/* * Copyright (C) 2020 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "SessionConfigurationUtils.h" #include "../api2/DepthCompositeStream.h" #include "../api2/HeicCompositeStream.h" #include "aidl/android/hardware/graphics/common/Dataspace.h" #include "api2/JpegRCompositeStream.h" #include "binder/Status.h" #include "common/CameraDeviceBase.h" #include "common/HalConversionsTemplated.h" #include "../CameraService.h" #include "device3/aidl/AidlCamera3Device.h" #include "device3/hidl/HidlCamera3Device.h" #include "device3/Camera3OutputStream.h" #include "device3/ZoomRatioMapper.h" #include "system/graphics-base-v1.1.h" #include #include using android::camera3::OutputStreamInfo; using android::camera3::OutputStreamInfo; using android::hardware::camera2::ICameraDeviceUser; using aidl::android::hardware::camera::device::RequestTemplate; namespace android { namespace camera3 { void StreamConfiguration::getStreamConfigurations( const CameraMetadata &staticInfo, int configuration, std::unordered_map> *scm) { if (scm == nullptr) { ALOGE("%s: StreamConfigurationMap nullptr", __FUNCTION__); return; } const int STREAM_FORMAT_OFFSET = 0; const int STREAM_WIDTH_OFFSET = 1; const int STREAM_HEIGHT_OFFSET = 2; const int STREAM_IS_INPUT_OFFSET = 3; camera_metadata_ro_entry availableStreamConfigs = staticInfo.find(configuration); for (size_t i = 0; i < availableStreamConfigs.count; i += 4) { int32_t format = availableStreamConfigs.data.i32[i + STREAM_FORMAT_OFFSET]; int32_t width = availableStreamConfigs.data.i32[i + STREAM_WIDTH_OFFSET]; int32_t height = availableStreamConfigs.data.i32[i + STREAM_HEIGHT_OFFSET]; int32_t isInput = availableStreamConfigs.data.i32[i + STREAM_IS_INPUT_OFFSET]; StreamConfiguration sc = {format, width, height, isInput}; (*scm)[format].push_back(sc); } } void StreamConfiguration::getStreamConfigurations( const CameraMetadata &staticInfo, bool maxRes, std::unordered_map> *scm) { int32_t scalerKey = SessionConfigurationUtils::getAppropriateModeTag( ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxRes); int32_t depthKey = SessionConfigurationUtils::getAppropriateModeTag( ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS, maxRes); int32_t dynamicDepthKey = SessionConfigurationUtils::getAppropriateModeTag( ANDROID_DEPTH_AVAILABLE_DYNAMIC_DEPTH_STREAM_CONFIGURATIONS, maxRes); int32_t heicKey = SessionConfigurationUtils::getAppropriateModeTag( ANDROID_HEIC_AVAILABLE_HEIC_STREAM_CONFIGURATIONS, maxRes); getStreamConfigurations(staticInfo, scalerKey, scm); getStreamConfigurations(staticInfo, depthKey, scm); getStreamConfigurations(staticInfo, dynamicDepthKey, scm); getStreamConfigurations(staticInfo, heicKey, scm); } namespace SessionConfigurationUtils { int32_t PERF_CLASS_LEVEL = property_get_int32("ro.odm.build.media_performance_class", 0); bool IS_PERF_CLASS = (PERF_CLASS_LEVEL >= SDK_VERSION_S); camera3::Size getMaxJpegResolution(const CameraMetadata &metadata, bool ultraHighResolution) { int32_t maxJpegWidth = 0, maxJpegHeight = 0; const int STREAM_CONFIGURATION_SIZE = 4; const int STREAM_FORMAT_OFFSET = 0; const int STREAM_WIDTH_OFFSET = 1; const int STREAM_HEIGHT_OFFSET = 2; const int STREAM_IS_INPUT_OFFSET = 3; int32_t scalerSizesTag = ultraHighResolution ? ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_MAXIMUM_RESOLUTION : ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS; camera_metadata_ro_entry_t availableStreamConfigs = metadata.find(scalerSizesTag); if (availableStreamConfigs.count == 0 || availableStreamConfigs.count % STREAM_CONFIGURATION_SIZE != 0) { return camera3::Size(0, 0); } // Get max jpeg size (area-wise). for (size_t i= 0; i < availableStreamConfigs.count; i+= STREAM_CONFIGURATION_SIZE) { int32_t format = availableStreamConfigs.data.i32[i + STREAM_FORMAT_OFFSET]; int32_t width = availableStreamConfigs.data.i32[i + STREAM_WIDTH_OFFSET]; int32_t height = availableStreamConfigs.data.i32[i + STREAM_HEIGHT_OFFSET]; int32_t isInput = availableStreamConfigs.data.i32[i + STREAM_IS_INPUT_OFFSET]; if (isInput == ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS_OUTPUT && format == HAL_PIXEL_FORMAT_BLOB && (width * height > maxJpegWidth * maxJpegHeight)) { maxJpegWidth = width; maxJpegHeight = height; } } return camera3::Size(maxJpegWidth, maxJpegHeight); } size_t getUHRMaxJpegBufferSize(camera3::Size uhrMaxJpegSize, camera3::Size defaultMaxJpegSize, size_t defaultMaxJpegBufferSize) { return ((float)(uhrMaxJpegSize.width * uhrMaxJpegSize.height)) / (defaultMaxJpegSize.width * defaultMaxJpegSize.height) * defaultMaxJpegBufferSize; } StreamConfigurationPair getStreamConfigurationPair(const CameraMetadata &staticInfo) { camera3::StreamConfigurationPair streamConfigurationPair; camera3::StreamConfiguration::getStreamConfigurations(staticInfo, false, &streamConfigurationPair.mDefaultStreamConfigurationMap); camera3::StreamConfiguration::getStreamConfigurations(staticInfo, true, &streamConfigurationPair.mMaximumResolutionStreamConfigurationMap); return streamConfigurationPair; } int64_t euclidDistSquare(int32_t x0, int32_t y0, int32_t x1, int32_t y1) { int64_t d0 = x0 - x1; int64_t d1 = y0 - y1; return d0 * d0 + d1 * d1; } bool roundBufferDimensionNearest(int32_t width, int32_t height, int32_t format, android_dataspace dataSpace, const CameraMetadata& info, bool maxResolution, /*out*/int32_t* outWidth, /*out*/int32_t* outHeight) { const int32_t depthSizesTag = getAppropriateModeTag(ANDROID_DEPTH_AVAILABLE_DEPTH_STREAM_CONFIGURATIONS, maxResolution); const int32_t scalerSizesTag = getAppropriateModeTag(ANDROID_SCALER_AVAILABLE_STREAM_CONFIGURATIONS, maxResolution); const int32_t heicSizesTag = getAppropriateModeTag(ANDROID_HEIC_AVAILABLE_HEIC_STREAM_CONFIGURATIONS, maxResolution); const