/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thermal_info.h" #include #include #include #include #include #include #include namespace aidl { namespace android { namespace hardware { namespace thermal { namespace implementation { constexpr std::string_view kPowerLinkDisabledProperty("vendor.disable.thermal.powerlink"); namespace { template // Return false when failed parsing bool getTypeFromString(std::string_view str, T *out) { auto types = ::ndk::enum_range(); for (const auto &type : types) { if (::aidl::android::hardware::thermal::toString(type) == str) { *out = type; return true; } } return false; } float getFloatFromValue(const Json::Value &value) { if (value.isString()) { return std::stof(value.asString()); } else { return value.asFloat(); } } int getIntFromValue(const Json::Value &value) { if (value.isString()) { return (value.asString() == "max") ? std::numeric_limits::max() : std::stoul(value.asString()); } else { return value.asInt(); } } bool getIntFromJsonValues(const Json::Value &values, CdevArray *out, bool inc_check, bool dec_check) { CdevArray ret; if (inc_check && dec_check) { LOG(ERROR) << "Cannot enable inc_check and dec_check at the same time"; return false; } if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Values size is invalid"; return false; } else { int last = (inc_check) ? std::numeric_limits::min() : std::numeric_limits::max(); for (Json::Value::ArrayIndex i = 0; i < kThrottlingSeverityCount; ++i) { ret[i] = getIntFromValue(values[i]); if (inc_check && ret[i] < last) { LOG(FATAL) << "Invalid array[" << i << "]" << ret[i] << " min=" << last; return false; } if (dec_check && ret[i] > last) { LOG(FATAL) << "Invalid array[" << i << "]" << ret[i] << " max=" << last; return false; } last = ret[i]; LOG(INFO) << "[" << i << "]: " << ret[i]; } } *out = ret; return true; } bool getFloatFromJsonValues(const Json::Value &values, ThrottlingArray *out, bool inc_check, bool dec_check) { ThrottlingArray ret; if (inc_check && dec_check) { LOG(ERROR) << "Cannot enable inc_check and dec_check at the same time"; return false; } if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Values size is invalid"; return false; } else { float last = std::nanf(""); for (Json::Value::ArrayIndex i = 0; i < kThrottlingSeverityCount; ++i) { ret[i] = getFloatFromValue(values[i]); if (inc_check && !std::isnan(last) && !std::isnan(ret[i]) && ret[i] < last) { LOG(FATAL) << "Invalid array[" << i << "]" << ret[i] << " min=" << last; return false; } if (dec_check && !std::isnan(last) && !std::isnan(ret[i]) && ret[i] > last) { LOG(FATAL) << "Invalid array[" << i << "]" << ret[i] << " max=" << last; return false; } last = std::isnan(ret[i]) ? last : ret[i]; LOG(INFO) << "[" << i << "]: " << ret[i]; } } *out = ret; return true; } bool getTempRangeInfoFromJsonValues(const Json::Value &values, TempRangeInfo *temp_range_info) { if (values.size() != 2) { LOG(ERROR) << "Temp Range Values size: " << values.size() << "is invalid."; return false; } float min_temp = getFloatFromValue(values[0]); float max_temp = getFloatFromValue(values[1]); if (std::isnan(min_temp) || std::isnan(max_temp)) { LOG(ERROR) << "Illegal temp range: thresholds not defined properly " << min_temp << " : " << max_temp; return false; } if (min_temp > max_temp) { LOG(ERROR) << "Illegal temp range: temp_min_threshold(" << min_temp << ") > temp_max_threshold(" << max_temp << ")"; return false; } temp_range_info->min_temp_threshold = min_temp; temp_range_info->max_temp_threshold = max_temp; LOG(INFO) << "Temp Range Info: " << temp_range_info->min_temp_threshold << " <= t <= " << temp_range_info->max_temp_threshold; return true; } bool getTempStuckInfoFromJsonValue(const Json::Value &values, TempStuckInfo *temp_stuck_info) { if (values["MinStuckDuration"].empty()) { LOG(ERROR) << "Minimum stuck duration not present."; return false; } int min_stuck_duration_int = getIntFromValue(values["MinStuckDuration"]); if (min_stuck_duration_int <= 0) { LOG(ERROR) << "Invalid Minimum stuck duration " << min_stuck_duration_int; return false; } if (values["MinPollingCount"].empty()) { LOG(ERROR) << "Minimum polling count not present."; return false; } int min_polling_count = getIntFromValue(values["MinPollingCount"]); if (min_polling_count <= 0) { LOG(ERROR) << "Invalid Minimum stuck duration " << min_polling_count; return false; } temp_stuck_info->min_stuck_duration = std::chrono::milliseconds(min_stuck_duration_int); temp_stuck_info->min_polling_count = min_polling_count; LOG(INFO) << "Temp Stuck Info: polling_count=" << temp_stuck_info->min_polling_count << " stuck_duration=" << temp_stuck_info->min_stuck_duration.count(); return true; } } // namespace std::ostream &operator<<(std::ostream &stream, const SensorFusionType &sensor_fusion_type) { switch (sensor_fusion_type) { case SensorFusionType::SENSOR: return stream << "SENSOR"; case SensorFusionType::ODPM: return stream << "ODPM"; case SensorFusionType::CONSTANT: return stream << "CONSTANT"; default: return stream << "UNDEFINED"; } } bool ParseThermalConfig(std::string_view