/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include "util/list.h" #include "util/macros.h" #include "util/u_math.h" #include "util/u_printf.h" #include "ralloc.h" #define CANARY 0x5A1106 #if defined(__LP64__) || defined(_WIN64) #define HEADER_ALIGN 16 #else #define HEADER_ALIGN 8 #endif /* Align the header's size so that ralloc() allocations will return with the * same alignment as a libc malloc would have (8 on 32-bit GLIBC, 16 on * 64-bit), avoiding performance penalities on x86 and alignment faults on * ARM. */ struct ralloc_header { alignas(HEADER_ALIGN) #ifndef NDEBUG /* A canary value used to determine whether a pointer is ralloc'd. */ unsigned canary; #endif struct ralloc_header *parent; /* The first child (head of a linked list) */ struct ralloc_header *child; /* Linked list of siblings */ struct ralloc_header *prev; struct ralloc_header *next; void (*destructor)(void *); }; typedef struct ralloc_header ralloc_header; static void unlink_block(ralloc_header *info); static void unsafe_free(ralloc_header *info); static ralloc_header * get_header(const void *ptr) { ralloc_header *info = (ralloc_header *) (((char *) ptr) - sizeof(ralloc_header)); assert(info->canary == CANARY); return info; } #define PTR_FROM_HEADER(info) (((char *) info) + sizeof(ralloc_header)) static void add_child(ralloc_header *parent, ralloc_header *info) { if (parent != NULL) { info->parent = parent; info->next = parent->child; parent->child = info; if (info->next != NULL) info->next->prev = info; } } void * ralloc_context(const void *ctx) { return ralloc_size(ctx, 0); } void * ralloc_size(const void *ctx, size_t size) { /* Some malloc allocation doesn't always align to 16 bytes even on 64 bits * system, from Android bionic/tests/malloc_test.cpp: * - Allocations of a size that rounds up to a multiple of 16 bytes * must have at least 16 byte alignment. * - Allocations of a size that rounds up to a multiple of 8 bytes and * not 16 bytes, are only required to have at least 8 byte alignment. */ void *block = malloc(align64(size + sizeof(ralloc_header), alignof(ralloc_header))); ralloc_header *info; ralloc_header *parent; if (unlikely(block == NULL)) return NULL; info = (ralloc_header *) block; /* measurements have shown that calloc is slower (because of * the multiplication overflow checking?), so clear things * manually */ info->parent = NULL; info->child = NULL; info->prev = NULL; info->next = NULL; info->destructor = NULL; parent = ctx != NULL ? get_header(ctx) : NULL; add_child(parent, info); #ifndef NDEBUG info->canary = CANARY; #endif return PTR_FROM_HEADER(info); } void * rzalloc_size(const void *ctx, size_t size) { void *ptr = ralloc_size(ctx, size); if (likely(ptr)) memset(ptr, 0, size); return ptr; } /* helper function - assumes ptr != NULL */ static void * resize(void *ptr, size_t size) { ralloc_header *child, *old, *info; old = get_header(ptr); info = realloc(old, align64(size + sizeof(ralloc_header), alignof(ralloc_header))); if (info == NULL) return NULL; /* Update parent and sibling's links to the reallocated node. */ if (info != old && info->parent != NULL) { if (info->parent->child == old) info->parent->child = info; if (info->prev != NULL) info->prev->next = info; if (info->next != NULL) info->next->prev = info; } /* Update child->parent links for all children */ for (child = info->child; child != NULL; child = child->next) child->parent = info; return PTR_FROM_HEADER(info); } void * reralloc_size(const void *ctx, void *ptr, size_t size) { if (unlikely(ptr == NULL)) return ralloc_size(ctx, size); assert(ralloc_parent(ptr) == ctx); return resize(ptr, size); } void * rerzalloc_size(const void *ctx, void *ptr, size_t old_size, size_t new_size) { if (unlikely(ptr == NULL)) return rzalloc_size(ctx, new_size); assert(ralloc_parent(ptr) == ctx); ptr = resize(ptr, new_size); if (new_size > old_size) memset((char *)ptr + old_size, 0, new_size - old_size); return ptr; } void * ralloc_array_size(const void *ctx, size_t