use std::fmt; use crate::{ Buffer, ParseError, err::{perr, ParseErrorKind::*}, parse::{first_byte_or_empty, hex_digit_value}, }; /// An integer literal, e.g. `27`, `0x7F`, `0b101010u8` or `5_000_000i64`. /// /// An integer literal consists of an optional base prefix (`0b`, `0o`, `0x`), /// the main part (digits and underscores), and an optional type suffix /// (e.g. `u64` or `i8`). See [the reference][ref] for more information. /// /// Note that integer literals are always positive: the grammar does not contain /// the minus sign at all. The minus sign is just the unary negate operator, /// not part of the literal. Which is interesting for cases like `- 128i8`: /// here, the literal itself would overflow the specified type (`i8` cannot /// represent 128). That's why in rustc, the literal overflow check is /// performed as a lint after parsing, not during the lexing stage. Similarly, /// [`IntegerLit::parse`] does not perform an overflow check. /// /// [ref]: https://doc.rust-lang.org/reference/tokens.html#integer-literals #[derive(Debug, Clone, Copy, PartialEq, Eq)] #[non_exhaustive] pub struct IntegerLit { raw: B, // First index of the main number part (after the base prefix). start_main_part: usize, // First index not part of the main number part. end_main_part: usize, base: IntegerBase, type_suffix: Option, } /// The bases in which an integer can be specified. #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum IntegerBase { Binary, Octal, Decimal, Hexadecimal, } /// All possible integer type suffixes. #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum IntegerType { U8, U16, U32, U64, U128, Usize, I8, I16, I32, I64, I128, Isize, } impl IntegerBase { /// Returns the literal prefix that indicates this base, i.e. `"0b"`, /// `"0o"`, `""` and `"0x"`. pub fn prefix(self) -> &'static str { match self { Self::Binary => "0b", Self::Octal => "0o", Self::Decimal => "", Self::Hexadecimal => "0x", } } } impl IntegerLit { /// Parses the input as an integer literal. Returns an error if the input is /// invalid or represents a different kind of literal. pub fn parse(input: B) -> Result { match first_byte_or_empty(&input)? { digit @ b'0'..=b'9' => { // TODO: simplify once RFC 2528 is stabilized let IntegerLit { start_main_part, end_main_part, base, type_suffix, .. } = parse_impl(&input, digit)?; Ok(Self { raw: input, start_main_part, end_main_part, base, type_suffix, }) }, _ => Err(perr(0, DoesNotStartWithDigit)), } } /// Performs the actual string to int conversion to obtain the integer /// value. The optional type suffix of the literal **is ignored by this /// method**. This means `N` does not need to match the type suffix! /// /// Returns `None` if the literal overflows `N`. pub fn value(&self) -> Option { let base = match self.base { IntegerBase::Binary => N::from_small_number(2), IntegerBase::Octal => N::from_small_number(8), IntegerBase::Decimal => N::from_small_number(10), IntegerBase::Hexadecimal => N::from_small_number(16), }; let mut acc = N::from_small_number(0); for digit in self.raw_main_part().bytes() { if digit == b'_' { continue; } // We don't actually need the base here: we already know this main // part only contains digits valid for the specified base. let digit = hex_digit_value(digit) .unwrap_or_else(|| unreachable!("bug: integer main part contains non-digit")); acc = acc.checked_mul(base)?; acc = acc.checked_add(N::from_small_number(digit))?; } Some(acc) } /// The base of this integer literal. pub fn base(&self) -> IntegerBase { self.base } /// The main part containing the digits and potentially `_`. Do not try to /// parse this directly as that would ignore the base! pub fn raw_main_part(&self) -> &str { &(*self.raw)[self.start_main_part..self.end_main_part] } /// The type suffix, if specified. pub fn type_suffix(&self) -> Option { self.type_suffix } /// Returns the raw input that was passed to `parse`. pub fn raw_input(&self) -> &str { &self.raw } /// Returns the raw input that