int32_t jpegRSizesTag = getAppropriateModeTag( ANDROID_JPEGR_AVAILABLE_JPEG_R_STREAM_CONFIGURATIONS, maxResolution); bool isJpegRDataSpace = (dataSpace == static_cast( ::aidl::android::hardware::graphics::common::Dataspace::JPEG_R)); camera_metadata_ro_entry streamConfigs = (isJpegRDataSpace) ? info.find(jpegRSizesTag) : (dataSpace == HAL_DATASPACE_DEPTH) ? info.find(depthSizesTag) : (dataSpace == static_cast(HAL_DATASPACE_HEIF)) ? info.find(heicSizesTag) : info.find(scalerSizesTag); int32_t bestWidth = -1; int32_t bestHeight = -1; // Iterate through listed stream configurations and find the one with the smallest euclidean // distance from the given dimensions for the given format. for (size_t i = 0; i < streamConfigs.count; i += 4) { int32_t fmt = streamConfigs.data.i32[i]; int32_t w = streamConfigs.data.i32[i + 1]; int32_t h = streamConfigs.data.i32[i + 2]; // Ignore input/output type for now if (fmt == format) { if (w == width && h == height) { bestWidth = width; bestHeight = height; break; } else if (w <= ROUNDING_WIDTH_CAP && (bestWidth == -1 || SessionConfigurationUtils::euclidDistSquare(w, h, width, height) < SessionConfigurationUtils::euclidDistSquare(bestWidth, bestHeight, width, height))) { bestWidth = w; bestHeight = h; } } } if (bestWidth == -1) { // Return false if no configurations for this format were listed ALOGE("%s: No configurations for format %d width %d, height %d, maxResolution ? %s", __FUNCTION__, format, width, height, maxResolution ? "true" : "false"); return false; } // Set the outputs to the closet width/height if (outWidth != NULL) { *outWidth = bestWidth; } if (outHeight != NULL) { *outHeight = bestHeight; } // Return true if at least one configuration for this format was listed return true; } //check if format is 10-bit compatible bool is10bitCompatibleFormat(int32_t format, android_dataspace_t dataSpace) { switch(format) { case HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED: case HAL_PIXEL_FORMAT_YCBCR_P010: return true; case HAL_PIXEL_FORMAT_BLOB: if (dataSpace == static_cast( ::aidl::android::hardware::graphics::common::Dataspace::JPEG_R)) { return true; } return false; default: return false; } } bool isDynamicRangeProfileSupported(int64_t dynamicRangeProfile, const CameraMetadata& staticInfo) { if (dynamicRangeProfile == ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD) { // Supported by default return true; } camera_metadata_ro_entry_t entry = staticInfo.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES); bool is10bitDynamicRangeSupported = false; for (size_t i = 0; i < entry.count; ++i) { uint8_t capability = entry.data.u8[i]; if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_DYNAMIC_RANGE_TEN_BIT) { is10bitDynamicRangeSupported = true; break; } } if (!is10bitDynamicRangeSupported) { return false; } switch (dynamicRangeProfile) { case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HDR10_PLUS: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HDR10: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HLG10: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_10B_HDR_OEM: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_10B_HDR_OEM_PO: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_10B_HDR_REF: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_10B_HDR_REF_PO: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_8B_HDR_OEM: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_8B_HDR_OEM_PO: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_8B_HDR_REF: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_8B_HDR_REF_PO: entry = staticInfo.find(ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP); for (size_t i = 0; i < entry.count; i += 3) { if (dynamicRangeProfile == entry.data.i64[i]) { return true; } } return false; default: return false; } return false; } //check if format is 10-bit compatible bool is10bitDynamicRangeProfile(int64_t dynamicRangeProfile) { switch (dynamicRangeProfile) { case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HDR10_PLUS: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HDR10: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HLG10: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_10B_HDR_OEM: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_10B_HDR_OEM_PO: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_10B_HDR_REF: case ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_DOLBY_VISION_10B_HDR_REF_PO: return true; default: return false; } } bool deviceReportsColorSpaces(const CameraMetadata& staticInfo) { camera_metadata_ro_entry_t entry = staticInfo.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES); for (size_t i = 0; i < entry.count; ++i) { uint8_t capability = entry.data.u8[i]; if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_COLOR_SPACE_PROFILES) { return true; } } return false; } bool isColorSpaceSupported(int32_t colorSpace, int32_t format, android_dataspace dataSpace, int64_t dynamicRangeProfile, const CameraMetadata& staticInfo) { int64_t colorSpace64 = colorSpace; int64_t format64 = format; // Translate HAL format + data space to public format if (format == HAL_PIXEL_FORMAT_BLOB && dataSpace == HAL_DATASPACE_V0_JFIF) { format64 = 0x100; // JPEG } else if (format == HAL_PIXEL_FORMAT_BLOB && dataSpace == static_cast(HAL_DATASPACE_HEIF)) { format64 = 0x48454946; // HEIC } else if (format == HAL_PIXEL_FORMAT_BLOB && dataSpace == static_cast(HAL_DATASPACE_DYNAMIC_DEPTH)) { format64 = 0x69656963; // DEPTH_JPEG } else if (format == HAL_PIXEL_FORMAT_BLOB && dataSpace == HAL_DATASPACE_DEPTH) { return false; // DEPTH_POINT_CLOUD, not applicable } else if (format == HAL_PIXEL_FORMAT_Y16 && dataSpace == HAL_DATASPACE_DEPTH) { return false; // DEPTH16, not