size, unsigned count) { if (count > SIZE_MAX/size) return NULL; return ralloc_size(ctx, size * count); } void * rzalloc_array_size(const void *ctx, size_t size, unsigned count) { if (count > SIZE_MAX/size) return NULL; return rzalloc_size(ctx, size * count); } void * reralloc_array_size(const void *ctx, void *ptr, size_t size, unsigned count) { if (count > SIZE_MAX/size) return NULL; return reralloc_size(ctx, ptr, size * count); } void * rerzalloc_array_size(const void *ctx, void *ptr, size_t size, unsigned old_count, unsigned new_count) { if (new_count > SIZE_MAX/size) return NULL; return rerzalloc_size(ctx, ptr, size * old_count, size * new_count); } void ralloc_free(void *ptr) { ralloc_header *info; if (ptr == NULL) return; info = get_header(ptr); unlink_block(info); unsafe_free(info); } static void unlink_block(ralloc_header *info) { /* Unlink from parent & siblings */ if (info->parent != NULL) { if (info->parent->child == info) info->parent->child = info->next; if (info->prev != NULL) info->prev->next = info->next; if (info->next != NULL) info->next->prev = info->prev; } info->parent = NULL; info->prev = NULL; info->next = NULL; } static void unsafe_free(ralloc_header *info) { /* Recursively free any children...don't waste time unlinking them. */ ralloc_header *temp; while (info->child != NULL) { temp = info->child; info->child = temp->next; unsafe_free(temp); } /* Free the block itself. Call the destructor first, if any. */ if (info->destructor != NULL) info->destructor(PTR_FROM_HEADER(info)); free(info); } void ralloc_steal(const void *new_ctx, void *ptr) { ralloc_header *info, *parent; if (unlikely(ptr == NULL)) return; info = get_header(ptr); parent = new_ctx ? get_header(new_ctx) : NULL; unlink_block(info); add_child(parent, info); } void ralloc_adopt(const void *new_ctx, void *old_ctx) { ralloc_header *new_info, *old_info, *child; if (unlikely(old_ctx == NULL)) return; old_info = get_header(old_ctx); new_info = get_header(new_ctx); /* If there are no children, bail. */ if (unlikely(old_info->child == NULL)) return; /* Set all the children's parent to new_ctx; get a pointer to the last child. */ for (child = old_info->child; child->next != NULL; child = child->next) { child->parent = new_info; } child->parent = new_info; /* Connect the two lists together; parent them to new_ctx; make old_ctx empty. */ child->next = new_info->child; if (child->next) child->next->prev = child; new_info->child = old_info->child; old_info->child = NULL; } void * ralloc_parent(const void *ptr) { ralloc_header *info; if (unlikely(ptr == NULL)) return NULL; info = get_header(ptr); return info->parent ? PTR_FROM_HEADER(info->parent) : NULL; } void ralloc_set_destructor(const void *ptr, void(*destructor)(void *)) { ralloc_header *info = get_header(ptr); info->destructor = destructor; } char * ralloc_strdup(const void *ctx, const char *str) { size_t n; char *ptr; if (unlikely(str == NULL)) return NULL; n = strlen(str); ptr = ralloc_array(ctx, char, n + 1); memcpy(ptr, str, n); ptr[n] = '\0'; return ptr; } char * ralloc_strndup(const void *ctx, const char *str, size_t max) { size_t n; char *ptr; if (unlikely(str == NULL)) return NULL; n = strnlen(str, max); ptr = ralloc_array(ctx, char, n + 1); memcpy(ptr, str, n); ptr[n] = '\0'; return ptr; } /* helper routine for strcat/strncat - n is the exact amount to copy */ static bool cat(char **dest, const char *str, size_t n) { char *both; size_t existing_length; assert(dest != NULL && *dest != NULL); existing_length = strlen(*dest); both = resize(*dest, existing_length + n + 1); if (unlikely(both == NULL)) return false; memcpy(both + existing_length, str, n); both[existing_length + n] = '\0'; *dest = both; return true; } bool ralloc_strcat(char **dest, const char *str) { return cat(dest, str, strlen(str)); } bool ralloc_strncat(char **dest, const char *str, size_t n) { return cat(dest, str, strnlen(str, n)); } bool ralloc_str_append(char **dest, const char *str, size_t