = ws->global_bo_list.bos[i]->priority; } return ws->global_bo_list.count; } static VkResult radv_amdgpu_get_bo_list(struct radv_amdgpu_winsys *ws, struct radeon_cmdbuf **cs_array, unsigned count, struct radeon_cmdbuf **initial_preamble_array, unsigned num_initial_preambles, struct radeon_cmdbuf **continue_preamble_array, unsigned num_continue_preambles, struct radeon_cmdbuf **postamble_array, unsigned num_postambles, unsigned *rnum_handles, struct drm_amdgpu_bo_list_entry **rhandles) { struct drm_amdgpu_bo_list_entry *handles = NULL; unsigned num_handles = 0; if (ws->debug_all_bos) { handles = malloc(sizeof(handles[0]) * ws->global_bo_list.count); if (!handles) return VK_ERROR_OUT_OF_HOST_MEMORY; num_handles = radv_amdgpu_copy_global_bo_list(ws, handles); } else if (count == 1 && !num_initial_preambles && !num_continue_preambles && !num_postambles && !radv_amdgpu_cs(cs_array[0])->num_virtual_buffers && !radv_amdgpu_cs(cs_array[0])->chained_to && !ws->global_bo_list.count) { struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs *)cs_array[0]; if (cs->num_buffers == 0) return VK_SUCCESS; handles = malloc(sizeof(handles[0]) * cs->num_buffers); if (!handles) return VK_ERROR_OUT_OF_HOST_MEMORY; memcpy(handles, cs->handles, sizeof(handles[0]) * cs->num_buffers); num_handles = cs->num_buffers; } else { unsigned total_buffer_count = ws->global_bo_list.count; total_buffer_count += radv_amdgpu_count_cs_array_bo(cs_array, count); total_buffer_count += radv_amdgpu_count_cs_array_bo(initial_preamble_array, num_initial_preambles); total_buffer_count += radv_amdgpu_count_cs_array_bo(continue_preamble_array, num_continue_preambles); total_buffer_count += radv_amdgpu_count_cs_array_bo(postamble_array, num_postambles); if (total_buffer_count == 0) return VK_SUCCESS; handles = malloc(sizeof(handles[0]) * total_buffer_count); if (!handles) return VK_ERROR_OUT_OF_HOST_MEMORY; num_handles = radv_amdgpu_copy_global_bo_list(ws, handles); num_handles = radv_amdgpu_add_cs_array_to_bo_list(cs_array, count, handles, num_handles); num_handles = radv_amdgpu_add_cs_array_to_bo_list(initial_preamble_array, num_initial_preambles, handles, num_handles); num_handles = radv_amdgpu_add_cs_array_to_bo_list(continue_preamble_array, num_continue_preambles, handles, num_handles); num_handles = radv_amdgpu_add_cs_array_to_bo_list(postamble_array, num_postambles, handles, num_handles); } *rhandles = handles; *rnum_handles = num_handles; return VK_SUCCESS; } static void radv_assign_last_submit(struct radv_amdgpu_ctx *ctx, struct radv_amdgpu_cs_request *request) { radv_amdgpu_request_to_fence(ctx, &ctx->last_submission[request->ip_type][request->ring], request); } static bool radv_amdgpu_cs_has_external_ib(const struct radv_amdgpu_cs *cs) { for (unsigned i = 0; i < cs->num_ib_buffers; i++) { if (cs->ib_buffers[i].is_external) return true; } return false; } static unsigned radv_amdgpu_get_num_ibs_per_cs(const struct radv_amdgpu_cs *cs) { unsigned num_ibs = 0; if (cs->use_ib) { unsigned num_external_ibs = 0; for (unsigned i = 0; i < cs->num_ib_buffers; i++) { if (cs->ib_buffers[i].is_external) num_external_ibs++; } num_ibs = num_external_ibs * 2 + 1; } else { num_ibs = cs->num_ib_buffers; } return num_ibs; } static unsigned radv_amdgpu_count_ibs(struct radeon_cmdbuf **cs_array, unsigned cs_count, unsigned initial_preamble_count, unsigned continue_preamble_count, unsigned postamble_count) { unsigned num_ibs = 0; for (unsigned i = 0; i < cs_count; i++) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[i]); num_ibs += radv_amdgpu_get_num_ibs_per_cs(cs); } return MAX2(initial_preamble_count, continue_preamble_count) + num_ibs + postamble_count; } static VkResult radv_amdgpu_winsys_cs_submit_internal(struct radv_amdgpu_ctx *ctx, int queue_idx, struct