//! Construction of `RsaKeyPair` from ASN1. use super::super::{keypair, public}; use crate::{ error::{self, KeyRejected}, io::der, pkcs8, }; use core::convert::TryFrom; impl keypair::RsaKeyPair { /// Parses an unencrypted PKCS#8-encoded RSA private key. /// /// Only two-prime (not multi-prime) keys are supported. The public modulus /// (n) must be at least 2047 bits. The public modulus must be no larger /// than 4096 bits. It is recommended that the public modulus be exactly /// 2048 or 3072 bits. The public exponent must be at least 65537. /// /// This will generate a 2048-bit RSA private key of the correct form using /// OpenSSL's command line tool: /// /// ```sh /// openssl genpkey -algorithm RSA \ /// -pkeyopt rsa_keygen_bits:2048 \ /// -pkeyopt rsa_keygen_pubexp:65537 | \ /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8 /// ``` /// /// This will generate a 3072-bit RSA private key of the correct form: /// /// ```sh /// openssl genpkey -algorithm RSA \ /// -pkeyopt rsa_keygen_bits:3072 \ /// -pkeyopt rsa_keygen_pubexp:65537 | \ /// openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8 /// ``` /// /// Often, keys generated for use in OpenSSL-based software are stored in /// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be /// converted to binary PKCS#8 form using the OpenSSL command line tool like /// this: /// /// ```sh /// openssl pkcs8 -topk8 -nocrypt -outform der \ /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8 /// ``` /// /// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8 /// form like this: /// /// ```sh /// openssl pkcs8 -nocrypt -outform der \ /// -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8 /// ``` /// /// The private key is validated according to [NIST SP-800-56B rev. 1] /// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown), /// with the following exceptions: /// /// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an /// expected modulus length is provided as a parameter, so checks /// regarding these expectations are not done. /// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the /// expected modulus length is provided as a parameter, the consistency /// check between these values and the private key's value of n isn't /// done. /// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for /// performance reasons and to avoid any side channels that such tests /// would provide. /// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7: /// * *ring* has a slightly looser lower bound for the values of `p` /// and `q` than what the NIST document specifies. This looser lower /// bound matches what most other crypto libraries do. The check might /// be tightened to meet NIST's requirements in the future. Similarly, /// the check that `p` and `q` are not too close together is skipped /// currently, but may be added in the future. /// - The validity of the mathematical relationship of `dP`, `dQ`, `e` /// and `n` is verified only during signing. Some size checks of `d`, /// `dP` and `dQ` are performed at construction, but some NIST checks /// are skipped because they would be expensive and/or they would leak /// information through side channels. If a preemptive check of the /// consistency of `dP`, `dQ`, `e` and `n` with each other is /// necessary, that can be done by signing any message with the key /// pair. /// /// * `d` is not fully validated, neither at construction nor during /// signing. This is OK as far as *ring*'s usage of the key is /// concerned because *ring* never uses the value of `d` (*ring* always /// uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem, /// instead). However, *ring*'s checks would not be sufficient for /// validating a key pair for use by some other system; that other /// system must check the value of `d` itself if `d` is to be used. /// /// In addition to the NIST requirements, *ring* requires that `p > q` and /// that `e` must be no more than 33 bits. /// /// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the /// encoding of the key. /// /// [NIST SP-800-56B rev. 1]: /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf /// /// [RFC 3447 Appendix A.1.2]: /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2 /// /// [RFC 5958]: /// https://tools.ietf.org/html/rfc5958 pub fn from_pkcs8(pkcs8: &[u8]) -> Result { const RSA_ENCRYPTION: &[u8] = include_bytes!("../../data/alg-rsa-encryption.der"); let (der, _) = pkcs8::unwrap_key_( untrusted::Input::from(&RSA_ENCRYPTION), pkcs8::Version::V1Only, untrusted::Input::from(pkcs8), )?; Self::from_der(der.as_slice_less_safe()) } /// Parses an RSA private key that is not inside a PKCS#8 wrapper. /// /// The private key must be encoded as a binary DER-encoded ASN.1 /// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other /// respects, this is just like `from_pkcs8()`. See the documentation for /// `from_pkcs8()` for more details. /// /// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key) /// instead. /// /// [RFC 3447 Appendix A.1.2]: /// https://tools.ietf.org/html/rfc3447#appendix-A.1.2 /// /// [NIST SP-800-56B rev. 1]: /// http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf pub fn from_der(input: &[u8]) -> Result { untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| { der::nested( input, der::Tag::Sequence, KeyRejected::invalid_encoding(), Self::from_der_reader, ) }) } fn from_der_reader(input: &mut untrusted::Reader) -> Result { let version = der::small_nonnegative_integer(input) .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?; if version != 0 { return Err(KeyRejected::version_not_supported()); } fn nonnegative_integer<'a>( input: &mut untrusted::Reader<'a>, ) -> Result<&'a [u8], KeyRejected> { der::nonnegative_integer(input, 0) .map(|input| input.as_slice_less_safe()) .map_err(|error::Unspecified| KeyRejected::invalid_encoding()) } let n = nonnegative_integer(input)?; let e = nonnegative_integer(input)?; let d = nonnegative_integer(input)?; let p = nonnegative_integer(input)?; let q = nonnegative_integer(input)?; let dP = nonnegative_integer(input)?; let dQ = nonnegative_integer(input)?; let qInv = nonnegative_integer(input)?; let components = keypair::Components { public_key: public::Components { n, e }, d, p, q, dP, dQ, qInv, }; Self::try_from(&components) } }