existing_length, size_t str_size) { char *both; assert(dest != NULL && *dest != NULL); both = resize(*dest, existing_length + str_size + 1); if (unlikely(both == NULL)) return false; memcpy(both + existing_length, str, str_size); both[existing_length + str_size] = '\0'; *dest = both; return true; } char * ralloc_asprintf(const void *ctx, const char *fmt, ...) { char *ptr; va_list args; va_start(args, fmt); ptr = ralloc_vasprintf(ctx, fmt, args); va_end(args); return ptr; } char * ralloc_vasprintf(const void *ctx, const char *fmt, va_list args) { size_t size = u_printf_length(fmt, args) + 1; char *ptr = ralloc_size(ctx, size); if (ptr != NULL) vsnprintf(ptr, size, fmt, args); return ptr; } bool ralloc_asprintf_append(char **str, const char *fmt, ...) { bool success; va_list args; va_start(args, fmt); success = ralloc_vasprintf_append(str, fmt, args); va_end(args); return success; } bool ralloc_vasprintf_append(char **str, const char *fmt, va_list args) { size_t existing_length; assert(str != NULL); existing_length = *str ? strlen(*str) : 0; return ralloc_vasprintf_rewrite_tail(str, &existing_length, fmt, args); } bool ralloc_asprintf_rewrite_tail(char **str, size_t *start, const char *fmt, ...) { bool success; va_list args; va_start(args, fmt); success = ralloc_vasprintf_rewrite_tail(str, start, fmt, args); va_end(args); return success; } bool ralloc_vasprintf_rewrite_tail(char **str, size_t *start, const char *fmt, va_list args) { size_t new_length; char *ptr; assert(str != NULL); if (unlikely(*str == NULL)) { // Assuming a NULL context is probably bad, but it's expected behavior. *str = ralloc_vasprintf(NULL, fmt, args); *start = strlen(*str); return true; } new_length = u_printf_length(fmt, args); ptr = resize(*str, *start + new_length + 1); if (unlikely(ptr == NULL)) return false; vsnprintf(ptr + *start, new_length + 1, fmt, args); *str = ptr; *start += new_length; return true; } /*************************************************************************** * GC context. *************************************************************************** */ /* The maximum size of an object that will be allocated specially. */ #define MAX_FREELIST_SIZE 512 /* Allocations small enough to be allocated from a freelist will be aligned up * to this size. */ #define FREELIST_ALIGNMENT 32 #define NUM_FREELIST_BUCKETS (MAX_FREELIST_SIZE / FREELIST_ALIGNMENT) /* The size of a slab. */ #define SLAB_SIZE (32 * 1024) #define GC_CANARY 0xAF6B5B72 enum gc_flags { IS_USED = (1 << 0), CURRENT_GENERATION = (1 << 1), IS_PADDING = (1 << 7), }; typedef struct { #ifndef NDEBUG /* A canary value used to determine whether a pointer is allocated using gc_alloc. */ unsigned canary; #endif uint16_t slab_offset; uint8_t bucket; uint8_t flags; /* The last padding byte must have IS_PADDING set and is used to store the amount of padding. If * there is no padding, the IS_PADDING bit of "flags" is unset and "flags" is checked instead. * Because of this, "flags" must be the last member of this struct. */ uint8_t padding[]; } gc_block_header; /* This structure is at the start of the slab. Objects inside a slab are * allocated using a freelist backed by a simple linear allocator. */ typedef struct gc_slab { alignas(HEADER_ALIGN) gc_ctx *ctx; /* Objects are allocated using either linear or freelist allocation. "next_available" is the * pointer used for linear allocation, while "freelist" is the next free object for freelist * allocation. */ char *next_available; gc_block_header *freelist; /* Slabs that handle the same-sized objects. */ struct list_head link; /* Free slabs that handle the same-sized objects. */ struct list_head free_link; /* Number of allocated and free objects, recorded so that we can free the slab if it * becomes empty or add one to the freelist if it's no longer full. */ unsigned num_allocated; unsigned num_free; } gc_slab; struct gc_ctx { /* Array of slabs for fixed-size allocations. Each slab tracks allocations * of specific sized