radv_winsys_sem_info *sem_info, struct radeon_cmdbuf **cs_array, unsigned cs_count, struct radeon_cmdbuf **initial_preamble_cs, unsigned initial_preamble_count, struct radeon_cmdbuf **continue_preamble_cs, unsigned continue_preamble_count, struct radeon_cmdbuf **postamble_cs, unsigned postamble_count, bool uses_shadow_regs) { VkResult result; /* Last CS is "the gang leader", its IP type determines which fence to signal. */ struct radv_amdgpu_cs *last_cs = radv_amdgpu_cs(cs_array[cs_count - 1]); struct radv_amdgpu_winsys *ws = last_cs->ws; const unsigned num_ibs = radv_amdgpu_count_ibs(cs_array, cs_count, initial_preamble_count, continue_preamble_count, postamble_count); const unsigned ib_array_size = MIN2(RADV_MAX_IBS_PER_SUBMIT, num_ibs); STACK_ARRAY(struct radv_amdgpu_cs_ib_info, ibs, ib_array_size); struct drm_amdgpu_bo_list_entry *handles = NULL; unsigned num_handles = 0; u_rwlock_rdlock(&ws->global_bo_list.lock); result = radv_amdgpu_get_bo_list(ws, &cs_array[0], cs_count, initial_preamble_cs, initial_preamble_count, continue_preamble_cs, continue_preamble_count, postamble_cs, postamble_count, &num_handles, &handles); if (result != VK_SUCCESS) goto fail; /* Configure the CS request. */ const uint32_t *max_ib_per_ip = ws->info.max_submitted_ibs; struct radv_amdgpu_cs_request request = { .ip_type = last_cs->hw_ip, .ip_instance = 0, .ring = queue_idx, .handles = handles, .num_handles = num_handles, .ibs = ibs, .number_of_ibs = 0, /* set below */ }; for (unsigned cs_idx = 0, cs_ib_idx = 0; cs_idx < cs_count;) { struct radeon_cmdbuf **preambles = cs_idx ? continue_preamble_cs : initial_preamble_cs; const unsigned preamble_count = cs_idx ? continue_preamble_count : initial_preamble_count; const unsigned ib_per_submit = RADV_MAX_IBS_PER_SUBMIT - preamble_count - postamble_count; unsigned num_submitted_ibs = 0; unsigned ibs_per_ip[AMD_NUM_IP_TYPES] = {0}; /* Copy preambles to the submission. */ for (unsigned i = 0; i < preamble_count; ++i) { /* Assume that the full preamble fits into 1 IB. */ struct radv_amdgpu_cs *cs = radv_amdgpu_cs(preambles[i]); struct radv_amdgpu_cs_ib_info ib; assert(cs->num_ib_buffers == 1); ib = radv_amdgpu_cs_ib_to_info(cs, cs->ib_buffers[0]); ibs[num_submitted_ibs++] = ib; ibs_per_ip[cs->hw_ip]++; } for (unsigned i = 0; i < ib_per_submit && cs_idx < cs_count; ++i) { struct radv_amdgpu_cs *cs = radv_amdgpu_cs(cs_array[cs_idx]); struct radv_amdgpu_cs_ib_info ib; if (cs_ib_idx == 0) { /* Make sure the whole CS fits into the same submission. */ unsigned cs_num_ib = radv_amdgpu_get_num_ibs_per_cs(cs); if (i + cs_num_ib > ib_per_submit || ibs_per_ip[cs->hw_ip] + cs_num_ib > max_ib_per_ip[cs->hw_ip]) break; if (cs->hw_ip != request.ip_type) { /* Found a "follower" CS in a gang submission. * Make sure to submit this together with its "leader", the next CS. * We rely on the caller to order each "follower" before its "leader." */ assert(cs_idx != cs_count - 1); struct radv_amdgpu_cs *next_cs = radv_amdgpu_cs(cs_array[cs_idx + 1]); assert(next_cs->hw_ip == request.ip_type); unsigned next_cs_num_ib = radv_amdgpu_get_num_ibs_per_cs(next_cs); if (i + cs_num_ib + next_cs_num_ib > ib_per_submit || ibs_per_ip[next_cs->hw_ip] + next_cs_num_ib > max_ib_per_ip[next_cs->hw_ip]) break; } } /* When IBs are used, we only need to submit the main IB of this CS, because everything * else is chained to the first IB. Except when the CS has external IBs because they need * to be submitted separately. Otherwise we must submit all IBs in the ib_buffers array. */ if (cs->use_ib) { if (radv_amdgpu_cs_has_external_ib(cs)) { const unsigned cur_ib_idx = cs_ib_idx; ib = radv_amdgpu_cs_ib_to_info(cs, cs->ib_buffers[cs_ib_idx++]); /* Loop until the next external IB is found. */ while (!cs->ib_buffers[cur_ib_idx].is_external && !cs->ib_buffers[cs_ib_idx].is_external && cs_ib_idx < cs->num_ib_buffers) { cs_ib_idx++; } if (cs_ib_idx == cs->num_ib_buffers) { cs_idx++; cs_ib_idx = 0; } } else { ib = radv_amdgpu_cs_ib_to_info(cs, cs->ib_buffers[0]); cs_idx++; } } else { assert(cs_ib_idx < cs->num_ib_buffers); ib = radv_amdgpu_cs_ib_to_info(cs, cs->ib_buffers[cs_ib_idx++]); if (cs_ib_idx == cs->num_ib_buffers) { cs_idx++; cs_ib_idx = 0; } } if (uses_shadow_regs && ib.ip_type == AMDGPU_HW_IP_GFX) ib.flags |= AMDGPU_IB_FLAG_PREEMPT; assert(num_submitted_ibs < ib_array_size); ibs[num_submitted_ibs++] = ib; ibs_per_ip[cs->hw_ip]++; } assert(num_submitted_ibs > preamble_count); /* Copy postambles to the submission. */ for (unsigned i = 0; i < postamble_count; ++i) { /* Assume that the full postamble fits into 1 IB. */ struct radv_amdgpu_cs *cs = radv_amdgpu_cs(postamble_cs[i]); struct radv_amdgpu_cs_ib_info ib; assert(cs->num_ib_buffers == 1); ib = radv_amdgpu_cs_ib_to_info(cs, cs->ib_buffers[0]); ibs[num_submitted_ibs++] = ib; ibs_per_ip[cs->hw_ip]++; } /* Submit the CS. */ request.number_of_ibs = num_submitted_ibs; result = radv_amdgpu_cs_submit(ctx, &request, sem_info); if (result != VK_SUCCESS) goto fail; } free(request.handles); if (result != VK_SUCCESS) goto fail; radv_assign_last_submit(ctx, &request); fail: u_rwlock_rdunlock(&ws->global_bo_list.lock); STACK_ARRAY_FINISH(ibs); return result; } static VkResult radv_amdgpu_cs_submit_zero(struct radv_amdgpu_ctx *ctx, enum amd_ip_type ip_type, int queue_idx, struct radv_winsys_sem_info *sem_info) { unsigned hw_ip = ip_type; unsigned queue_syncobj = radv_amdgpu_ctx_queue_syncobj(ctx, hw_ip, queue_idx); int ret; if (!queue_syncobj) return VK_ERROR_OUT_OF_HOST_MEMORY; if (sem_info->wait.syncobj_count || sem_info->wait.timeline_syncobj_count) { int fd; ret = amdgpu_cs_syncobj_export_sync_file(ctx->ws->dev, queue_syncobj, &fd); if (ret < 0) return VK_ERROR_DEVICE_LOST; for (unsigned i = 0; i < sem_info->wait.syncobj_count; ++i) { int fd2; ret = amdgpu_cs_syncobj_export_sync_file(ctx->ws->dev, sem_info->wait.syncobj[i], &fd2); if (ret < 0) { close(fd); return VK_ERROR_DEVICE_LOST; } sync_accumulate("radv", &fd, fd2); close(fd2); } for (unsigned i = 0; i < sem_info->wait.timeline_syncobj_count; ++i) { int fd2; ret = amdgpu_cs_syncobj_export_sync_file2( ctx->ws->dev, sem_info->wait.syncobj[i + sem_info->wait.syncobj_count], sem_info->wait.points[i], 0, &fd2); if (ret < 0) { /* This works around a kernel bug where the fence isn't copied if it is already * signalled. Since it is already signalled it is totally fine to not wait on it. * * kernel patch: https://patchwork.freedesktop.org/patch/465583/ */ uint64_t point; ret = amdgpu_cs_syncobj_query2(ctx->ws->dev, &sem_info->wait.syncobj[i + sem_info->wait.syncobj_count], &point, 1, 0); if (!ret && point >= sem_info->wait.points[i]) continue; close(fd); return VK_ERROR_DEVICE_LOST; } sync_accumulate("radv", &fd, fd2); close(fd2); } ret = amdgpu_cs_syncobj_import_sync_file(ctx->ws->dev, queue_syncobj, fd); close(fd); if (ret < 0) return VK_ERROR_DEVICE_LOST; ctx->queue_syncobj_wait[hw_ip][queue_idx] = true; } for (unsigned i = 0; i < sem_info->signal.syncobj_count; ++i) { uint32_t dst_handle = sem_info->signal.syncobj[i]; uint32_t src_handle = queue_syncobj; if (ctx->ws->info.has_timeline_syncobj) { ret = amdgpu_cs_syncobj_transfer(ctx->ws->dev, dst_handle, 0, src_handle, 0, 0); if (ret < 0) return VK_ERROR_DEVICE_LOST; } else { int fd; ret = amdgpu_cs_syncobj_export_sync_file(ctx->ws->dev, src_handle, &fd); if (ret < 0) return VK_ERROR_DEVICE_LOST; ret = amdgpu_cs_syncobj_import_sync_file(ctx->ws->dev, dst_handle, fd); close(fd); if (ret < 0) return VK_ERROR_DEVICE_LOST; } } for (unsigned i = 0; i < sem_info->signal.timeline_syncobj_count; ++i) { ret = amdgpu_cs_syncobj_transfer(ctx->ws->dev, sem_info->signal.syncobj[i + sem_info->signal.syncobj_count], sem_info->signal.points[i], queue_syncobj, 0, 0); if (ret < 0) return VK_ERROR_DEVICE_LOST; } return VK_SUCCESS; } static VkResult radv_amdgpu_winsys_cs_submit(struct radeon_winsys_ctx *_ctx, const struct radv_winsys_submit_info *submit, uint32_t wait_count, const struct vk_sync_wait *waits, uint32_t signal_count, const struct vk_sync_signal *signals) { struct radv_amdgpu_ctx *ctx = radv_amdgpu_ctx(_ctx); struct radv_amdgpu_winsys *ws = ctx->ws; VkResult result; unsigned wait_idx = 0, signal_idx = 0; STACK_ARRAY(uint64_t, wait_points, wait_count); STACK_ARRAY(uint32_t, wait_syncobj, wait_count); STACK_ARRAY(uint64_t, signal_points, signal_count); STACK_ARRAY(uint32_t, signal_syncobj, signal_count); if (!wait_points || !wait_syncobj || !signal_points || !signal_syncobj) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto out; } for (uint32_t i = 0; i < wait_count; ++i) { if (waits[i].sync->type == &vk_sync_dummy_type) continue; assert(waits[i].sync->type == &ws->syncobj_sync_type); wait_syncobj[wait_idx] = ((struct vk_drm_syncobj *)waits[i].sync)->syncobj; wait_points[wait_idx] = waits[i].wait_value; ++wait_idx; } for (uint32_t i = 0; i < signal_count; ++i) { if (signals[i].sync->type == &vk_sync_dummy_type) continue; assert(signals[i].sync->type == &ws->syncobj_sync_type); signal_syncobj[signal_idx] = ((struct vk_drm_syncobj *)signals[i].sync)->syncobj; signal_points[signal_idx] = signals[i].signal_value; ++signal_idx; } assert(signal_idx <= signal_count); assert(wait_idx <= wait_count); const uint32_t wait_timeline_syncobj_count = (ws->syncobj_sync_type.features & VK_SYNC_FEATURE_TIMELINE) ? wait_idx : 0; const uint32_t signal_timeline_syncobj_count = (ws->syncobj_sync_type.features & VK_SYNC_FEATURE_TIMELINE) ? signal_idx : 0; struct radv_winsys_sem_info sem_info = { .wait = { .points = wait_points, .syncobj = wait_syncobj, .timeline_syncobj_count = wait_timeline_syncobj_count, .syncobj_count = wait_idx - wait_timeline_syncobj_count, }, .signal = { .points = signal_points, .syncobj = signal_syncobj, .timeline_syncobj_count = signal_timeline_syncobj_count, .syncobj_count = signal_idx - signal_timeline_syncobj_count, }, .cs_emit_wait = true, .cs_emit_signal = true, }; if (!submit->cs_count) { result = radv_amdgpu_cs_submit_zero(ctx, submit->ip_type, submit->queue_index, &sem_info); } else { result = radv_amdgpu_winsys_cs_submit_internal( ctx, submit->queue_index, &sem_info, submit->cs_array, submit->cs_count, submit->initial_preamble_cs, submit->initial_preamble_count, submit->continue_preamble_cs, submit->continue_preamble_count, submit->postamble_cs, submit->postamble_count, submit->uses_shadow_regs); } out: STACK_ARRAY_FINISH(wait_points); STACK_ARRAY_FINISH(wait_syncobj); STACK_ARRAY_FINISH(signal_points); STACK_ARRAY_FINISH(signal_syncobj); return result; } static void radv_amdgpu_winsys_get_cpu_addr(void *_cs, uint64_t addr, struct ac_addr_info *info) { struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs *)_cs; void *ret = NULL; memset(info, 0, sizeof(struct ac_addr_info)); if (cs->ws->debug_log_bos) { u_rwlock_rdlock(&cs->ws->log_bo_list_lock); list_for_each_entry_rev (struct radv_amdgpu_winsys_bo_log, bo_log, &cs->ws->log_bo_list, list) { if (addr >= bo_log->va && addr - bo_log->va < bo_log->size) { info->use_after_free = bo_log->destroyed; break; } } u_rwlock_rdunlock(&cs->ws->log_bo_list_lock); } if (info->use_after_free) return; info->valid = !cs->ws->debug_all_bos; for (unsigned i = 0; i < cs->num_ib_buffers; ++i) { struct radv_amdgpu_ib *ib = &cs->ib_buffers[i]; struct radv_amdgpu_winsys_bo *bo = (struct radv_amdgpu_winsys_bo *)ib->bo; if (addr >= bo->base.va && addr - bo->base.va < bo->size) { if (amdgpu_bo_cpu_map(bo->bo, &ret) == 0) { info->cpu_addr = (char *)ret + (addr - bo->base.va); info->valid = true; return; } } } u_rwlock_rdlock(&cs->ws->global_bo_list.lock); for (uint32_t i = 0; i < cs->ws->global_bo_list.count; i++) { struct radv_amdgpu_winsys_bo *bo = cs->ws->global_bo_list.bos[i]; if (addr >= bo->base.va && addr - bo->base.va < bo->size) { if (amdgpu_bo_cpu_map(bo->bo, &ret) == 0) { u_rwlock_rdunlock(&cs->ws->global_bo_list.lock); info->valid = true; info->cpu_addr = (char *)ret + (addr - bo->base.va); return; } } } u_rwlock_rdunlock(&cs->ws->global_bo_list.lock); return; } static void radv_amdgpu_winsys_cs_dump(struct radeon_cmdbuf *_cs, FILE *file, const int *trace_ids, int trace_id_count, enum radv_cs_dump_type type) { struct radv_amdgpu_cs *cs = (struct radv_amdgpu_cs *)_cs; struct radv_amdgpu_winsys *ws = cs->ws; if (cs->use_ib) { struct radv_amdgpu_cs_ib_info ib_info = radv_amdgpu_cs_ib_to_info(cs, cs->ib_buffers[0]); struct ac_addr_info addr_info; radv_amdgpu_winsys_get_cpu_addr(cs, ib_info.ib_mc_address, &addr_info); assert(addr_info.cpu_addr); if (type == RADV_CS_DUMP_TYPE_IBS) { ac_parse_ib(file, addr_info.cpu_addr, cs->ib_buffers[0].cdw, trace_ids, trace_id_count, "main IB", ws->info.gfx_level, ws->info.family, cs->hw_ip, radv_amdgpu_winsys_get_cpu_addr, cs); } else { uint32_t *ib_dw = addr_info.cpu_addr; ac_gather_context_rolls(file, &ib_dw, &cs->ib_buffers[0].cdw, 1, &ws->info); } } else { uint32_t **ibs = type == RADV_CS_DUMP_TYPE_CTX_ROLLS ? malloc(cs->num_ib_buffers * sizeof(uint32_t *)) : NULL; uint32_t *ib_dw_sizes = type == RADV_CS_DUMP_TYPE_CTX_ROLLS ? malloc(cs->num_ib_buffers * sizeof(uint32_t)) : NULL; for (unsigned i = 0; i < cs->num_ib_buffers; i++) { struct radv_amdgpu_ib *ib = &cs->ib_buffers[i]; char name[64]; void *mapped; mapped = ws->base.buffer_map(ib->bo); if (!mapped) continue; if (cs->num_ib_buffers > 1) { snprintf(name, sizeof(name), "main IB (chunk %d)", i); } else { snprintf(name, sizeof(name), "main IB"); } if (type == RADV_CS_DUMP_TYPE_IBS) { ac_parse_ib(file, mapped, ib->cdw, trace_ids, trace_id_count, name, ws->info.gfx_level, ws->info.family, cs->hw_ip, NULL, NULL); } else { ibs[i] = mapped; ib_dw_sizes[i] = ib->cdw; } } if (type == RADV_CS_DUMP_TYPE_CTX_ROLLS) { ac_gather_context_rolls(file, ibs, ib_dw_sizes, cs->num_ib_buffers, &ws->info); free(ibs); free(ib_dw_sizes); } } } static uint32_t radv_to_amdgpu_priority(enum radeon_ctx_priority radv_priority) { switch (radv_priority) { case RADEON_CTX_PRIORITY_REALTIME: return AMDGPU_CTX_PRIORITY_VERY_HIGH; case RADEON_CTX_PRIORITY_HIGH: return AMDGPU_CTX_PRIORITY_HIGH; case RADEON_CTX_PRIORITY_MEDIUM: return AMDGPU_CTX_PRIORITY_NORMAL; case RADEON_CTX_PRIORITY_LOW: return AMDGPU_CTX_PRIORITY_LOW; default: unreachable("Invalid context priority"); } } static VkResult radv_amdgpu_ctx_create(struct radeon_winsys *_ws, enum radeon_ctx_priority priority, struct radeon_winsys_ctx **rctx) { struct radv_amdgpu_winsys *ws = radv_amdgpu_winsys(_ws); struct radv_amdgpu_ctx *ctx = CALLOC_STRUCT(radv_amdgpu_ctx); uint32_t amdgpu_priority = radv_to_amdgpu_priority(priority); VkResult result; int r; if (!ctx) return VK_ERROR_OUT_OF_HOST_MEMORY; r = amdgpu_cs_ctx_create2(ws->dev, amdgpu_priority, &ctx->ctx); if (r && r == -EACCES) { result = VK_ERROR_NOT_PERMITTED_KHR; goto fail_create; } else if (r) { fprintf(stderr, "radv/amdgpu: radv_amdgpu_cs_ctx_create2 failed. (%i)\n", r); result = VK_ERROR_OUT_OF_HOST_MEMORY; goto fail_create; } ctx->ws = ws; assert(AMDGPU_HW_IP_NUM * MAX_RINGS_PER_TYPE * 4 * sizeof(uint64_t) <= 4096); result = ws->base.buffer_create(&ws->base, 4096, 8, RADEON_DOMAIN_GTT, RADEON_FLAG_CPU_ACCESS | RADEON_FLAG_NO_INTERPROCESS_SHARING, RADV_BO_PRIORITY_CS, 0, &ctx->fence_bo); if (result != VK_SUCCESS) { goto