config_path, Json::Value *config) { std::string json_doc; if (!::android::base::ReadFileToString(config_path.data(), &json_doc)) { LOG(ERROR) << "Failed to read JSON config from " << config_path; return false; } Json::CharReaderBuilder builder; std::unique_ptr reader(builder.newCharReader()); std::string errorMessage; if (!reader->parse(&*json_doc.begin(), &*json_doc.end(), config, &errorMessage)) { LOG(ERROR) << "Failed to parse JSON config: " << errorMessage; return false; } return true; } bool ParseOffsetThresholds(const std::string_view name, const Json::Value &sensor, std::vector *offset_thresholds, std::vector *offset_values) { Json::Value config_offset_thresholds = sensor["OffsetThresholds"]; Json::Value config_offset_values = sensor["OffsetValues"]; if (config_offset_thresholds.empty()) { return true; } if (config_offset_thresholds.size() != config_offset_values.size()) { LOG(ERROR) << "Sensor[" << name << "]'s offset_thresholds size does not match with offset_values size"; return false; } for (Json::Value::ArrayIndex i = 0; i < config_offset_thresholds.size(); ++i) { float offset_threshold = config_offset_thresholds[i].asFloat(); float offset_value = config_offset_values[i].asFloat(); if (std::isnan(offset_threshold) || std::isnan(offset_value)) { LOG(ERROR) << "Nan offset_threshold or offset_value unexpected for sensor " << name; return false; } if ((i != 0) && (offset_threshold < (*offset_thresholds).back())) { LOG(ERROR) << "offset_thresholds are not in increasing order for sensor " << name; return false; } (*offset_thresholds).emplace_back(offset_threshold); (*offset_values).emplace_back(offset_value); LOG(INFO) << "Sensor[" << name << "]'s offset_thresholds[" << i << "]: " << (*offset_thresholds)[i] << " offset_values[" << i << "]: " << (*offset_values)[i]; } return true; } bool ParseVirtualSensorInfo(const std::string_view name, const Json::Value &sensor, std::unique_ptr *virtual_sensor_info) { if (sensor["VirtualSensor"].empty() || !sensor["VirtualSensor"].isBool()) { LOG(INFO) << "Failed to read Sensor[" << name << "]'s VirtualSensor"; return true; } bool is_virtual_sensor = sensor["VirtualSensor"].asBool(); LOG(INFO) << "Sensor[" << name << "]'s' VirtualSensor: " << is_virtual_sensor; if (!is_virtual_sensor) { return true; } float offset = 0; std::vector linked_sensors; std::vector linked_sensors_type; std::vector trigger_sensors; std::vector coefficients; std::vector coefficients_type; FormulaOption formula = FormulaOption::COUNT_THRESHOLD; std::string vt_estimator_model_file; std::unique_ptr<::thermal::vtestimator::VirtualTempEstimator> vt_estimator; std::string backup_sensor; Json::Value values = sensor["Combination"]; if (values.size()) { linked_sensors.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { linked_sensors.emplace_back(values[j].asString()); LOG(INFO) << "Sensor[" << name << "]'s Combination[" << j << "]: " << linked_sensors[j]; } } else { LOG(ERROR) << "Sensor[" << name << "] has no Combination setting"; return false; } if (sensor["Formula"].asString().compare("COUNT_THRESHOLD") == 0) { formula = FormulaOption::COUNT_THRESHOLD; } else if (sensor["Formula"].asString().compare("WEIGHTED_AVG") == 0) { formula = FormulaOption::WEIGHTED_AVG; } else if (sensor["Formula"].asString().compare("MAXIMUM") == 0) { formula = FormulaOption::MAXIMUM; } else if (sensor["Formula"].asString().compare("MINIMUM") == 0) { formula = FormulaOption::MINIMUM; } else if (sensor["Formula"].asString().compare("USE_ML_MODEL") == 0) { formula = FormulaOption::USE_ML_MODEL; } else if (sensor["Formula"].asString().compare("USE_LINEAR_MODEL") == 0) { formula = FormulaOption::USE_LINEAR_MODEL; } else { LOG(ERROR) << "Sensor[" << name << "]'s Formula is invalid"; return false; } values = sensor["CombinationType"]; if (!values.size()) { linked_sensors_type.reserve(linked_sensors.size()); for (size_t j = 0; j < linked_sensors.size(); ++j) { linked_sensors_type.emplace_back(SensorFusionType::SENSOR); } } else if (values.size() != linked_sensors.size()) { LOG(ERROR) << "Sensor[" << name << "] has invalid CombinationType size"; return false; } else { for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { if (values[j].asString().compare("SENSOR") == 0) { linked_sensors_type.emplace_back(SensorFusionType::SENSOR); } else if (values[j].asString().compare("ODPM") == 0) { linked_sensors_type.emplace_back(SensorFusionType::ODPM); } else if (values[j].asString().compare("CONSTANT") == 0) { linked_sensors_type.emplace_back(SensorFusionType::CONSTANT); } else { LOG(ERROR) << "Sensor[" << name << "] has invalid CombinationType settings " << values[j].asString(); return false; } LOG(INFO) << "Sensor[" << name << "]'s CombinationType[" << j << "]: " << linked_sensors_type[j]; } } values = sensor["Coefficient"]; if (values.size()) { coefficients.