blocks. User allocations are rounded up to the nearest * fixed size. slabs[N] contains allocations of size * FREELIST_ALIGNMENT * (N + 1). */ struct { /* List of slabs in this bucket. */ struct list_head slabs; /* List of slabs with free space in this bucket, so we can quickly choose one when * allocating. */ struct list_head free_slabs; } slabs[NUM_FREELIST_BUCKETS]; uint8_t current_gen; void *rubbish; }; static gc_block_header * get_gc_header(const void *ptr) { uint8_t *c_ptr = (uint8_t *)ptr; /* Adjust for padding added to ensure alignment of the allocation. There might also be padding * added by the compiler into gc_block_header, but that isn't counted in the IS_PADDING byte. */ if (c_ptr[-1] & IS_PADDING) c_ptr -= c_ptr[-1] & ~IS_PADDING; c_ptr -= sizeof(gc_block_header); gc_block_header *info = (gc_block_header *)c_ptr; assert(info->canary == GC_CANARY); return info; } static gc_block_header * get_gc_freelist_next(gc_block_header *ptr) { gc_block_header *next; /* work around possible strict aliasing bug using memcpy */ memcpy(&next, (void*)(ptr + 1), sizeof(next)); return next; } static void set_gc_freelist_next(gc_block_header *ptr, gc_block_header *next) { memcpy((void*)(ptr + 1), &next, sizeof(next)); } static gc_slab * get_gc_slab(gc_block_header *header) { return (gc_slab *)((char *)header - header->slab_offset); } gc_ctx * gc_context(const void *parent) { gc_ctx *ctx = rzalloc(parent, gc_ctx); for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) { list_inithead(&ctx->slabs[i].slabs); list_inithead(&ctx->slabs[i].free_slabs); } return ctx; } static_assert(UINT32_MAX >= MAX_FREELIST_SIZE, "Freelist sizes use uint32_t"); static uint32_t gc_bucket_obj_size(uint32_t bucket) { return (bucket + 1) * FREELIST_ALIGNMENT; } static uint32_t gc_bucket_for_size(uint32_t size) { return (size - 1) / FREELIST_ALIGNMENT; } static_assert(UINT32_MAX >= SLAB_SIZE, "SLAB_SIZE use uint32_t"); static uint32_t gc_bucket_num_objs(uint32_t bucket) { return (SLAB_SIZE - sizeof(gc_slab)) / gc_bucket_obj_size(bucket); } static gc_block_header * alloc_from_slab(gc_slab *slab, uint32_t bucket) { uint32_t size = gc_bucket_obj_size(bucket); gc_block_header *header; if (slab->freelist) { /* Prioritize already-allocated chunks, since they probably have a page * backing them. */ header = slab->freelist; slab->freelist = get_gc_freelist_next(slab->freelist); } else if (slab->next_available + size <= ((char *) slab) + SLAB_SIZE) { header = (gc_block_header *) slab->next_available; header->slab_offset = (char *) header - (char *) slab; header->bucket = bucket; slab->next_available += size; } else { return NULL; } slab->num_allocated++; slab->num_free--; if (!slab->num_free) list_del(&slab->free_link); return header; } static void free_slab(gc_slab *slab) { if (list_is_linked(&slab->free_link)) list_del(&slab->free_link); list_del(&slab->link); ralloc_free(slab); } static void free_from_slab(gc_block_header *header, bool keep_empty_slabs) { gc_slab *slab = get_gc_slab(header); if (slab->num_allocated == 1 && !(keep_empty_slabs && list_is_singular(&slab->free_link))) { /* Free the slab if this is the last object. */ free_slab(slab); return; } else if (slab->num_free == 0) { list_add(&slab->free_link, &slab->ctx->slabs[header->bucket].free_slabs); } else { /* Keep the free list sorted by the number of free objects in ascending order. By prefering to * allocate from the slab with the fewest free objects, we help free the slabs with many free * objects. */ while (slab->free_link.next != &slab->ctx->slabs[header->bucket].free_slabs && slab->num_free > list_entry(slab->free_link.next, gc_slab, free_link)->num_free) { gc_slab *next = list_entry(slab->free_link.next, gc_slab, free_link); /* Move "slab" to after "next". */ list_move_to(&slab->free_link, &next->free_link); } } set_gc_freelist_next(header, slab->freelist); slab->freelist = header; slab->num_allocated--; slab->num_free++; } static uint32_t get_slab_size(uint32_t bucket) { /* SLAB_SIZE