fail_alloc; } *rctx = (struct radeon_winsys_ctx *)ctx; return VK_SUCCESS; fail_alloc: amdgpu_cs_ctx_free(ctx->ctx); fail_create: FREE(ctx); return result; } static void radv_amdgpu_ctx_destroy(struct radeon_winsys_ctx *rwctx) { struct radv_amdgpu_ctx *ctx = (struct radv_amdgpu_ctx *)rwctx; for (unsigned ip = 0; ip <= AMDGPU_HW_IP_NUM; ++ip) { for (unsigned ring = 0; ring < MAX_RINGS_PER_TYPE; ++ring) { if (ctx->queue_syncobj[ip][ring]) amdgpu_cs_destroy_syncobj(ctx->ws->dev, ctx->queue_syncobj[ip][ring]); } } ctx->ws->base.buffer_destroy(&ctx->ws->base, ctx->fence_bo); amdgpu_cs_ctx_free(ctx->ctx); FREE(ctx); } static uint32_t radv_amdgpu_ctx_queue_syncobj(struct radv_amdgpu_ctx *ctx, unsigned ip, unsigned ring) { uint32_t *syncobj = &ctx->queue_syncobj[ip][ring]; if (!*syncobj) { amdgpu_cs_create_syncobj2(ctx->ws->dev, DRM_SYNCOBJ_CREATE_SIGNALED, syncobj); } return *syncobj; } static bool radv_amdgpu_ctx_wait_idle(struct radeon_winsys_ctx *rwctx, enum amd_ip_type ip_type, int ring_index) { struct radv_amdgpu_ctx *ctx = (struct radv_amdgpu_ctx *)rwctx; if (ctx->last_submission[ip_type][ring_index].fence.fence) { uint32_t expired; int ret = amdgpu_cs_query_fence_status(&ctx->last_submission[ip_type][ring_index].fence, 1000000000ull, 0, &expired); if (ret || !expired) return false; } return true; } static uint32_t radv_to_amdgpu_pstate(enum radeon_ctx_pstate radv_pstate) { switch (radv_pstate) { case RADEON_CTX_PSTATE_NONE: return AMDGPU_CTX_STABLE_PSTATE_NONE; case RADEON_CTX_PSTATE_STANDARD: return AMDGPU_CTX_STABLE_PSTATE_STANDARD; case RADEON_CTX_PSTATE_MIN_SCLK: return AMDGPU_CTX_STABLE_PSTATE_MIN_SCLK; case RADEON_CTX_PSTATE_MIN_MCLK: return AMDGPU_CTX_STABLE_PSTATE_MIN_MCLK; case RADEON_CTX_PSTATE_PEAK: return AMDGPU_CTX_STABLE_PSTATE_PEAK; default: unreachable("Invalid pstate"); } } static int radv_amdgpu_ctx_set_pstate(struct radeon_winsys_ctx *rwctx, enum radeon_ctx_pstate pstate) { struct radv_amdgpu_ctx *ctx = (struct radv_amdgpu_ctx *)rwctx; uint32_t new_pstate = radv_to_amdgpu_pstate(pstate); uint32_t current_pstate = 0; int r; r = amdgpu_cs_ctx_stable_pstate(ctx->ctx, AMDGPU_CTX_OP_GET_STABLE_PSTATE, 0, ¤t_pstate); if (r) { fprintf(stderr, "radv/amdgpu: failed to get current pstate\n"); return r; } /* Do not try to set a new pstate when the current one is already what we want. Otherwise, the * kernel might return -EBUSY if we have multiple AMDGPU contexts in flight. */ if (current_pstate == new_pstate) return 0; r = amdgpu_cs_ctx_stable_pstate(ctx->ctx, AMDGPU_CTX_OP_SET_STABLE_PSTATE, new_pstate, NULL); if (r) { fprintf(stderr, "radv/amdgpu: failed to set new pstate\n"); return r; } return 0; } static void * radv_amdgpu_cs_alloc_syncobj_chunk(struct radv_winsys_sem_counts *counts, uint32_t queue_syncobj, struct drm_amdgpu_cs_chunk *chunk, int chunk_id) { unsigned count = counts->syncobj_count + (queue_syncobj ? 1 : 0); struct drm_amdgpu_cs_chunk_sem *syncobj = malloc(sizeof(struct drm_amdgpu_cs_chunk_sem) * count); if (!syncobj) return NULL; for (unsigned i = 0; i < counts->syncobj_count; i++) { struct drm_amdgpu_cs_chunk_sem *sem = &syncobj[i]; sem->handle = counts->syncobj[i]; } if (queue_syncobj) syncobj[counts->syncobj_count].handle = queue_syncobj; chunk->chunk_id = chunk_id; chunk->length_dw = sizeof(struct drm_amdgpu_cs_chunk_sem) / 4 * count; chunk->chunk_data = (uint64_t)(uintptr_t)syncobj; return syncobj; } static void * radv_amdgpu_cs_alloc_timeline_syncobj_chunk(struct radv_winsys_sem_counts *counts, uint32_t queue_syncobj, struct drm_amdgpu_cs_chunk *chunk, int chunk_id) { uint32_t count = counts->syncobj_count + counts->timeline_syncobj_count + (queue_syncobj ? 