applicable } else if (format == HAL_PIXEL_FORMAT_RAW16 && dataSpace == HAL_DATASPACE_DEPTH) { return false; // RAW_DEPTH, not applicable } else if (format == HAL_PIXEL_FORMAT_RAW10 && dataSpace == HAL_DATASPACE_DEPTH) { return false; // RAW_DEPTH10, not applicable } else if (format == HAL_PIXEL_FORMAT_BLOB && dataSpace == static_cast( ::aidl::android::hardware::graphics::common::Dataspace::JPEG_R)) { format64 = static_cast(PublicFormat::JPEG_R); } camera_metadata_ro_entry_t entry = staticInfo.find(ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP); for (size_t i = 0; i < entry.count; i += 3) { bool isFormatCompatible = (format64 == entry.data.i64[i + 1]); bool isDynamicProfileCompatible = (dynamicRangeProfile & entry.data.i64[i + 2]) != 0; if (colorSpace64 == entry.data.i64[i] && isFormatCompatible && isDynamicProfileCompatible) { return true; } } ALOGE("Color space %d, image format %" PRId64 ", and dynamic range 0x%" PRIx64 " combination not found", colorSpace, format64, dynamicRangeProfile); return false; } bool isPublicFormat(int32_t format) { switch(format) { case HAL_PIXEL_FORMAT_RGBA_8888: case HAL_PIXEL_FORMAT_RGBX_8888: case HAL_PIXEL_FORMAT_RGB_888: case HAL_PIXEL_FORMAT_RGB_565: case HAL_PIXEL_FORMAT_BGRA_8888: case HAL_PIXEL_FORMAT_YV12: case HAL_PIXEL_FORMAT_Y8: case HAL_PIXEL_FORMAT_Y16: case HAL_PIXEL_FORMAT_RAW16: case HAL_PIXEL_FORMAT_RAW10: case HAL_PIXEL_FORMAT_RAW12: case HAL_PIXEL_FORMAT_RAW_OPAQUE: case HAL_PIXEL_FORMAT_BLOB: case HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED: case HAL_PIXEL_FORMAT_YCbCr_420_888: case HAL_PIXEL_FORMAT_YCbCr_422_SP: case HAL_PIXEL_FORMAT_YCrCb_420_SP: case HAL_PIXEL_FORMAT_YCbCr_422_I: return true; default: return false; } } bool dataSpaceFromColorSpace(android_dataspace *dataSpace, int32_t colorSpace) { switch (colorSpace) { case ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_SRGB: *dataSpace = HAL_DATASPACE_V0_SRGB; return true; case ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_DISPLAY_P3: *dataSpace = HAL_DATASPACE_DISPLAY_P3; return true; case ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_BT2020_HLG: *(reinterpret_cast(dataSpace)) = HAL_DATASPACE_BT2020_HLG; return true; default: ALOGE("%s: Unsupported color space %d", __FUNCTION__, colorSpace); return false; } } bool isStreamUseCaseSupported(int64_t streamUseCase, const CameraMetadata &deviceInfo) { camera_metadata_ro_entry_t availableStreamUseCases = deviceInfo.find(ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES); if (availableStreamUseCases.count == 0 && streamUseCase == ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_DEFAULT) { return true; } // Allow vendor stream use case unconditionally. if (streamUseCase >= ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_VENDOR_START) { return true; } for (size_t i = 0; i < availableStreamUseCases.count; i++) { if (availableStreamUseCases.data.i64[i] == streamUseCase) { return true; } } return false; } binder::Status createSurfaceFromGbp( OutputStreamInfo& streamInfo, bool isStreamInfoValid, sp& surface, const sp& gbp, const std::string &logicalCameraId, const CameraMetadata &physicalCameraMetadata, const std::vector &sensorPixelModesUsed, int64_t dynamicRangeProfile, int64_t streamUseCase, int timestampBase, int mirrorMode, int32_t colorSpace, bool respectSurfaceSize) { // bufferProducer must be non-null if (gbp == nullptr) { std::string msg = fmt::sprintf("Camera %s: Surface is NULL", logicalCameraId.c_str()); ALOGW("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } // HACK b/10949105 // Query consumer usage bits to set async operation mode for // GLConsumer using controlledByApp parameter. bool useAsync = false; uint64_t consumerUsage = 0; status_t err; if ((err = gbp->getConsumerUsage(&consumerUsage)) != OK) { std::string msg = fmt::sprintf("Camera %s: Failed to query Surface consumer usage: %s (%d)", logicalCameraId.c_str(), strerror(-err), err); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_INVALID_OPERATION, msg.c_str()); } if (consumerUsage & GraphicBuffer::USAGE_HW_TEXTURE) { ALOGW("%s: Camera %s with consumer usage flag: %" PRIu64 ": Forcing asynchronous mode for" "stream", __FUNCTION__, logicalCameraId.c_str(), consumerUsage); useAsync = true; } uint64_t disallowedFlags = GraphicBuffer::USAGE_HW_VIDEO_ENCODER | GRALLOC_USAGE_RENDERSCRIPT; uint64_t allowedFlags = GraphicBuffer::USAGE_SW_READ_MASK | GraphicBuffer::USAGE_HW_TEXTURE | GraphicBuffer::USAGE_HW_COMPOSER; bool flexibleConsumer = (consumerUsage & disallowedFlags) == 0 && (consumerUsage & allowedFlags) != 0; surface = new Surface(gbp, useAsync); ANativeWindow *anw = surface.get(); int width, height, format; android_dataspace dataSpace; if ((err = anw->query(anw, NATIVE_WINDOW_WIDTH, &width)) != OK) { std::string msg = fmt::sprintf("Camera %s: Failed to query Surface width: %s (%d)", logicalCameraId.c_str(), strerror(-err), err); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_INVALID_OPERATION, msg.c_str()); } if ((err = anw->query(anw, NATIVE_WINDOW_HEIGHT, &height)) != OK) { std::string msg = fmt::sprintf("Camera %s: Failed to query Surface height: %s (%d)", logicalCameraId.c_str(), strerror(-err), err); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_INVALID_OPERATION, msg.c_str()); } if ((err = anw->query(anw, NATIVE_WINDOW_FORMAT, &format)) != OK) { std::string msg = fmt::sprintf("Camera %s: Failed to query Surface format: %s (%d)", logicalCameraId.c_str(), strerror(-err), err); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_INVALID_OPERATION, msg.c_str()); } if ((err = anw->query(anw, NATIVE_WINDOW_DEFAULT_DATASPACE, reinterpret_cast(&dataSpace))) != OK) { std::string msg = fmt::sprintf("Camera %s: Failed