use crate::sync::rwlock::RwLock; use std::marker::PhantomData; use std::sync::Arc; use std::{fmt, mem, ops, ptr}; /// Owned RAII structure used to release the exclusive write access of a lock when /// dropped. /// /// This structure is created by [mapping] an [`OwnedRwLockWriteGuard`]. It is a /// separate type from `OwnedRwLockWriteGuard` to disallow downgrading a mapped /// guard, since doing so can cause undefined behavior. /// /// [mapping]: method@crate::sync::OwnedRwLockWriteGuard::map /// [`OwnedRwLockWriteGuard`]: struct@crate::sync::OwnedRwLockWriteGuard #[clippy::has_significant_drop] pub struct OwnedRwLockMappedWriteGuard { // When changing the fields in this struct, make sure to update the // `skip_drop` method. #[cfg(all(tokio_unstable, feature = "tracing"))] pub(super) resource_span: tracing::Span, pub(super) permits_acquired: u32, pub(super) lock: Arc>, pub(super) data: *mut U, pub(super) _p: PhantomData, } #[allow(dead_code)] // Unused fields are still used in Drop. struct Inner { #[cfg(all(tokio_unstable, feature = "tracing"))] resource_span: tracing::Span, permits_acquired: u32, lock: Arc>, data: *const U, } impl OwnedRwLockMappedWriteGuard { fn skip_drop(self) -> Inner { let me = mem::ManuallyDrop::new(self); // SAFETY: This duplicates the values in every field of the guard, then // forgets the originals, so in the end no value is duplicated. unsafe { Inner { #[cfg(all(tokio_unstable, feature = "tracing"))] resource_span: ptr::read(&me.resource_span), permits_acquired: me.permits_acquired, lock: ptr::read(&me.lock), data: me.data, } } } /// Makes a new `OwnedRwLockMappedWriteGuard` for a component of the locked /// data. /// /// This operation cannot fail as the `OwnedRwLockMappedWriteGuard` passed /// in already locked the data. /// /// This is an associated function that needs to be used as /// `OwnedRwLockWriteGuard::map(..)`. A method would interfere with methods /// of the same name on the contents of the locked data. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// use tokio::sync::{RwLock, OwnedRwLockWriteGuard}; /// /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] /// struct Foo(u32); /// /// # #[tokio::main] /// # async fn main() { /// let lock = Arc::new(RwLock::new(Foo(1))); /// /// { /// let lock = Arc::clone(&lock); /// let mut mapped = OwnedRwLockWriteGuard::map(lock.write_owned().await, |f| &mut f.0); /// *mapped = 2; /// } /// /// assert_eq!(Foo(2), *lock.read().await); /// # } /// ``` #[inline] pub fn map(mut this: Self, f: F) -> OwnedRwLockMappedWriteGuard where F: FnOnce(&mut U) -> &mut V, { let data = f(&mut *this) as *mut V; let this = this.skip_drop(); OwnedRwLockMappedWriteGuard { permits_acquired: this.permits_acquired, lock: this.lock, data, _p: PhantomData, #[cfg(all(tokio_unstable, feature = "tracing"))] resource_span: this.resource_span, } } /// Attempts to make a new `OwnedRwLockMappedWriteGuard` for a component /// of the locked data. The original guard is returned if the closure /// returns `None`. /// /// This operation cannot fail as the `OwnedRwLockMappedWriteGuard` passed /// in already locked the data. /// /// This is an associated function that needs to be /// used as `OwnedRwLockMappedWriteGuard::try_map(...)`. A method would interfere with /// methods of the same name on the contents of the locked data. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// use tokio::sync::{RwLock, OwnedRwLockWriteGuard}; /// /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] /// struct Foo(u32); /// /// # #[tokio::main] /// # async fn main() { /// let lock = Arc::new(RwLock::new(Foo(1))); /// /// { /// let guard = Arc::clone(&lock).write_owned().await; /// let mut guard = OwnedRwLockWriteGuard::try_map(guard, |f| Some(&mut f.0)).expect("should not fail"); /// *guard = 2; /// } /// /// assert_eq!(Foo(2), *lock.read().await); /// # } /// ``` #[inline] pub fn try_map( mut this: Self, f: F, ) -> Result, Self> where F: FnOnce(&mut U) -> Option<&mut V>, { let data = match f(&mut *this) { Some(data) => data as *mut V, None => return Err(this), }; let this = this.skip_drop(); Ok(OwnedRwLockMappedWriteGuard { permits_acquired: this.permits_acquired, lock: this.lock, data, _p: PhantomData, #[cfg(all(tokio_unstable, feature = "tracing"))] resource_span: this.resource_span, }) } } impl ops::Deref for OwnedRwLockMappedWriteGuard { type Target = U; fn deref(&self) -> &U { unsafe { &*self.data } } } impl ops::DerefMut for OwnedRwLockMappedWriteGuard { fn deref_mut(&mut self) -> &mut U { unsafe { &mut *self.data } } } impl fmt::Debug for OwnedRwLockMappedWriteGuard where U: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } impl fmt::Display for OwnedRwLockMappedWriteGuard where U: fmt::Display, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(&**self, f) } } impl Drop for OwnedRwLockMappedWriteGuard { fn drop(&mut self) { self.lock.s.release(self.permits_acquired as usize); #[cfg(all(tokio_unstable, feature = "tracing"))] self.resource_span.in_scope(|| { tracing::trace!( target: "runtime::resource::state_update", write_locked = false, write_locked.op = "override", ) }); } }