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { coefficients.emplace_back(values[j].asString()); LOG(INFO) << "Sensor[" << name << "]'s coefficient[" << j << "]: " << coefficients[j]; } } else if ((formula != FormulaOption::USE_ML_MODEL)) { LOG(ERROR) << "Sensor[" << name << "] has no Coefficient setting"; return false; } if ((linked_sensors.size() != coefficients.size()) && (formula != FormulaOption::USE_ML_MODEL) && (formula != FormulaOption::USE_LINEAR_MODEL)) { LOG(ERROR) << "Sensor[" << name << "] has invalid Coefficient size"; return false; } values = sensor["CoefficientType"]; if (!values.size()) { coefficients_type.reserve(linked_sensors.size()); for (size_t j = 0; j < linked_sensors.size(); ++j) { coefficients_type.emplace_back(SensorFusionType::CONSTANT); } } else if (values.size() != coefficients.size()) { LOG(ERROR) << "Sensor[" << name << "] has invalid coefficient type size"; return false; } else { for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { if (values[j].asString().compare("CONSTANT") == 0) { coefficients_type.emplace_back(SensorFusionType::CONSTANT); } else if (values[j].asString().compare("SENSOR") == 0) { coefficients_type.emplace_back(SensorFusionType::SENSOR); } else if (values[j].asString().compare("ODPM") == 0) { coefficients_type.emplace_back(SensorFusionType::ODPM); } else { LOG(ERROR) << "Sensor[" << name << "] has invalid coefficient options " << values[j].asString(); return false; } LOG(INFO) << "Sensor[" << name << "]'s coefficient type[" << j << "]: " << coefficients_type[j]; } } if (linked_sensors.size() != coefficients_type.size()) { LOG(ERROR) << "Sensor[" << name << "]'s combination size is not matched with coefficient type size"; return false; } if (!sensor["Offset"].empty()) { offset = sensor["Offset"].asFloat(); } if (!sensor["BackupSensor"].empty()) { backup_sensor = sensor["BackupSensor"].asString(); } values = sensor["TriggerSensor"]; if (!values.empty()) { if (values.isString()) { trigger_sensors.emplace_back(values.asString()); LOG(INFO) << "Sensor[" << name << "]'s TriggerSensor: " << values.asString(); } else if (values.size()) { trigger_sensors.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { if (!values[j].isString()) { LOG(ERROR) << name << " TriggerSensor should be an array of string"; return false; } trigger_sensors.emplace_back(values[j].asString()); LOG(INFO) << "Sensor[" << name << "]'s TriggerSensor[" << j << "]: " << trigger_sensors[j]; } } else { LOG(ERROR) << "Sensor[" << name << "]'s TriggerSensor should be a string"; return false; } } if (formula == FormulaOption::USE_ML_MODEL) { ::thermal::vtestimator::VtEstimationInitData init_data(::thermal::vtestimator::kUseMLModel); if (sensor["ModelPath"].empty()) { LOG(ERROR) << "Sensor[" << name << "] has no ModelPath"; return false; } if (!linked_sensors.size()) { LOG(ERROR) << "Sensor[" << name << "] uses USE_ML_MODEL and has zero linked_sensors"; return false; } vt_estimator = std::make_unique<::thermal::vtestimator::VirtualTempEstimator>( name, ::thermal::vtestimator::kUseMLModel, linked_sensors.size()); if (!vt_estimator) { LOG(ERROR) << "Failed to create vt estimator for Sensor[" << name << "] with linked sensor size : " << linked_sensors.size(); return false; } vt_estimator_model_file = "vendor/etc/" + sensor["ModelPath"].asString(); init_data.ml_model_init_data.model_path = vt_estimator_model_file; if (!ParseOffsetThresholds(name, sensor, &init_data.ml_model_init_data.offset_thresholds, &init_data.ml_model_init_data.offset_values)) { LOG(ERROR) << "Failed to parse offset thresholds and values for Sensor[" << name << "]"; return false; } if (!sensor["PreviousSampleCount"].empty()) { init_data.ml_model_init_data.use_prev_samples = true; init_data.ml_model_init_data.prev_samples_order = sensor["PreviousSampleCount"].asInt(); LOG(INFO) << "Sensor[" << name << "] takes " << init_data.ml_model_init_data.prev_samples_order << " historic samples"; } if (!sensor["OutputLabelCount"].empty()) { init_data.ml_model_init_data.output_label_count = sensor["OutputLabelCount"].asInt(); LOG(INFO) << "Sensor[" << name << "] outputs " << init_data.ml_model_init_data.output_label_count << " labels"; } if (!sensor["PredictHotSpotCount"].empty()) { init_data.ml_model_init_data.num_hot_spots = sensor["PredictHotSpotCount"].asInt(); LOG(INFO) << "Sensor[" << name << "] predicts temperature at " << init_data.ml_model_init_data.num_hot_spots << " hot spots"; } if (sensor["ValidateInput"].asBool()) { init_data.ml_model_init_data.enable_input_validation = true; LOG(INFO) << "Sensor[" << name << "] enable input validation."; } if (sensor["SupportUnderSampling"].asBool()) { init_data.ml_model_init_data.support_under_sampling = true; LOG(INFO) << "Sensor[" << name << "] supports under sampling estimation."; } ::thermal::vtestimator::VtEstimatorStatus ret = vt_estimator->Initialize(init_data); if (ret != ::thermal::vtestimator::kVtEstimatorOk) { LOG(ERROR) << "Failed to initialize vt estimator for Sensor[" << name << "] with ModelPath: " << vt_estimator_model_file << " with ret code : " << ret; return false; } LOG(INFO) << "Successfully created vt_estimator for Sensor[" << name << "] with input samples: " << linked_sensors.size(); } else if (formula == FormulaOption::USE_LINEAR_MODEL) { ::thermal::vtestimator::VtEstimationInitData