to query Surface dataspace: %s (%d)", logicalCameraId.c_str(), strerror(-err), err); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_INVALID_OPERATION, msg.c_str()); } if (colorSpace != ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_UNSPECIFIED && format != HAL_PIXEL_FORMAT_BLOB) { if (!dataSpaceFromColorSpace(&dataSpace, colorSpace)) { std::string msg = fmt::sprintf("Camera %s: color space %d not supported, failed to " "convert to data space", logicalCameraId.c_str(), colorSpace); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } } // FIXME: remove this override since the default format should be // IMPLEMENTATION_DEFINED. b/9487482 & b/35317944 if ((format >= HAL_PIXEL_FORMAT_RGBA_8888 && format <= HAL_PIXEL_FORMAT_BGRA_8888) && ((consumerUsage & GRALLOC_USAGE_HW_MASK) && ((consumerUsage & GRALLOC_USAGE_SW_READ_MASK) == 0))) { ALOGW("%s: Camera %s: Overriding format %#x to IMPLEMENTATION_DEFINED", __FUNCTION__, logicalCameraId.c_str(), format); format = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; } std::unordered_set overriddenSensorPixelModes; if (checkAndOverrideSensorPixelModesUsed(sensorPixelModesUsed, format, width, height, physicalCameraMetadata, &overriddenSensorPixelModes) != OK) { std::string msg = fmt::sprintf("Camera %s: sensor pixel modes for stream with " "format %#x are not valid",logicalCameraId.c_str(), format); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } bool foundInMaxRes = false; if (overriddenSensorPixelModes.find(ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION) != overriddenSensorPixelModes.end()) { // we can use the default stream configuration map foundInMaxRes = true; } // Round dimensions to the nearest dimensions available for this format. // Only do the rounding if the client doesn't ask to respect the surface // size. if (flexibleConsumer && isPublicFormat(format) && !respectSurfaceSize && !SessionConfigurationUtils::roundBufferDimensionNearest(width, height, format, dataSpace, physicalCameraMetadata, foundInMaxRes, /*out*/&width, /*out*/&height)) { std::string msg = fmt::sprintf("Camera %s: No supported stream configurations with " "format %#x defined, failed to create output stream", logicalCameraId.c_str(), format); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (!SessionConfigurationUtils::isDynamicRangeProfileSupported(dynamicRangeProfile, physicalCameraMetadata)) { std::string msg = fmt::sprintf("Camera %s: Dynamic range profile 0x%" PRIx64 " not supported,failed to create output stream", logicalCameraId.c_str(), dynamicRangeProfile); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (SessionConfigurationUtils::is10bitDynamicRangeProfile(dynamicRangeProfile) && !SessionConfigurationUtils::is10bitCompatibleFormat(format, dataSpace)) { std::string msg = fmt::sprintf("Camera %s: No 10-bit supported stream configurations with " "format %#x defined and profile %" PRIx64 ", failed to create output stream", logicalCameraId.c_str(), format, dynamicRangeProfile); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (colorSpace != ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_UNSPECIFIED && SessionConfigurationUtils::deviceReportsColorSpaces(physicalCameraMetadata) && !SessionConfigurationUtils::isColorSpaceSupported(colorSpace, format, dataSpace, dynamicRangeProfile, physicalCameraMetadata)) { std::string msg = fmt::sprintf("Camera %s: Color space %d not supported, failed to " "create output stream (pixel format %d dynamic range profile %" PRId64 ")", logicalCameraId.c_str(), colorSpace, format, dynamicRangeProfile); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (!SessionConfigurationUtils::isStreamUseCaseSupported(streamUseCase, physicalCameraMetadata)) { std::string msg = fmt::sprintf("Camera %s: stream use case %" PRId64 " not supported," " failed to create output stream", logicalCameraId.c_str(), streamUseCase); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (timestampBase < OutputConfiguration::TIMESTAMP_BASE_DEFAULT || timestampBase > OutputConfiguration::TIMESTAMP_BASE_MAX) { std::string msg = fmt::sprintf("Camera %s: invalid timestamp base %d", logicalCameraId.c_str(), timestampBase); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (mirrorMode < OutputConfiguration::MIRROR_MODE_AUTO || mirrorMode > OutputConfiguration::MIRROR_MODE_V) { std::string msg = fmt::sprintf("Camera %s: invalid mirroring mode %d", logicalCameraId.c_str(), mirrorMode); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (!isStreamInfoValid) { streamInfo.width = width; streamInfo.height = height; streamInfo.format = format; streamInfo.dataSpace = dataSpace; streamInfo.consumerUsage = consumerUsage; streamInfo.sensorPixelModesUsed = overriddenSensorPixelModes; streamInfo.dynamicRangeProfile = dynamicRangeProfile; streamInfo.streamUseCase = streamUseCase; streamInfo.timestampBase = timestampBase; streamInfo.mirrorMode = mirrorMode; streamInfo.colorSpace = colorSpace; return binder::Status::ok(); } if (width != streamInfo.width) { std::string msg = fmt::sprintf("Camera %s:Surface width doesn't match: %d vs %d", logicalCameraId.c_str(), width, streamInfo.width); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (height != streamInfo.height) { std::string msg = fmt::sprintf("Camera %s:Surface height doesn't match: %d vs %d", logicalCameraId.c_str(), height, streamInfo.height); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (format != streamInfo.format) { std::string msg = fmt::sprintf("Camera %s:Surface format doesn't match: %d vs %d", logicalCameraId.c_str(), format, streamInfo.format); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) { if (dataSpace != streamInfo.dataSpace) { std::string msg = fmt::sprintf("Camera %s:Surface