1 : 0); struct drm_amdgpu_cs_chunk_syncobj *syncobj = malloc(sizeof(struct drm_amdgpu_cs_chunk_syncobj) * count); if (!syncobj) return NULL; for (unsigned i = 0; i < counts->syncobj_count; i++) { struct drm_amdgpu_cs_chunk_syncobj *sem = &syncobj[i]; sem->handle = counts->syncobj[i]; sem->flags = 0; sem->point = 0; } for (unsigned i = 0; i < counts->timeline_syncobj_count; i++) { struct drm_amdgpu_cs_chunk_syncobj *sem = &syncobj[i + counts->syncobj_count]; sem->handle = counts->syncobj[i + counts->syncobj_count]; sem->flags = DRM_SYNCOBJ_WAIT_FLAGS_WAIT_FOR_SUBMIT; sem->point = counts->points[i]; } if (queue_syncobj) { syncobj[count - 1].handle = queue_syncobj; syncobj[count - 1].flags = 0; syncobj[count - 1].point = 0; } chunk->chunk_id = chunk_id; chunk->length_dw = sizeof(struct drm_amdgpu_cs_chunk_syncobj) / 4 * count; chunk->chunk_data = (uint64_t)(uintptr_t)syncobj; return syncobj; } static bool radv_amdgpu_cs_has_user_fence(struct radv_amdgpu_cs_request *request) { return request->ip_type != AMDGPU_HW_IP_UVD && request->ip_type != AMDGPU_HW_IP_VCE && request->ip_type != AMDGPU_HW_IP_UVD_ENC && request->ip_type != AMDGPU_HW_IP_VCN_DEC && request->ip_type != AMDGPU_HW_IP_VCN_ENC && request->ip_type != AMDGPU_HW_IP_VCN_JPEG; } static VkResult radv_amdgpu_cs_submit(struct radv_amdgpu_ctx *ctx, struct radv_amdgpu_cs_request *request, struct radv_winsys_sem_info *sem_info) { int r; int num_chunks; int size; struct drm_amdgpu_cs_chunk *chunks; struct drm_amdgpu_cs_chunk_data *chunk_data; struct drm_amdgpu_bo_list_in bo_list_in; void *wait_syncobj = NULL, *signal_syncobj = NULL; int i; VkResult result = VK_SUCCESS; bool has_user_fence = radv_amdgpu_cs_has_user_fence(request); uint32_t queue_syncobj = radv_amdgpu_ctx_queue_syncobj(ctx, request->ip_type, request->ring); bool *queue_syncobj_wait = &ctx->queue_syncobj_wait[request->ip_type][request->ring]; if (!queue_syncobj) return VK_ERROR_OUT_OF_HOST_MEMORY; size = request->number_of_ibs + 1 + (has_user_fence ? 1 : 0) + 1 /* bo list */ + 3; chunks = malloc(sizeof(chunks[0]) * size); if (!chunks) return VK_ERROR_OUT_OF_HOST_MEMORY; size = request->number_of_ibs + (has_user_fence ? 1 : 0); chunk_data = malloc(sizeof(chunk_data[0]) * size); if (!chunk_data) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto error_out; } num_chunks = request->number_of_ibs; for (i = 0; i < request->number_of_ibs; i++) { struct radv_amdgpu_cs_ib_info *ib; chunks[i].chunk_id = AMDGPU_CHUNK_ID_IB; chunks[i].length_dw = sizeof(struct drm_amdgpu_cs_chunk_ib) / 4; chunks[i].chunk_data = (uint64_t)(uintptr_t)&chunk_data[i]; ib = &request->ibs[i]; assert(ib->ib_mc_address && ib->ib_mc_address % ctx->ws->info.ip[ib->ip_type].ib_alignment == 0); assert(ib->size); chunk_data[i].ib_data._pad = 0; chunk_data[i].ib_data.va_start = ib->ib_mc_address; chunk_data[i].ib_data.ib_bytes = ib->size * 4; chunk_data[i].ib_data.ip_type = ib->ip_type; chunk_data[i].ib_data.ip_instance = request->ip_instance; chunk_data[i].ib_data.ring = request->ring; chunk_data[i].ib_data.flags = ib->flags; } assert(chunk_data[request->number_of_ibs - 1].ib_data.ip_type == request->ip_type); if (has_user_fence) { i = num_chunks++; chunks[i].chunk_id = AMDGPU_CHUNK_ID_FENCE; chunks[i].length_dw = sizeof(struct drm_amdgpu_cs_chunk_fence) / 4; chunks[i].chunk_data = (uint64_t)(uintptr_t)&chunk_data[i]; struct amdgpu_cs_fence_info fence_info; fence_info.handle = radv_amdgpu_winsys_bo(ctx->fence_bo)->bo; /* Need to reserve 4 QWORD for user fence: * QWORD[0]: completed fence * QWORD[1]: preempted fence * QWORD[2]: reset fence * QWORD[3]: preempted then reset */ fence_info.offset = (request->ip_type * MAX_RINGS_PER_TYPE + request->ring) * 4; amdgpu_cs_chunk_fence_info_to_data(&fence_info, &chunk_data[i]); } if (sem_info->cs_emit_wait && (sem_info->wait.timeline_syncobj_count || sem_info->wait.syncobj_count || *queue_syncobj_wait)) { if (ctx->ws->info.has_timeline_syncobj) { wait_syncobj = radv_amdgpu_cs_alloc_timeline_syncobj_chunk(&sem_info->wait, queue_syncobj, &chunks[num_chunks], AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_WAIT); } else { wait_syncobj = radv_amdgpu_cs_alloc_syncobj_chunk(&sem_info->wait, queue_syncobj, &chunks[num_chunks], AMDGPU_CHUNK_ID_SYNCOBJ_IN); } if (!wait_syncobj) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto error_out; } num_chunks++; sem_info->cs_emit_wait = false; *queue_syncobj_wait = false; } if (sem_info->cs_emit_signal) { if (ctx->ws->info.has_timeline_syncobj) { signal_syncobj = radv_amdgpu_cs_alloc_timeline_syncobj_chunk( &sem_info->signal, queue_syncobj, &chunks[num_chunks], AMDGPU_CHUNK_ID_SYNCOBJ_TIMELINE_SIGNAL); } else { signal_syncobj = radv_amdgpu_cs_alloc_syncobj_chunk(&sem_info->signal, queue_syncobj, &chunks[num_chunks], AMDGPU_CHUNK_ID_SYNCOBJ_OUT); } if (!signal_syncobj) { result = VK_ERROR_OUT_OF_HOST_MEMORY; goto error_out; } num_chunks++; } bo_list_in.operation = ~0; bo_list_in.list_handle = ~0; bo_list_in.bo_number = request->num_handles; bo_list_in.bo_info_size = sizeof(struct drm_amdgpu_bo_list_entry); bo_list_in.bo_info_ptr = (uint64_t)(uintptr_t)request->handles; chunks[num_chunks].chunk_id = AMDGPU_CHUNK_ID_BO_HANDLES; chunks[num_chunks].length_dw = sizeof(struct drm_amdgpu_bo_list_in) / 4; chunks[num_chunks].chunk_data = (uintptr_t)&bo_list_in; num_chunks++; /* The kernel returns -ENOMEM with many parallel processes using GDS such as test suites quite * often, but it eventually succeeds after enough attempts. This happens frequently with dEQP * using NGG streamout. */ uint64_t abs_timeout_ns = os_time_get_absolute_timeout(1000000000ull); /* 1s */ r = 0; do { /* Wait 1 ms and try again. */ if (r == -ENOMEM) os_time_sleep(1000); r = amdgpu_cs_submit_raw2(ctx->ws->dev, ctx->ctx, 0, num_chunks, chunks, &request->seq_no); } while (r == -ENOMEM && os_time_get_nano() < abs_timeout_ns); if (r) { if (r == -ENOMEM) { fprintf(stderr, "radv/amdgpu: Not enough memory for command submission.\n"); result = VK_ERROR_OUT_OF_HOST_MEMORY; } else if (r == -ECANCELED) { fprintf(stderr, "radv/amdgpu: The CS has been cancelled because the context is lost. This context is innocent.\n"); result = VK_ERROR_DEVICE_LOST; } else if (r == -ENODATA) { fprintf(stderr, "radv/amdgpu: The CS has been cancelled because the context is lost. This context is guilty " "of a soft recovery.\n"); result = VK_ERROR_DEVICE_LOST; } else if (r == -ETIME) { fprintf(stderr, "radv/amdgpu: The CS has been cancelled because the context is lost. This context is guilty " "of a hard recovery.\n"); result = VK_ERROR_DEVICE_LOST; } else { fprintf(stderr, "radv/amdgpu: The CS has been rejected, " "see dmesg for more information (%i).\n", r); result = VK_ERROR_UNKNOWN; } } error_out: free(chunks); free(chunk_data); free(wait_syncobj); free(signal_syncobj); return result; } void radv_amdgpu_cs_init_functions(struct radv_amdgpu_winsys *ws) { ws->base.ctx_create = radv_amdgpu_ctx_create; ws->base.ctx_destroy = radv_amdgpu_ctx_destroy; ws->base.ctx_wait_idle = radv_amdgpu_ctx_wait_idle; ws->base.ctx_set_pstate = radv_amdgpu_ctx_set_pstate; ws->base.cs_domain = radv_amdgpu_cs_domain; ws->base.cs_create = radv_amdgpu_cs_create; ws->base.cs_destroy = radv_amdgpu_cs_destroy; ws->base.cs_grow = radv_amdgpu_cs_grow; ws->base.cs_finalize = radv_amdgpu_cs_finalize; ws->base.cs_reset = radv_amdgpu_cs_reset; ws->base.cs_chain = radv_amdgpu_cs_chain; ws->base.cs_unchain = radv_amdgpu_cs_unchain; ws->base.cs_add_buffer = radv_amdgpu_cs_add_buffer; ws->base.cs_execute_secondary = radv_amdgpu_cs_execute_secondary; ws->base.cs_execute_ib = radv_amdgpu_cs_execute_ib; ws->base.cs_submit = radv_amdgpu_winsys_cs_submit; ws->base.cs_dump = radv_amdgpu_winsys_cs_dump; }