init_data( ::thermal::vtestimator::kUseLinearModel); if ((!linked_sensors.size()) || (linked_sensors.size() > coefficients.size())) { LOG(ERROR) << "Sensor[" << name << "] uses USE_LINEAR_MODEL and has invalid linked_sensors size[" << linked_sensors.size() << "] or coefficients size[" << coefficients.size() << "]"; return false; } vt_estimator = std::make_unique<::thermal::vtestimator::VirtualTempEstimator>( name, ::thermal::vtestimator::kUseLinearModel, linked_sensors.size()); if (!vt_estimator) { LOG(ERROR) << "Failed to create vt estimator for Sensor[" << name << "] with linked sensor size : " << linked_sensors.size(); return false; } init_data.linear_model_init_data.prev_samples_order = coefficients.size() / linked_sensors.size(); if (!ParseOffsetThresholds(name, sensor, &init_data.linear_model_init_data.offset_thresholds, &init_data.linear_model_init_data.offset_values)) { LOG(ERROR) << "Failed to parse offset thresholds and values for Sensor[" << name << "]"; return false; } for (size_t i = 0; i < coefficients.size(); ++i) { float coefficient = getFloatFromValue(coefficients[i]); if (std::isnan(coefficient)) { LOG(ERROR) << "Nan coefficient unexpected for sensor " << name; return false; } init_data.linear_model_init_data.coefficients.emplace_back(coefficient); } if (coefficients.size() > linked_sensors.size()) { init_data.linear_model_init_data.use_prev_samples = true; } ::thermal::vtestimator::VtEstimatorStatus ret = vt_estimator->Initialize(init_data); if (ret != ::thermal::vtestimator::kVtEstimatorOk) { LOG(ERROR) << "Failed to initialize vt estimator for Sensor[" << name << "] with ret code : " << ret; return false; } LOG(INFO) << "Successfully created vt_estimator for Sensor[" << name << "] with input samples: " << linked_sensors.size(); } virtual_sensor_info->reset( new VirtualSensorInfo{linked_sensors, linked_sensors_type, coefficients, coefficients_type, offset, trigger_sensors, formula, vt_estimator_model_file, std::move(vt_estimator), backup_sensor}); return true; } bool ParsePredictorInfo(const std::string_view name, const Json::Value &sensor, std::unique_ptr *predictor_info) { Json::Value predictor = sensor["PredictorInfo"]; if (predictor.empty()) { return true; } LOG(INFO) << "Start to parse Sensor[" << name << "]'s PredictorInfo"; if (predictor["Sensor"].empty()) { LOG(ERROR) << "Failed to parse Sensor [" << name << "]'s PredictorInfo"; return false; } std::string predict_sensor; bool support_pid_compensation = false; std::vector prediction_weights; ThrottlingArray k_p_compensate; predict_sensor = predictor["Sensor"].asString(); LOG(INFO) << "Sensor [" << name << "]'s predictor name is " << predict_sensor; // parse pid compensation configuration if ((!predictor["PredictionWeight"].empty()) && (!predictor["KPCompensate"].empty())) { support_pid_compensation = true; if (!predictor["PredictionWeight"].size()) { LOG(ERROR) << "Failed to parse PredictionWeight"; return false; } prediction_weights.reserve(predictor["PredictionWeight"].size()); for (Json::Value::ArrayIndex i = 0; i < predictor["PredictionWeight"].size(); ++i) { float weight = predictor["PredictionWeight"][i].asFloat(); if (std::isnan(weight)) { LOG(ERROR) << "Unexpected NAN prediction weight for sensor [" << name << "]"; } prediction_weights.emplace_back(weight); LOG(INFO) << "Sensor[" << name << "]'s prediction weights [" << i << "]: " << weight; } if (!getFloatFromJsonValues(predictor["KPCompensate"], &k_p_compensate, false, false)) { LOG(ERROR) << "Failed to parse KPCompensate"; return false; } } LOG(INFO) << "Successfully created PredictorInfo for Sensor[" << name << "]"; predictor_info->reset(new PredictorInfo{predict_sensor, support_pid_compensation, prediction_weights, k_p_compensate}); return true; } bool ParseBindedCdevInfo( const Json::Value &values, std::unordered_map *binded_cdev_info_map, const bool support_pid, bool *support_hard_limit, const std::unordered_map> &scaling_frequency_map) { for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { Json::Value sub_values; const std::string &cdev_name = values[j]["CdevRequest"].asString(); ThrottlingArray cdev_weight_for_pid; cdev_weight_for_pid.fill(NAN); CdevArray cdev_ceiling; cdev_ceiling.fill(std::numeric_limits::max()); int max_release_step = std::numeric_limits::max(); int max_throttle_step = std::numeric_limits::max(); if (support_pid) { if (!values[j]["CdevWeightForPID"].empty()) { LOG(INFO) << "Star to parse " << cdev_name << "'s CdevWeightForPID"; if (!getFloatFromJsonValues(values[j]["CdevWeightForPID"], &cdev_weight_for_pid, false, false)) { LOG(ERROR) << "Failed to parse CdevWeightForPID"; binded_cdev_info_map->clear(); return false; } } if (!values[j]["CdevCeiling"].empty() && !values[j]["CdevCeilingFrequency"].empty()) { LOG(ERROR) << "Both CdevCeiling and CdevCeilingFrequency are configured for " << cdev_name << ", please remove one of them"; binded_cdev_info_map->clear(); return false; } if (!values[j]["CdevCeiling"].empty()) { LOG(INFO) << "Start to parse CdevCeiling: " << cdev_name; if (!getIntFromJsonValues(values[j]["CdevCeiling"], &cdev_ceiling, false, false)) { LOG(ERROR) << "Failed to parse CdevCeiling for " << cdev_name; binded_cdev_info_map->clear(); return false; } } if (!values[j]["CdevCeilingFrequency"].empty()) { LOG(INFO) << "Start to parse CdevCeilingFrequency: " << cdev_name; CdevArray cdev_ceiling_frequency; if (scaling_frequency_map.find(cdev_name) == scaling_frequency_map.end()) { LOG(ERROR) << "Scaling frequency path is not found in config for " << cdev_name; binded_cdev_info_map->clear(); return false; } const std::vector &cdev_scaling_frequency = scaling_frequency_map.find(cdev_name)->second; if (!getIntFromJsonValues(values[j]["CdevCeilingFrequency"], &cdev_ceiling_frequency, false, true)) { LOG(ERROR) << "Failed to parse CdevCeilingFrequency"; binded_cdev_info_map->clear(); return false; } LOG(INFO) << "Start to search CdevCeiling based on frequency: " << cdev_name; // Find the max frequency level that is lower than or equal to CdevCeilingFrequency // value for (size_t cdev_scaling_idx = 0, cdev_ceiling_idx = 0; cdev_scaling_idx < cdev_scaling_frequency.size() && cdev_ceiling_idx < cdev_ceiling.size();) { if (cdev_scaling_frequency.at(cdev_scaling_idx) <= cdev_ceiling_frequency.at(cdev_ceiling_idx)) { cdev_ceiling[cdev_ceiling_idx] = cdev_scaling_idx; LOG(INFO) << "[" << cdev_ceiling_idx << "]: " << cdev_ceiling[cdev_ceiling_idx]; cdev_ceiling_idx += 1; } else { cdev_scaling_idx += 1; } } } if (!values[j]["MaxReleaseStep"].empty()) { max_release_step = getIntFromValue(values[j]["MaxReleaseStep"]); if (max_release_step < 0) { LOG(ERROR) << cdev_name << " MaxReleaseStep: " << max_release_step; binded_cdev_info_map->clear(); return false; } else { LOG(INFO) << cdev_name << " MaxReleaseStep: " << max_release_step; } } if (!values[j]["MaxThrottleStep"].empty()) { max_throttle_step = getIntFromValue(values[j]["MaxThrottleStep"]); if (max_throttle_step < 0) { LOG(ERROR) << cdev_name << " MaxThrottleStep: " << max_throttle_step; binded_cdev_info_map->clear(); return false; } else { LOG(INFO) << cdev_name << " MaxThrottleStep: " << max_throttle_step; } } } CdevArray limit_info; limit_info.fill(0); ThrottlingArray power_thresholds; power_thresholds.fill(NAN); ReleaseLogic release_logic = ReleaseLogic::NONE; if (!values[j]["LimitInfo"].empty() && !values[j]["LimitInfoFrequency"].empty()) { LOG(ERROR) << "Both LimitInfo and LimitInfoFrequency are configured for " << cdev_name << ", please remove one of them"; binded_cdev_info_map->clear(); return false; } if (!values[j]["LimitInfo"].empty()) { LOG(INFO) << "Start to parse LimitInfo: " << cdev_name; if (!getIntFromJsonValues(values[j]["LimitInfo"], &limit_info, false, false)) { LOG(ERROR) << "Failed to parse LimitInfo"; binded_cdev_info_map->clear(); return false; } *support_hard_limit = true; } if (!values[j]["LimitInfoFrequency"].empty()) { LOG(INFO) << "Start to parse LimitInfoFrequency: " << cdev_name; CdevArray limit_info_frequency; if (scaling_frequency_map.find(cdev_name) == scaling_frequency_map.end()) { LOG(ERROR) << "Scaling frequency path is not found for " << cdev_name; binded_cdev_info_map->clear(); return false; } const std::vector &cdev_scaling_frequency = scaling_frequency_map.find(cdev_name)->second; if (!getIntFromJsonValues(values[j]["LimitInfoFrequency"], &limit_info_frequency, false, true)) { LOG(ERROR) << "Failed to parse LimitInfoFrequency for " << cdev_name; binded_cdev_info_map->clear(); return false; } LOG(INFO) << "Start to search LimitInfo based on frequency: " << cdev_name; // Find the max frequency level that is lower than or equal to imitInfoFrequency value for (size_t cdev_scaling_idx = 0, limit_info_idx = 0; cdev_scaling_idx < cdev_scaling_frequency.size() && limit_info_idx < limit_info.size();) { if (cdev_scaling_frequency.at(cdev_scaling_idx) <= limit_info_frequency.at(limit_info_idx)) { limit_info[limit_info_idx] = cdev_scaling_idx; LOG(INFO) << "[" << limit_info_idx << "]: " << limit_info[limit_info_idx]; limit_info_idx += 1; } else { cdev_scaling_idx += 1; } } *support_hard_limit = true; } // Parse linked power info std::string power_rail; bool high_power_check = false; bool throttling_with_power_link = false; bool enabled = true; CdevArray cdev_floor_with_power_link; cdev_floor_with_power_link.fill(0); const bool power_link_disabled = ::android::base::GetBoolProperty(kPowerLinkDisabledProperty.data(), false); if (!power_link_disabled) { power_rail = values[j]["BindedPowerRail"].asString(); if (values[j]["HighPowerCheck"].asBool()) { high_power_check = true; } LOG(INFO) << "Highpowercheck: " << std::boolalpha << high_power_check; if (values[j]["ThrottlingWithPowerLink"].asBool()) { throttling_with_power_link = true; } LOG(INFO) << "ThrottlingwithPowerLink: " << std::boolalpha << throttling_with_power_link; sub_values = values[j]["CdevFloorWithPowerLink"]; if (sub_values.size()) { LOG(INFO) << "Start to parse " << cdev_name << "'s CdevFloorWithPowerLink"; if (!getIntFromJsonValues(sub_values, &cdev_floor_with_power_link, false, false)) { LOG(ERROR) << "Failed to parse