dataSpace doesn't match: %d vs %d", logicalCameraId.c_str(), static_cast(dataSpace), static_cast(streamInfo.dataSpace)); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } //At the native side, there isn't a way to check whether 2 surfaces come from the same //surface class type. Use usage flag to approximate the comparison. if (consumerUsage != streamInfo.consumerUsage) { std::string msg = fmt::sprintf( "Camera %s:Surface usage flag doesn't match %" PRIu64 " vs %" PRIu64 "", logicalCameraId.c_str(), consumerUsage, streamInfo.consumerUsage); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } } return binder::Status::ok(); } void mapStreamInfo(const OutputStreamInfo &streamInfo, camera3::camera_stream_rotation_t rotation, const std::string &physicalId, int32_t groupId, aidl::android::hardware::camera::device::Stream *stream /*out*/) { if (stream == nullptr) { return; } stream->streamType = aidl::android::hardware::camera::device::StreamType::OUTPUT; stream->width = streamInfo.width; stream->height = streamInfo.height; stream->format = AidlCamera3Device::mapToAidlPixelFormat(streamInfo.format); auto u = streamInfo.consumerUsage; camera3::Camera3OutputStream::applyZSLUsageQuirk(streamInfo.format, &u); stream->usage = AidlCamera3Device::mapToAidlConsumerUsage(u); stream->dataSpace = AidlCamera3Device::mapToAidlDataspace(streamInfo.dataSpace); stream->colorSpace = streamInfo.colorSpace; stream->rotation = AidlCamera3Device::mapToAidlStreamRotation(rotation); stream->id = -1; // Invalid stream id stream->physicalCameraId = physicalId; stream->bufferSize = 0; stream->groupId = groupId; stream->sensorPixelModesUsed.resize(streamInfo.sensorPixelModesUsed.size()); size_t idx = 0; using SensorPixelMode = aidl::android::hardware::camera::metadata::SensorPixelMode; for (auto mode : streamInfo.sensorPixelModesUsed) { stream->sensorPixelModesUsed[idx++] = static_cast(mode); } using DynamicRangeProfile = aidl::android::hardware::camera::metadata::RequestAvailableDynamicRangeProfilesMap; stream->dynamicRangeProfile = static_cast(streamInfo.dynamicRangeProfile); using StreamUseCases = aidl::android::hardware::camera::metadata::ScalerAvailableStreamUseCases; stream->useCase = static_cast(streamInfo.streamUseCase); } binder::Status mapStream(const OutputStreamInfo& streamInfo, bool isCompositeJpegRDisabled, const CameraMetadata& deviceInfo, camera_stream_rotation_t rotation, size_t* streamIdx/*out*/, const std::string &physicalId, int32_t groupId, const std::string& logicalCameraId, aidl::android::hardware::camera::device::StreamConfiguration &streamConfiguration /*out*/, bool *earlyExit /*out*/) { bool isDepthCompositeStream = camera3::DepthCompositeStream::isDepthCompositeStreamInfo(streamInfo); bool isHeicCompositeStream = camera3::HeicCompositeStream::isHeicCompositeStreamInfo(streamInfo); bool isJpegRCompositeStream = camera3::JpegRCompositeStream::isJpegRCompositeStreamInfo(streamInfo) && !isCompositeJpegRDisabled; if (isDepthCompositeStream || isHeicCompositeStream || isJpegRCompositeStream) { // We need to take in to account that composite streams can have // additional internal camera streams. std::vector compositeStreams; status_t ret; if (isDepthCompositeStream) { // TODO: Take care of composite streams. ret = camera3::DepthCompositeStream::getCompositeStreamInfo(streamInfo, deviceInfo, &compositeStreams); } else if (isHeicCompositeStream) { ret = camera3::HeicCompositeStream::getCompositeStreamInfo(streamInfo, deviceInfo, &compositeStreams); } else { ret = camera3::JpegRCompositeStream::getCompositeStreamInfo(streamInfo, deviceInfo, &compositeStreams); } if (ret != OK) { std::string msg = fmt::sprintf( "Camera %s: Failed adding composite streams: %s (%d)", logicalCameraId.c_str(), strerror(-ret), ret); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } if (compositeStreams.size() == 0) { // No internal streams means composite stream not // supported. *earlyExit = true; return binder::Status::ok(); } else if (compositeStreams.size() > 1) { size_t streamCount = streamConfiguration.streams.size() + compositeStreams.size() - 1; streamConfiguration.streams.resize(streamCount); } for (const auto& compositeStream : compositeStreams) { mapStreamInfo(compositeStream, rotation, physicalId, groupId, &streamConfiguration.streams[(*streamIdx)++]); } } else { mapStreamInfo(streamInfo, rotation, physicalId, groupId, &streamConfiguration.streams[(*streamIdx)++]); } return binder::Status::ok(); } binder::Status convertToHALStreamCombination( const SessionConfiguration& sessionConfiguration, const std::string &logicalCameraId, const CameraMetadata &deviceInfo, bool isCompositeJpegRDisabled, metadataGetter getMetadata, const std::vector &physicalCameraIds, aidl::android::hardware::camera::device::StreamConfiguration &streamConfiguration, bool overrideForPerfClass, metadata_vendor_id_t vendorTagId, bool checkSessionParams, const std::vector& additionalKeys, bool *earlyExit) { using SensorPixelMode = aidl::android::hardware::camera::metadata::SensorPixelMode; auto operatingMode = sessionConfiguration.getOperatingMode(); binder::Status res = checkOperatingMode(operatingMode, deviceInfo, logicalCameraId); if (!res.isOk()) { return res; } if (earlyExit == nullptr) { std::string msg("earlyExit nullptr"); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } *earlyExit = false; auto ret = AidlCamera3Device::mapToAidlStreamConfigurationMode( static_cast (operatingMode), /*out*/ &streamConfiguration.operationMode); if (ret != OK) { std::string msg = fmt::sprintf( "Camera %s: Failed mapping operating mode %d requested: %s (%d)", logicalCameraId.c_str(), operatingMode, strerror(-ret), ret); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } bool