/* * Copyright (C) 2021 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "StillnessDetector.h" namespace android { namespace media { StillnessDetector::StillnessDetector(const Options& options) : mOptions(options), mCosHalfRotationalThreshold(cos(mOptions.rotationalThreshold / 2)) {} void StillnessDetector::reset() { mFifo.clear(); mWindowFull = false; mSuppressionDeadline.reset(); // A "true" state indicates stillness is detected (default = true) mCurrentState = true; mPreviousState = true; } void StillnessDetector::setInput(int64_t timestamp, const Pose3f& input) { mFifo.push_back(TimestampedPose{timestamp, input}); discardOld(timestamp); } bool StillnessDetector::getPreviousState() const { return mPreviousState; } bool StillnessDetector::calculate(int64_t timestamp) { // Move the current stillness state to the previous state. // This allows us to detect transitions into and out of stillness. mPreviousState = mCurrentState; discardOld(timestamp); // Check whether all the poses in the queue are in the proximity of the new one. We want to do // this before checking the overriding conditions below, in order to update the suppression // deadline correctly. We always go from end to start, to find the most recent pose that // violated stillness and update the suppression deadline if it has not been set or if the new // one ends after the current one. bool moved = false; if (!mFifo.empty()) { for (auto iter = mFifo.rbegin() + 1; iter != mFifo.rend(); ++iter) { const auto& event = *iter; if (!areNear(event.pose, mFifo.back().pose)) { // Enable suppression for the duration of the window. int64_t deadline = event.timestamp + mOptions.windowDuration; if (!mSuppressionDeadline.has_value() || mSuppressionDeadline.value() < deadline) { mSuppressionDeadline = deadline; } moved = true; break; } } } // If the window has not been full, return the default value. if (!mWindowFull) { mCurrentState = mOptions.defaultValue; } // Force "in motion" while the suppression deadline is active. else if (mSuppressionDeadline.has_value()) { mCurrentState = false; } else { mCurrentState = !moved; } return mCurrentState; } void StillnessDetector::discardOld(int64_t timestamp) { // Handle the special case of the window duration being zero (always considered full). if (mOptions.windowDuration == 0) { mFifo.clear(); mWindowFull = true; } // Remove any events from the queue that are older than the window. If there were any such // events we consider the window full. const int64_t windowStart = timestamp - mOptions.windowDuration; while (!mFifo.empty() && mFifo.front().timestamp <= windowStart) { mWindowFull = true; mFifo.pop_front(); } // Expire the suppression deadline. if (mSuppressionDeadline.has_value() && mSuppressionDeadline <= timestamp) { mSuppressionDeadline.reset(); } } bool StillnessDetector::areNear(const Pose3f& pose1, const Pose3f& pose2) const { // Check translation. We use the L1 norm to reduce computational load on expense of accuracy. // The L1 norm is an upper bound for the actual (L2) norm, so this approach will err on the side // of "not near". if ((pose1.translation() - pose2.translation()).lpNorm<1>() > mOptions.translationalThreshold) { return false; } // Check orientation. // The angle x between the quaternions is greater than that threshold iff // cos(x/2) < cos(threshold/2). // cos(x/2) can be efficiently calculated as the dot product of both quaternions. if (pose1.rotation().dot(pose2.rotation()) < mCosHalfRotationalThreshold) { return false; } return true; } } // namespace media } // namespace android