CdevFloor"; binded_cdev_info_map->clear(); return false; } } sub_values = values[j]["PowerThreshold"]; if (sub_values.size()) { LOG(INFO) << "Start to parse " << cdev_name << "'s PowerThreshold"; if (!getFloatFromJsonValues(sub_values, &power_thresholds, false, false)) { LOG(ERROR) << "Failed to parse power thresholds"; binded_cdev_info_map->clear(); return false; } if (values[j]["ReleaseLogic"].asString() == "INCREASE") { release_logic = ReleaseLogic::INCREASE; LOG(INFO) << "Release logic: INCREASE"; } else if (values[j]["ReleaseLogic"].asString() == "DECREASE") { release_logic = ReleaseLogic::DECREASE; LOG(INFO) << "Release logic: DECREASE"; } else if (values[j]["ReleaseLogic"].asString() == "STEPWISE") { release_logic = ReleaseLogic::STEPWISE; LOG(INFO) << "Release logic: STEPWISE"; } else if (values[j]["ReleaseLogic"].asString() == "RELEASE_TO_FLOOR") { release_logic = ReleaseLogic::RELEASE_TO_FLOOR; LOG(INFO) << "Release logic: RELEASE_TO_FLOOR"; } else { LOG(ERROR) << "Release logic is invalid"; binded_cdev_info_map->clear(); return false; } } } if (values[j]["Disabled"].asBool()) { enabled = false; } (*binded_cdev_info_map)[cdev_name] = { .limit_info = limit_info, .power_thresholds = power_thresholds, .release_logic = release_logic, .cdev_weight_for_pid = cdev_weight_for_pid, .cdev_ceiling = cdev_ceiling, .max_release_step = max_release_step, .max_throttle_step = max_throttle_step, .cdev_floor_with_power_link = cdev_floor_with_power_link, .power_rail = power_rail, .high_power_check = high_power_check, .throttling_with_power_link = throttling_with_power_link, .enabled = enabled, }; } return true; } bool ParseSensorThrottlingInfo( const std::string_view name, const Json::Value &sensor, bool *support_throttling, std::shared_ptr *throttling_info, const std::unordered_map> &scaling_frequency_map) { std::array k_po; k_po.fill(0.0); std::array k_pu; k_pu.fill(0.0); std::array k_i; k_i.fill(0.0); std::array k_d; k_d.fill(0.0); std::array i_max; i_max.fill(NAN); std::array max_alloc_power; max_alloc_power.fill(NAN); std::array min_alloc_power; min_alloc_power.fill(NAN); std::array s_power; s_power.fill(NAN); std::array i_cutoff; i_cutoff.fill(NAN); float i_default = 0.0; float i_default_pct = NAN; int tran_cycle = 0; bool support_pid = false; bool support_hard_limit = false; // Parse PID parameters if (!sensor["PIDInfo"].empty()) { LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s K_Po"; if (sensor["PIDInfo"]["K_Po"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["K_Po"], &k_po, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse K_Po"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s K_Pu"; if (sensor["PIDInfo"]["K_Pu"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["K_Pu"], &k_pu, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse K_Pu"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s K_I"; if (sensor["PIDInfo"]["K_I"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["K_I"], &k_i, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse K_I"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s K_D"; if (sensor["PIDInfo"]["K_D"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["K_D"], &k_d, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse K_D"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s I_Max"; if (sensor["PIDInfo"]["I_Max"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["I_Max"], &i_max, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse I_Max"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s MaxAllocPower"; if (sensor["PIDInfo"]["MaxAllocPower"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["MaxAllocPower"], &max_alloc_power, false, true)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse MaxAllocPower"; return false; } LOG(INFO) << "Start to parse" << " Sensor[" << name << "]'s MinAllocPower"; if (sensor["PIDInfo"]["MinAllocPower"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["MinAllocPower"], &min_alloc_power, false, true)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse MinAllocPower"; return false; } LOG(INFO) << "Start to parse Sensor[" << name << "]'s S_Power"; if (sensor["PIDInfo"]["S_Power"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["S_Power"], &s_power, false, true)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse S_Power"; return false; } LOG(INFO) << "Start to parse Sensor[" << name << "]'s I_Cutoff"; if (sensor["PIDInfo"]["I_Cutoff"].empty() || !getFloatFromJsonValues(sensor["PIDInfo"]["I_Cutoff"], &i_cutoff, false, false)) { LOG(ERROR) << "Sensor[" << name << "]: Failed to parse I_Cutoff"; return false; } if (!sensor["PIDInfo"]["I_Default"].empty() && !sensor["PIDInfo"]["I_Default_Pct"].empty()) { LOG(ERROR) << "I_Default and I_Default_P cannot be applied together"; return false; } if (!sensor["PIDInfo"]["I_Default"].empty()) { i_default = getFloatFromValue(sensor["PIDInfo"]["I_Default"]); LOG(INFO) << "Sensor[" << name << "]'s I_Default: " << i_default; } else if (!sensor["PIDInfo"]["I_Default_Pct"].empty()) { i_default_pct = getFloatFromValue(sensor["PIDInfo"]["I_Default_Pct"]); LOG(INFO) << "Sensor[" << name << "]'s I_Default_Pct: " << i_default_pct; } tran_cycle = getFloatFromValue(sensor["PIDInfo"]["TranCycle"]); LOG(INFO) << "Sensor[" << name << "]'s TranCycle: " << tran_cycle; // Confirm we have at least one valid PID combination bool valid_pid_combination = false; for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { if (!std::isnan(s_power[j])) { if (std::isnan(k_po[j]) || std::isnan(k_pu[j]) || std::isnan(k_i[j]) || std::isnan(k_d[j]) || std::isnan(i_max[j]) || std::isnan(max_alloc_power[j]) || std::isnan(min_alloc_power[j]) || std::isnan(i_cutoff[j])) { valid_pid_combination = false; break; } else { valid_pid_combination = true; } } } if (!valid_pid_combination) { LOG(ERROR) << "Sensor[" << name << "]: Invalid PID parameters combinations"; return false; } else { support_pid = true; } } // Parse binded cooling device std::unordered_map binded_cdev_info_map; if (!ParseBindedCdevInfo(sensor["BindedCdevInfo"], &binded_cdev_info_map, support_pid, &support_hard_limit, scaling_frequency_map)) { LOG(ERROR) << "Sensor[" << name << "]: failed to parse BindedCdevInfo"; return false; } Json::Value values; ProfileMap profile_map; values = sensor["Profile"]; for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { Json::Value sub_values; const std::string &mode = values[j]["Mode"].asString(); std::unordered_map binded_cdev_info_map_profile; if (!ParseBindedCdevInfo(values[j]["BindedCdevInfo"], &binded_cdev_info_map_profile, support_pid, &support_hard_limit, scaling_frequency_map)) { LOG(ERROR) << "Sensor[" << name << " failed to parse BindedCdevInfo profile"; } // Check if the binded_cdev_info_map_profile is valid if (binded_cdev_info_map.size() != binded_cdev_info_map_profile.size()) { LOG(ERROR) << "Sensor[" << name << "]:'s profile map size should not be changed"; return false; } else { for (const auto &binded_cdev_info_pair : binded_cdev_info_map_profile) { if (binded_cdev_info_map.count(binded_cdev_info_pair.first)) { if (binded_cdev_info_pair.second.power_rail != binded_cdev_info_map.at(binded_cdev_info_pair.first).power_rail) { LOG(ERROR) << "Sensor[" << name << "]:'s profile " << mode << " binded " << binded_cdev_info_pair.first << "'s power rail is not included in default rules"; return false; } else { LOG(INFO) << "Sensor[" << name << "]:'s profile " << mode << " is parsed successfully"; } } else { LOG(ERROR) << "Sensor[" << name << "]'s profile " << mode << " binded " << binded_cdev_info_pair.first << " is not included in default rules"; return false; } } } profile_map[mode] = binded_cdev_info_map_profile; } std::unordered_map excluded_power_info_map; values = sensor["ExcludedPowerInfo"]; for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { Json::Value sub_values; const std::string &power_rail = values[j]["PowerRail"].asString(); if (power_rail.empty()) { LOG(ERROR) << "Sensor[" << name << "] failed to parse excluded PowerRail"; return false; } ThrottlingArray power_weight; power_weight.fill(1); if (!values[j]["PowerWeight"].empty()) { LOG(INFO) << "Sensor[" << name << "]: Start to parse " << power_rail << "'s PowerWeight"; if (!getFloatFromJsonValues(values[j]["PowerWeight"], &power_weight, false, false)) { LOG(ERROR) << "Failed to parse PowerWeight"; return false; } } excluded_power_info_map[power_rail] = power_weight; } throttling_info->reset(new ThrottlingInfo{k_po, k_pu, k_i, k_d, i_max, max_alloc_power, min_alloc_power, s_power, i_cutoff, i_default, i_default_pct, tran_cycle, excluded_power_info_map, binded_cdev_info_map, profile_map}); *support_throttling = support_pid | support_hard_limit; return true; } bool ParseSensorInfo(const Json::Value &config, std::unordered_map *sensors_parsed) { Json::Value sensors = config["Sensors"]; Json::Value cdevs = config["CoolingDevices"]; std::unordered_map> scaling_frequency_map; LOG(INFO) << "Start reading ScalingAvailableFrequenciesPath from config"; for (Json::Value::ArrayIndex i = 0; i < cdevs.size(); ++i) { if (cdevs[i]["ScalingAvailableFrequenciesPath"].empty()) { continue; } const std::string &path = cdevs[i]["ScalingAvailableFrequenciesPath"].asString(); const std::string &name = cdevs[i]["Name"].asString(); LOG(INFO) << "Cdev[" << name << "]'s scaling frequency path: " << path; std::string scaling_frequency_str; if (::android::base::ReadFileToString(path, &scaling_frequency_str)) { std::istringstream frequencies(scaling_frequency_str); int frequency; while (frequencies >> frequency) { LOG(INFO) << "Cdev[" << name << "]'s available frequency: " << frequency; scaling_frequency_map[name].push_back(frequency); } // Reverse the vector if it starts from small value if (scaling_frequency_map[name].front() < scaling_frequency_map[name].back()) { std::reverse(scaling_frequency_map[name].begin(), scaling_frequency_map[name].end()); } // Make sure the scaling frequencies strictly decreasing if (std::adjacent_find(scaling_frequency_map[name].begin(), scaling_frequency_map[name].end(), std::less_equal()) != scaling_frequency_map[name].end()) { LOG(ERROR) << "Cdev[" << name << "]'s scaling