isInputValid = (sessionConfiguration.getInputWidth() > 0) && (sessionConfiguration.getInputHeight() > 0) && (sessionConfiguration.getInputFormat() > 0); auto outputConfigs = sessionConfiguration.getOutputConfigurations(); size_t streamCount = outputConfigs.size(); streamCount = isInputValid ? streamCount + 1 : streamCount; streamConfiguration.streams.resize(streamCount); size_t streamIdx = 0; if (isInputValid) { std::vector defaultSensorPixelModes; defaultSensorPixelModes.resize(1); defaultSensorPixelModes[0] = static_cast(ANDROID_SENSOR_PIXEL_MODE_DEFAULT); aidl::android::hardware::camera::device::Stream stream; stream.id = 0; stream.streamType = aidl::android::hardware::camera::device::StreamType::INPUT; stream.width = static_cast (sessionConfiguration.getInputWidth()); stream.height = static_cast (sessionConfiguration.getInputHeight()); stream.format = AidlCamera3Device::AidlCamera3Device::mapToAidlPixelFormat( sessionConfiguration.getInputFormat()); stream.usage = static_cast(0); stream.dataSpace = static_cast( HAL_DATASPACE_UNKNOWN); stream.rotation = aidl::android::hardware::camera::device::StreamRotation::ROTATION_0; stream.bufferSize = 0; stream.groupId = -1; stream.sensorPixelModesUsed = defaultSensorPixelModes; using DynamicRangeProfile = aidl::android::hardware::camera::metadata::RequestAvailableDynamicRangeProfilesMap; stream.dynamicRangeProfile = DynamicRangeProfile::ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD; streamConfiguration.streams[streamIdx++] = stream; streamConfiguration.multiResolutionInputImage = sessionConfiguration.inputIsMultiResolution(); } for (const auto &it : outputConfigs) { const std::vector>& bufferProducers = it.getGraphicBufferProducers(); bool deferredConsumer = it.isDeferred(); bool isConfigurationComplete = it.isComplete(); const std::string &physicalCameraId = it.getPhysicalCameraId(); int64_t dynamicRangeProfile = it.getDynamicRangeProfile(); int32_t colorSpace = it.getColorSpace(); std::vector sensorPixelModesUsed = it.getSensorPixelModesUsed(); const CameraMetadata &physicalDeviceInfo = getMetadata(physicalCameraId, overrideForPerfClass); const CameraMetadata &metadataChosen = physicalCameraId.size() > 0 ? physicalDeviceInfo : deviceInfo; size_t numBufferProducers = bufferProducers.size(); bool isStreamInfoValid = false; int32_t groupId = it.isMultiResolution() ? it.getSurfaceSetID() : -1; OutputStreamInfo streamInfo; res = checkSurfaceType(numBufferProducers, deferredConsumer, it.getSurfaceType(), isConfigurationComplete); if (!res.isOk()) { return res; } res = checkPhysicalCameraId(physicalCameraIds, physicalCameraId, logicalCameraId); if (!res.isOk()) { return res; } int64_t streamUseCase = it.getStreamUseCase(); int timestampBase = it.getTimestampBase(); int mirrorMode = it.getMirrorMode(); // If the configuration is a deferred consumer, or a not yet completed // configuration with no buffer producers attached. if (deferredConsumer || (!isConfigurationComplete && numBufferProducers == 0)) { streamInfo.width = it.getWidth(); streamInfo.height = it.getHeight(); auto surfaceType = it.getSurfaceType(); switch (surfaceType) { case OutputConfiguration::SURFACE_TYPE_SURFACE_TEXTURE: streamInfo.consumerUsage = GraphicBuffer::USAGE_HW_TEXTURE; streamInfo.format = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; streamInfo.dataSpace = android_dataspace_t::HAL_DATASPACE_UNKNOWN; break; case OutputConfiguration::SURFACE_TYPE_SURFACE_VIEW: streamInfo.consumerUsage = GraphicBuffer::USAGE_HW_TEXTURE | GraphicBuffer::USAGE_HW_COMPOSER; streamInfo.format = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; streamInfo.dataSpace = android_dataspace_t::HAL_DATASPACE_UNKNOWN; break; case OutputConfiguration::SURFACE_TYPE_MEDIA_RECORDER: case OutputConfiguration::SURFACE_TYPE_MEDIA_CODEC: streamInfo.consumerUsage = GraphicBuffer::USAGE_HW_VIDEO_ENCODER; streamInfo.format = HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED; streamInfo.dataSpace = android_dataspace_t::HAL_DATASPACE_UNKNOWN; break; case OutputConfiguration::SURFACE_TYPE_IMAGE_READER: streamInfo.consumerUsage = it.getUsage(); streamInfo.format = it.getFormat(); streamInfo.dataSpace = (android_dataspace)it.getDataspace(); break; default: return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, "Invalid surface type."); } streamInfo.dynamicRangeProfile = it.getDynamicRangeProfile(); if (checkAndOverrideSensorPixelModesUsed(sensorPixelModesUsed, streamInfo.format, streamInfo.width, streamInfo.height, metadataChosen, &streamInfo.sensorPixelModesUsed) != OK) { ALOGE("%s: Deferred surface sensor pixel modes not valid", __FUNCTION__); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, "Deferred surface sensor pixel modes not valid"); } streamInfo.streamUseCase = streamUseCase; auto status = mapStream(streamInfo, isCompositeJpegRDisabled, deviceInfo, camera3::CAMERA_STREAM_ROTATION_0, &streamIdx, physicalCameraId, groupId, logicalCameraId, streamConfiguration, earlyExit); if (*earlyExit || !status.isOk()) { return status; } isStreamInfoValid = true; if (numBufferProducers == 0) { continue; } } for (auto& bufferProducer : bufferProducers) { sp surface; res = createSurfaceFromGbp(streamInfo, isStreamInfoValid, surface, bufferProducer, logicalCameraId, metadataChosen, sensorPixelModesUsed, dynamicRangeProfile, streamUseCase, timestampBase, mirrorMode, colorSpace, /*respectSurfaceSize*/true); if (!res.isOk()) return res; if (!isStreamInfoValid) { auto status = mapStream(streamInfo, isCompositeJpegRDisabled, deviceInfo, static_cast (it.getRotation()), &streamIdx, physicalCameraId, groupId, logicalCameraId, streamConfiguration, earlyExit); if (*earlyExit || !status.isOk()) { return status; } isStreamInfoValid = true; } } } if (checkSessionParams) { const CameraMetadata &deviceInfo = getMetadata(logicalCameraId, /*overrideForPerfClass*/false); CameraMetadata filteredParams; filterParameters(sessionConfiguration.getSessionParameters(), deviceInfo, additionalKeys, vendorTagId, filteredParams); camera_metadata_t* metadata = const_cast(filteredParams.getAndLock()); uint8_t *metadataP = reinterpret_cast(metadata); streamConfiguration.sessionParams.metadata.assign(metadataP, metadataP + get_camera_metadata_size(metadata)); } return binder::Status::ok(); } binder::Status checkPhysicalCameraId( const std::vector &physicalCameraIds, const std::string &physicalCameraId, const std::string &logicalCameraId) { if (physicalCameraId.size() == 0) { return binder::Status::ok(); } if (std::find(physicalCameraIds.begin(), physicalCameraIds.end(), physicalCameraId) == physicalCameraIds.end()) { std::string msg = fmt::sprintf("Camera %s: Camera doesn't support physicalCameraId %s.", logicalCameraId.c_str(), physicalCameraId.c_str()); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } return binder::Status::ok(); } binder::Status checkSurfaceType(size_t numBufferProducers, bool deferredConsumer, int surfaceType, bool isConfigurationComplete) { if (numBufferProducers > MAX_SURFACES_PER_STREAM) { ALOGE("%s: GraphicBufferProducer count %zu for stream exceeds limit of %d", __FUNCTION__, numBufferProducers, MAX_SURFACES_PER_STREAM); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, "Surface count is too high"); } else if ((numBufferProducers == 0) && (!deferredConsumer) && isConfigurationComplete) { ALOGE("%s: Number of consumers cannot be smaller than 1", __FUNCTION__); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, "No valid consumers."); } if (deferredConsumer) { bool validSurfaceType = ( (surfaceType == OutputConfiguration::SURFACE_TYPE_SURFACE_VIEW) || (surfaceType == OutputConfiguration::SURFACE_TYPE_SURFACE_TEXTURE)); if (!validSurfaceType) { std::string msg = fmt::sprintf("Deferred target surface has invalid " "surfaceType = %d.", surfaceType); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } } else if (!isConfigurationComplete && numBufferProducers == 0) { bool validSurfaceType = ( (surfaceType == OutputConfiguration::SURFACE_TYPE_MEDIA_RECORDER) || (surfaceType == OutputConfiguration::SURFACE_TYPE_MEDIA_CODEC) || (surfaceType == OutputConfiguration::SURFACE_TYPE_IMAGE_READER)); if (!validSurfaceType) { std::string msg = fmt::sprintf("OutputConfiguration target surface has invalid " "surfaceType = %d.", surfaceType); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } } return binder::Status::ok(); } binder::Status checkOperatingMode(int operatingMode, const CameraMetadata &staticInfo, const std::string &cameraId) { if (operatingMode < 0) { std::string msg = fmt::sprintf( "Camera %s: Invalid operating mode %d requested", cameraId.c_str(), operatingMode); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } bool isConstrainedHighSpeed = (operatingMode == ICameraDeviceUser::CONSTRAINED_HIGH_SPEED_MODE); if (isConstrainedHighSpeed) { camera_metadata_ro_entry_t entry = staticInfo.find(ANDROID_REQUEST_AVAILABLE_CAPABILITIES); bool isConstrainedHighSpeedSupported = false; for(size_t i = 0; i < entry.count; ++i) { uint8_t capability = entry.data.u8[i]; if (capability == ANDROID_REQUEST_AVAILABLE_CAPABILITIES_CONSTRAINED_HIGH_SPEED_VIDEO) { isConstrainedHighSpeedSupported = true; break; } } if (!isConstrainedHighSpeedSupported) { std::string msg = fmt::sprintf( "Camera %s: Try to create a constrained high speed configuration on a device" " that doesn't support it.", cameraId.c_str()); ALOGE("%s: %s", __FUNCTION__, msg.c_str()); return STATUS_ERROR(CameraService::ERROR_ILLEGAL_ARGUMENT, msg.c_str()); } } return binder::Status::ok(); } static bool inStreamConfigurationMap(int format, int width, int height, const std::unordered_map> &sm) { auto scs = sm.find(format); if (scs == sm.end()) { return false; } for (auto &sc : scs->second) { if (sc.width == width && sc.height == height && sc.isInput == 0) { return true; } } return false; } static std::unordered_set convertToSet(const std::vector &sensorPixelModesUsed) { return std::unordered_set(sensorPixelModesUsed.begin(), sensorPixelModesUsed.end()); } status_t checkAndOverrideSensorPixelModesUsed( const std::vector &sensorPixelModesUsed, int format, int width, int height, const CameraMetadata &staticInfo, std::unordered_set *overriddenSensorPixelModesUsed) { const std::unordered_set &sensorPixelModesUsedSet = convertToSet(sensorPixelModesUsed); if (!supportsUltraHighResolutionCapture(staticInfo)) { if (sensorPixelModesUsedSet.find(ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION) != sensorPixelModesUsedSet.end()) { // invalid value for non ultra high res sensors ALOGE("%s ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION used on a device which doesn't " "support ultra high resolution capture", __FUNCTION__); return BAD_VALUE; } overriddenSensorPixelModesUsed->clear(); overriddenSensorPixelModesUsed->insert(ANDROID_SENSOR_PIXEL_MODE_DEFAULT); return OK; } StreamConfigurationPair streamConfigurationPair = getStreamConfigurationPair(staticInfo); bool isInDefaultStreamConfigurationMap = inStreamConfigurationMap(format, width, height, streamConfigurationPair.mDefaultStreamConfigurationMap); bool isInMaximumResolutionStreamConfigurationMap = inStreamConfigurationMap(format, width, height, streamConfigurationPair.mMaximumResolutionStreamConfigurationMap); // Case 1: The client has not changed the sensor mode defaults. In this case, we check if the // size + format of the OutputConfiguration is found exclusively in 1. // If yes, add that sensorPixelMode to overriddenSensorPixelModes. // If