rounded down to a multiple of the object size so that it's not larger than what can * be used. */ uint32_t obj_size = gc_bucket_obj_size(bucket); uint32_t num_objs = gc_bucket_num_objs(bucket); return align((uint32_t)sizeof(gc_slab) + num_objs * obj_size, alignof(gc_slab)); } static gc_slab * create_slab(gc_ctx *ctx, unsigned bucket) { gc_slab *slab = ralloc_size(ctx, get_slab_size(bucket)); if (unlikely(!slab)) return NULL; slab->ctx = ctx; slab->freelist = NULL; slab->next_available = (char*)(slab + 1); slab->num_allocated = 0; slab->num_free = gc_bucket_num_objs(bucket); list_addtail(&slab->link, &ctx->slabs[bucket].slabs); list_addtail(&slab->free_link, &ctx->slabs[bucket].free_slabs); return slab; } void * gc_alloc_size(gc_ctx *ctx, size_t size, size_t align) { assert(ctx); assert(util_is_power_of_two_nonzero(align)); align = MAX2(align, alignof(gc_block_header)); /* Alignment will add at most align-alignof(gc_block_header) bytes of padding to the header, and * the IS_PADDING byte can only encode up to 127. */ assert((align - alignof(gc_block_header)) <= 127); /* We can only align as high as the slab is. */ assert(align <= HEADER_ALIGN); size_t header_size = align64(sizeof(gc_block_header), align); size = align64(size, align); size += header_size; gc_block_header *header = NULL; if (size <= MAX_FREELIST_SIZE) { uint32_t bucket = gc_bucket_for_size((uint32_t)size); if (list_is_empty(&ctx->slabs[bucket].free_slabs) && !create_slab(ctx, bucket)) return NULL; gc_slab *slab = list_first_entry(&ctx->slabs[bucket].free_slabs, gc_slab, free_link); header = alloc_from_slab(slab, bucket); } else { header = ralloc_size(ctx, size); if (unlikely(!header)) return NULL; /* Mark the header as allocated directly, so we know to actually free it. */ header->bucket = NUM_FREELIST_BUCKETS; } header->flags = ctx->current_gen | IS_USED; #ifndef NDEBUG header->canary = GC_CANARY; #endif uint8_t *ptr = (uint8_t *)header + header_size; if ((header_size - 1) != offsetof(gc_block_header, flags)) ptr[-1] = IS_PADDING | (header_size - sizeof(gc_block_header)); assert(((uintptr_t)ptr & (align - 1)) == 0); return ptr; } void * gc_zalloc_size(gc_ctx *ctx, size_t size, size_t align) { void *ptr = gc_alloc_size(ctx, size, align); if (likely(ptr)) memset(ptr, 0, size); return ptr; } void gc_free(void *ptr) { if (!ptr) return; gc_block_header *header = get_gc_header(ptr); header->flags &= ~IS_USED; if (header->bucket < NUM_FREELIST_BUCKETS) free_from_slab(header, true); else ralloc_free(header); } gc_ctx *gc_get_context(void *ptr) { gc_block_header *header = get_gc_header(ptr); if (header->bucket < NUM_FREELIST_BUCKETS) return get_gc_slab(header)->ctx; else return ralloc_parent(header); } void gc_sweep_start(gc_ctx *ctx) { ctx->current_gen ^= CURRENT_GENERATION; ctx->rubbish = ralloc_context(NULL); ralloc_adopt(ctx->rubbish, ctx); } void gc_mark_live(gc_ctx *ctx, const void *mem) { gc_block_header *header = get_gc_header(mem); if (header->bucket < NUM_FREELIST_BUCKETS) header->flags ^= CURRENT_GENERATION; else ralloc_steal(ctx, header); } void gc_sweep_end(gc_ctx *ctx) { assert(ctx->rubbish); for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) { unsigned obj_size = gc_bucket_obj_size(i); list_for_each_entry_safe(gc_slab, slab, &ctx->slabs[i].slabs, link) { if (!slab->num_allocated) { free_slab(slab); continue; } for (char *ptr = (char*)(slab + 1); ptr != slab->next_available; ptr += obj_size) { gc_block_header *header = (gc_block_header *)ptr; if (!