was passed to `parse`, potentially owned. pub fn into_raw_input(self) -> B { self.raw } } impl IntegerLit<&str> { /// Makes a copy of the underlying buffer and returns the owned version of /// `Self`. pub fn to_owned(&self) -> IntegerLit { IntegerLit { raw: self.raw.to_owned(), start_main_part: self.start_main_part, end_main_part: self.end_main_part, base: self.base, type_suffix: self.type_suffix, } } } impl fmt::Display for IntegerLit { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}", &*self.raw) } } /// Integer literal types. *Implementation detail*. /// /// Implemented for all integer literal types. This trait is sealed and cannot /// be implemented outside of this crate. The trait's methods are implementation /// detail of this library and are not subject to semver. pub trait FromIntegerLiteral: self::sealed::Sealed + Copy { /// Creates itself from the given number. `n` is guaranteed to be `<= 16`. #[doc(hidden)] fn from_small_number(n: u8) -> Self; #[doc(hidden)] fn checked_add(self, rhs: Self) -> Option; #[doc(hidden)] fn checked_mul(self, rhs: Self) -> Option; #[doc(hidden)] fn ty() -> IntegerType; } macro_rules! impl_from_int_literal { ($( $ty:ty => $variant:ident ,)* ) => { $( impl self::sealed::Sealed for $ty {} impl FromIntegerLiteral for $ty { fn from_small_number(n: u8) -> Self { n as Self } fn checked_add(self, rhs: Self) -> Option { self.checked_add(rhs) } fn checked_mul(self, rhs: Self) -> Option { self.checked_mul(rhs) } fn ty() -> IntegerType { IntegerType::$variant } } )* }; } impl_from_int_literal!( u8 => U8, u16 => U16, u32 => U32, u64 => U64, u128 => U128, usize => Usize, i8 => I8, i16 => I16, i32 => I32, i64 => I64, i128 => I128, isize => Isize, ); mod sealed { pub trait Sealed {} } /// Precondition: first byte of string has to be in `b'0'..=b'9'`. #[inline(never)] pub(crate) fn parse_impl(input: &str, first: u8) -> Result, ParseError> { // Figure out base and strip prefix base, if it exists. let (end_prefix, base) = match (first, input.as_bytes().get(1)) { (b'0', Some(b'b')) => (2, IntegerBase::Binary), (b'0', Some(b'o')) => (2, IntegerBase::Octal), (b'0', Some(b'x')) => (2, IntegerBase::Hexadecimal), // Everything else is treated as decimal. Several cases are caught // by this: // - "123" // - "0" // - "0u8" // - "0r" -> this will error later _ => (0, IntegerBase::Decimal), }; let without_prefix = &input[end_prefix..]; // Find end of main part. let end_main = without_prefix.bytes() .position(|b| !matches!(b, b'0'..=b'9' | b'a'..=b'f' | b'A'..=b'F' | b'_')) .unwrap_or(without_prefix.len()); let (main_part, type_suffix) = without_prefix.split_at(end_main); // Check for invalid digits and make sure there is at least one valid digit. let invalid_digit_pos = match base { IntegerBase::Binary => main_part.bytes() .position(|b| !matches!(b, b'0' | b'1' | b'_')), IntegerBase::Octal => main_part.bytes() .position(|b| !matches!(b, b'0'..=b'7' | b'_')), IntegerBase::Decimal => main_part.bytes() .position(|b| !matches!(b, b'0'..=b'9' | b'_')), IntegerBase::Hexadecimal => None, }; if let Some(pos) = invalid_digit_pos { return Err(perr(end_prefix + pos, InvalidDigit)); } if main_part.bytes().filter(|&b| b != b'_').count() == 0 { return Err(perr(end_prefix..end_prefix + end_main, NoDigits)); } // Parse type suffix let type_suffix = match type_suffix { "" => None, "u8" => Some(IntegerType::U8), "u16" => Some(IntegerType::U16), "u32" => Some(IntegerType::U32), "u64" => Some(IntegerType::U64), "u128" => Some(IntegerType::U128), "usize" => Some(IntegerType::Usize), "i8" => Some(IntegerType::I8), "i16" => Some(IntegerType::I16), "i32" => Some(IntegerType::I32), "i64" => Some(IntegerType::I64), "i128" => Some(IntegerType::I128), "isize" => Some(IntegerType::Isize), _ => return Err(perr(end_main + end_prefix..input.len(), InvalidIntegerTypeSuffix)), }; Ok(IntegerLit { raw: input, start_main_part: end_prefix, end_main_part: end_main + end_prefix, base, type_suffix, }) } #[cfg(test)] mod tests;