no, add 'DEFAULT' and MAXIMUM_RESOLUTION to overriddenSensorPixelModes. // This maintains backwards compatibility and also tells the framework the stream // might be used in either sensor pixel mode. if (sensorPixelModesUsedSet.size() == 0) { // Ambiguous case, override to include both cases. if (isInDefaultStreamConfigurationMap && isInMaximumResolutionStreamConfigurationMap) { overriddenSensorPixelModesUsed->insert(ANDROID_SENSOR_PIXEL_MODE_DEFAULT); overriddenSensorPixelModesUsed->insert(ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION); return OK; } if (isInMaximumResolutionStreamConfigurationMap) { overriddenSensorPixelModesUsed->insert( ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION); } else { overriddenSensorPixelModesUsed->insert(ANDROID_SENSOR_PIXEL_MODE_DEFAULT); } return OK; } // Case2: The app has set sensorPixelModesUsed, we need to verify that they // are valid / err out. if (sensorPixelModesUsedSet.find(ANDROID_SENSOR_PIXEL_MODE_DEFAULT) != sensorPixelModesUsedSet.end() && !isInDefaultStreamConfigurationMap) { ALOGE("%s: ANDROID_SENSOR_PIXEL_MODE_DEFAULT set by client, but stream f: %d size %d x %d" " isn't present in default stream configuration map", __FUNCTION__, format, width, height); return BAD_VALUE; } if (sensorPixelModesUsedSet.find(ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION) != sensorPixelModesUsedSet.end() && !isInMaximumResolutionStreamConfigurationMap) { ALOGE("%s: ANDROID_SENSOR_PIXEL_MODE_MAXIMUM_RESOLUTION set by client, but stream f: " "%d size %d x %d isn't present in default stream configuration map", __FUNCTION__, format, width, height); return BAD_VALUE; } *overriddenSensorPixelModesUsed = sensorPixelModesUsedSet; return OK; } bool targetPerfClassPrimaryCamera( const std::set& perfClassPrimaryCameraIds, const std::string& cameraId, int targetSdkVersion) { bool isPerfClassPrimaryCamera = perfClassPrimaryCameraIds.find(cameraId) != perfClassPrimaryCameraIds.end(); return targetSdkVersion >= SDK_VERSION_S && isPerfClassPrimaryCamera; } binder::Status mapRequestTemplateFromClient(const std::string& cameraId, int templateId, camera_request_template_t* tempId /*out*/) { binder::Status ret = binder::Status::ok(); if (tempId == nullptr) { ret = STATUS_ERROR_FMT(CameraService::ERROR_ILLEGAL_ARGUMENT, "Camera %s: Invalid template argument", cameraId.c_str()); return ret; } switch(templateId) { case ICameraDeviceUser::TEMPLATE_PREVIEW: *tempId = camera_request_template_t::CAMERA_TEMPLATE_PREVIEW; break; case ICameraDeviceUser::TEMPLATE_RECORD: *tempId = camera_request_template_t::CAMERA_TEMPLATE_VIDEO_RECORD; break; case ICameraDeviceUser::TEMPLATE_STILL_CAPTURE: *tempId = camera_request_template_t::CAMERA_TEMPLATE_STILL_CAPTURE; break; case ICameraDeviceUser::TEMPLATE_VIDEO_SNAPSHOT: *tempId = camera_request_template_t::CAMERA_TEMPLATE_VIDEO_SNAPSHOT; break; case ICameraDeviceUser::TEMPLATE_ZERO_SHUTTER_LAG: *tempId = camera_request_template_t::CAMERA_TEMPLATE_ZERO_SHUTTER_LAG; break; case ICameraDeviceUser::TEMPLATE_MANUAL: *tempId = camera_request_template_t::CAMERA_TEMPLATE_MANUAL; break; default: ret = STATUS_ERROR_FMT(CameraService::ERROR_ILLEGAL_ARGUMENT, "Camera %s: Template ID %d is invalid or not supported", cameraId.c_str(), templateId); return ret; } return ret; } status_t mapRequestTemplateToAidl(camera_request_template_t templateId, RequestTemplate* id /*out*/) { switch (templateId) { case CAMERA_TEMPLATE_PREVIEW: *id = RequestTemplate::PREVIEW; break; case CAMERA_TEMPLATE_STILL_CAPTURE: *id = RequestTemplate::STILL_CAPTURE; break; case CAMERA_TEMPLATE_VIDEO_RECORD: *id = RequestTemplate::VIDEO_RECORD; break; case CAMERA_TEMPLATE_VIDEO_SNAPSHOT: *id = RequestTemplate::VIDEO_SNAPSHOT; break; case CAMERA_TEMPLATE_ZERO_SHUTTER_LAG: *id = RequestTemplate::ZERO_SHUTTER_LAG; break; case CAMERA_TEMPLATE_MANUAL: *id = RequestTemplate::MANUAL; break; default: // Unknown template ID, or this HAL is too old to support it return BAD_VALUE; } return OK; } void filterParameters(const CameraMetadata& src, const CameraMetadata& deviceInfo, const std::vector& additionalTags, metadata_vendor_id_t vendorTagId, CameraMetadata& dst) { const CameraMetadata params(src); camera_metadata_ro_entry_t availableSessionKeys = deviceInfo.find( ANDROID_REQUEST_AVAILABLE_SESSION_KEYS); CameraMetadata filteredParams(availableSessionKeys.count); camera_metadata_t *meta = const_cast( filteredParams.getAndLock()); set_camera_metadata_vendor_id(meta, vendorTagId); filteredParams.unlock(meta); std::unordered_set filteredTags(availableSessionKeys.data.i32, availableSessionKeys.data.i32 + availableSessionKeys.count); filteredTags.insert(additionalTags.begin(), additionalTags.end()); for (int32_t tag : filteredTags) { camera_metadata_ro_entry entry = params.find(tag); if (entry.count > 0) { filteredParams.update(entry); } } dst = std::move(filteredParams); } status_t overrideDefaultRequestKeys(CameraMetadata *request) { // Override the template request with ZoomRatioMapper status_t res = ZoomRatioMapper::initZoomRatioInTemplate(request); if (res != OK) { ALOGE("Failed to update zoom ratio: %s (%d)", strerror(-res), res); return res; } // Fill in JPEG_QUALITY if not available if (!request->exists(ANDROID_JPEG_QUALITY)) { static const uint8_t kDefaultJpegQuality = 95; request->update(ANDROID_JPEG_QUALITY, &kDefaultJpegQuality, 1); } // Fill in AUTOFRAMING if not available if (!request->exists(ANDROID_CONTROL_AUTOFRAMING)) { static const uint8_t kDefaultAutoframingMode = ANDROID_CONTROL_AUTOFRAMING_OFF; request->update(ANDROID_CONTROL_AUTOFRAMING, &kDefaultAutoframingMode, 1); } return OK; } } // namespace SessionConfigurationUtils } // namespace camera3 } // namespace android