(header->flags & IS_USED)) continue; if ((header->flags & CURRENT_GENERATION) == ctx->current_gen) continue; bool last = slab->num_allocated == 1; header->flags &= ~IS_USED; free_from_slab(header, false); if (last) break; } } } for (unsigned i = 0; i < NUM_FREELIST_BUCKETS; i++) { list_for_each_entry(gc_slab, slab, &ctx->slabs[i].slabs, link) { assert(slab->num_allocated > 0); /* free_from_slab() should free it otherwise */ ralloc_steal(ctx, slab); } } ralloc_free(ctx->rubbish); ctx->rubbish = NULL; } /*************************************************************************** * Linear allocator for short-lived allocations. *************************************************************************** * * The allocator consists of a parent node (2K buffer), which requires * a ralloc parent, and child nodes (allocations). Child nodes can't be freed * directly, because the parent doesn't track them. You have to release * the parent node in order to release all its children. * * The allocator uses a fixed-sized buffer with a monotonically increasing * offset after each allocation. If the buffer is all used, another buffer * is allocated, sharing the same ralloc parent, so all buffers are at * the same level in the ralloc hierarchy. * * The linear parent node is always the first buffer and keeps track of all * other buffers. */ #define MIN_LINEAR_BUFSIZE 2048 #define SUBALLOC_ALIGNMENT 8 #define LMAGIC 0x87b9c7d3 struct linear_header { alignas(HEADER_ALIGN) #ifndef NDEBUG unsigned magic; /* for debugging */ #endif unsigned offset; /* points to the first unused byte in the buffer */ unsigned size; /* size of the buffer */ void *ralloc_parent; /* new buffers will use this */ struct linear_header *next; /* next buffer if we have more */ struct linear_header *latest; /* the only buffer that has free space */ /* After this structure, the buffer begins. * Each suballocation consists of linear_size_chunk as its header followed * by the suballocation, so it goes: * * - linear_size_chunk * - allocated space * - linear_size_chunk * - allocated space * etc. * * linear_size_chunk is only needed by linear_realloc. */ }; struct linear_size_chunk { unsigned size; /* for realloc */ unsigned _padding; }; typedef struct linear_header linear_header; typedef struct linear_size_chunk linear_size_chunk; #define LINEAR_PARENT_TO_HEADER(parent) \ (linear_header*) \ ((char*)(parent) - sizeof(linear_size_chunk) - sizeof(linear_header)) /* Allocate the linear buffer with its header. */ static linear_header * create_linear_node(void *ralloc_ctx, unsigned min_size) { linear_header *node; min_size += sizeof(linear_size_chunk); if (likely(min_size < MIN_LINEAR_BUFSIZE)) min_size = MIN_LINEAR_BUFSIZE; node = ralloc_size(ralloc_ctx, sizeof(linear_header) + min_size); if (unlikely(!node)) return NULL; #ifndef NDEBUG node->magic = LMAGIC; #endif node->offset = 0; node->size = min_size; node->ralloc_parent = ralloc_ctx; node->next = NULL; node->latest = node; return node; } void * linear_alloc_child(void *parent, unsigned size) { linear_header *first = LINEAR_PARENT_TO_HEADER(parent); linear_header *latest = first->latest; linear_header *new_node; linear_size_chunk *ptr; unsigned full_size; assert(first->magic == LMAGIC); assert(!latest->next); size = ALIGN_POT(size, SUBALLOC_ALIGNMENT); full_size = sizeof(linear_size_chunk) + size; if (unlikely(latest->offset + full_size > latest->size)) { /* allocate a new node */ new_node = create_linear_node(latest->ralloc_parent, size); if (unlikely(!new_node)) return NULL; first->latest = new_node; latest->latest = new_node; latest->next = new_node; latest = new_node; } ptr = (linear_size_chunk *)((char*)&latest[1] + latest->offset); ptr->size = size; latest->offset += full_size; assert((uintptr_t)&ptr[1] % SUBALLOC_ALIGNMENT == 0); return &ptr[1]; } void * linear_alloc_parent(void *ralloc_ctx, unsigned size) { linear_header *node; if (unlikely(!ralloc_ctx)) return NULL; size = ALIGN_POT(size, SUBALLOC_ALIGNMENT); node = create_linear_node(ralloc_ctx, size); if (unlikely(!node)) return NULL; return linear_alloc_child((char*)node + sizeof(linear_header) + sizeof(linear_size_chunk), size); } void * linear_zalloc_child(void *parent, unsigned size) { void *ptr = linear_alloc_child(parent, size); if (likely(ptr)) memset(ptr, 0, size); return ptr; } void * linear_zalloc_parent(void *parent, unsigned size) { void *ptr = linear_alloc_parent(parent, size); if (likely(ptr)) memset(ptr, 