/* Copyright 2020 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #ifndef TENSORFLOW_COMPILER_XLA_SERVICE_CONDITIONAL_CANONICALIZER_H_ #define TENSORFLOW_COMPILER_XLA_SERVICE_CONDITIONAL_CANONICALIZER_H_ #include #include "tensorflow/compiler/xla/service/hlo_module.h" #include "tensorflow/compiler/xla/service/hlo_pass_interface.h" namespace xla { // Canonicalize output of conditionals, make non-tuple outputs into tuple with // single element output. After this pass, all conditional instructions have // tuple outputs. class ConditionalCanonicalizer : public HloModulePass { public: absl::string_view name() const override { return "conditional canonicalizer"; } using HloPassInterface::Run; StatusOr Run( HloModule* module, const absl::flat_hash_set& execution_threads) override; }; } // namespace xla #endif // TENSORFLOW_COMPILER_XLA_SERVICE_CONDITIONAL_CANONICALIZER_H_