0, size); return ptr; } void linear_free_parent(void *ptr) { linear_header *node; if (unlikely(!ptr)) return; node = LINEAR_PARENT_TO_HEADER(ptr); assert(node->magic == LMAGIC); while (node) { void *ptr = node; node = node->next; ralloc_free(ptr); } } void ralloc_steal_linear_parent(void *new_ralloc_ctx, void *ptr) { linear_header *node; if (unlikely(!ptr)) return; node = LINEAR_PARENT_TO_HEADER(ptr); assert(node->magic == LMAGIC); while (node) { ralloc_steal(new_ralloc_ctx, node); node->ralloc_parent = new_ralloc_ctx; node = node->next; } } void * ralloc_parent_of_linear_parent(void *ptr) { linear_header *node = LINEAR_PARENT_TO_HEADER(ptr); assert(node->magic == LMAGIC); return node->ralloc_parent; } void * linear_realloc(void *parent, void *old, unsigned new_size) { unsigned old_size = 0; ralloc_header *new_ptr; new_ptr = linear_alloc_child(parent, new_size); if (unlikely(!old)) return new_ptr; old_size = ((linear_size_chunk*)old)[-1].size; if (likely(new_ptr && old_size)) memcpy(new_ptr, old, MIN2(old_size, new_size)); return new_ptr; } /* All code below is pretty much copied from ralloc and only the alloc * calls are different. */ char * linear_strdup(void *parent, const char *str) { unsigned n; char *ptr; if (unlikely(!str)) return NULL; n = strlen(str); ptr = linear_alloc_child(parent, n + 1); if (unlikely(!ptr)) return NULL; memcpy(ptr, str, n); ptr[n] = '\0'; return ptr; } char * linear_asprintf(void *parent, const char *fmt, ...) { char *ptr; va_list args; va_start(args, fmt); ptr = linear_vasprintf(parent, fmt, args); va_end(args); return ptr; } char * linear_vasprintf(void *parent, const char *fmt, va_list args) { unsigned size = u_printf_length(fmt, args) + 1; char *ptr = linear_alloc_child(parent, size); if (ptr != NULL) vsnprintf(ptr, size, fmt, args); return ptr; } bool linear_asprintf_append(void *parent, char **str, const char *fmt, ...) { bool success; va_list args; va_start(args, fmt); success = linear_vasprintf_append(parent, str, fmt, args); va_end(args); return success; } bool linear_vasprintf_append(void *parent, char **str, const char *fmt, va_list args) { size_t existing_length; assert(str != NULL); existing_length = *str ? strlen(*str) : 0; return linear_vasprintf_rewrite_tail(parent, str, &existing_length, fmt, args); } bool linear_asprintf_rewrite_tail(void *parent, char **str, size_t *start, const char *fmt, ...) { bool success; va_list args; va_start(args, fmt); success = linear_vasprintf_rewrite_tail(parent, str, start, fmt, args); va_end(args); return success; } bool linear_vasprintf_rewrite_tail(void *parent, char **str, size_t *start, const char *fmt, va_list args) { size_t new_length; char *ptr; assert(str != NULL); if (unlikely(*str == NULL)) { *str = linear_vasprintf(parent, fmt, args); *start = strlen(*str); return true; } new_length = u_printf_length(fmt, args); ptr = linear_realloc(parent, *str, *start + new_length + 1); if (unlikely(ptr == NULL)) return false; vsnprintf(ptr + *start, new_length + 1, fmt, args); *str = ptr; *start += new_length; return true; } /* helper routine for strcat/strncat - n is the exact amount to copy */ static bool linear_cat(void *parent, char **dest, const char *str, unsigned n) { char *both; unsigned existing_length; assert(dest != NULL && *dest != NULL); existing_length = strlen(*dest); both = linear_realloc(parent, *dest, existing_length + n + 1); if (unlikely(both == NULL)) return false; memcpy(both + existing_length, str, n); both[existing_length + n] = '\0'; *dest = both; return true; } bool linear_strcat(void *parent, char **dest, const char *str) { return linear_cat(parent, dest, str, strlen(str)); } void * linear_alloc_child_array(void *parent, size_t size, unsigned count) { if (count > SIZE_MAX/size) return NULL; return linear_alloc_child(parent, size * count); } void * linear_zalloc_child_array(void *parent, size_t size, unsigned count) { if (count > SIZE_MAX/size) return NULL; return linear_zalloc_child(parent, size * count); }