frequencies is not monotonic"; sensors_parsed->clear(); return false; } } else { LOG(ERROR) << "Cdev[" << name << "]'s scaling frequency path is invalid."; sensors_parsed->clear(); return false; } } std::size_t total_parsed = 0; std::unordered_set sensors_name_parsed; for (Json::Value::ArrayIndex i = 0; i < sensors.size(); ++i) { const std::string &name = sensors[i]["Name"].asString(); LOG(INFO) << "Sensor[" << i << "]'s Name: " << name; if (name.empty()) { LOG(ERROR) << "Failed to read Sensor[" << i << "]'s Name"; sensors_parsed->clear(); return false; } auto result = sensors_name_parsed.insert(name); if (!result.second) { LOG(ERROR) << "Duplicate Sensor[" << i << "]'s Name"; sensors_parsed->clear(); return false; } std::string sensor_type_str = sensors[i]["Type"].asString(); LOG(INFO) << "Sensor[" << name << "]'s Type: " << sensor_type_str; TemperatureType sensor_type; if (!getTypeFromString(sensor_type_str, &sensor_type)) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s Type: " << sensor_type_str; sensors_parsed->clear(); return false; } bool send_cb = false; if (!sensors[i]["Monitor"].empty() && sensors[i]["Monitor"].isBool()) { send_cb = sensors[i]["Monitor"].asBool(); } else if (!sensors[i]["SendCallback"].empty() && sensors[i]["SendCallback"].isBool()) { send_cb = sensors[i]["SendCallback"].asBool(); } LOG(INFO) << "Sensor[" << name << "]'s SendCallback: " << std::boolalpha << send_cb << std::noboolalpha; bool send_powerhint = false; if (sensors[i]["SendPowerHint"].empty() || !sensors[i]["SendPowerHint"].isBool()) { LOG(INFO) << "Failed to read Sensor[" << name << "]'s SendPowerHint, set to 'false'"; } else if (sensors[i]["SendPowerHint"].asBool()) { send_powerhint = true; } LOG(INFO) << "Sensor[" << name << "]'s SendPowerHint: " << std::boolalpha << send_powerhint << std::noboolalpha; bool is_hidden = false; if (sensors[i]["Hidden"].empty() || !sensors[i]["Hidden"].isBool()) { LOG(INFO) << "Failed to read Sensor[" << name << "]'s Hidden, set to 'false'"; } else if (sensors[i]["Hidden"].asBool()) { is_hidden = true; } LOG(INFO) << "Sensor[" << name << "]'s Hidden: " << std::boolalpha << is_hidden << std::noboolalpha; std::array hot_thresholds; hot_thresholds.fill(NAN); std::array cold_thresholds; cold_thresholds.fill(NAN); std::array hot_hysteresis; hot_hysteresis.fill(0.0); std::array cold_hysteresis; cold_hysteresis.fill(0.0); Json::Value values = sensors[i]["HotThreshold"]; if (!values.size()) { LOG(INFO) << "Sensor[" << name << "]'s HotThreshold, default all to NAN"; } else if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s HotThreshold count:" << values.size(); sensors_parsed->clear(); return false; } else { float min = std::numeric_limits::min(); for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { hot_thresholds[j] = getFloatFromValue(values[j]); if (!std::isnan(hot_thresholds[j])) { if (hot_thresholds[j] < min) { LOG(ERROR) << "Invalid " << "Sensor[" << name << "]'s HotThreshold[j" << j << "]: " << hot_thresholds[j] << " < " << min; sensors_parsed->clear(); return false; } min = hot_thresholds[j]; } LOG(INFO) << "Sensor[" << name << "]'s HotThreshold[" << j << "]: " << hot_thresholds[j]; } } values = sensors[i]["HotHysteresis"]; if (!values.size()) { LOG(INFO) << "Sensor[" << name << "]'s HotHysteresis, default all to 0.0"; } else if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s HotHysteresis, count:" << values.size(); sensors_parsed->clear(); return false; } else { for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { hot_hysteresis[j] = getFloatFromValue(values[j]); if (std::isnan(hot_hysteresis[j])) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s HotHysteresis: " << hot_hysteresis[j]; sensors_parsed->clear(); return false; } LOG(INFO) << "Sensor[" << name << "]'s HotHysteresis[" << j << "]: " << hot_hysteresis[j]; } } for (Json::Value::ArrayIndex j = 0; j < (kThrottlingSeverityCount - 1); ++j) { if (std::isnan(hot_thresholds[j])) { continue; } for (auto k = j + 1; k < kThrottlingSeverityCount; ++k) { if (std::isnan(hot_thresholds[k])) { continue; } else if (hot_thresholds[j] > (hot_thresholds[k] - hot_hysteresis[k])) { LOG(ERROR) << "Sensor[" << name << "]'s hot threshold " << j << " is overlapped"; sensors_parsed->clear(); return false; } else { break; } } } values = sensors[i]["ColdThreshold"]; if (!values.size()) { LOG(INFO) << "Sensor[" << name << "]'s ColdThreshold, default all to NAN"; } else if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s ColdThreshold count:" << values.size(); sensors_parsed->clear(); return false; } else { float max = std::numeric_limits::max(); for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { cold_thresholds[j] = getFloatFromValue(values[j]); if (!std::isnan(cold_thresholds[j])) { if (cold_thresholds[j] > max) { LOG(ERROR) << "Invalid " << "Sensor[" << name << "]'s ColdThreshold[j" << j << "]: " << cold_thresholds[j] << " > " << max; sensors_parsed->clear(); return false; } max = cold_thresholds[j]; } LOG(INFO) << "Sensor[" << name << "]'s ColdThreshold[" << j << "]: " << cold_thresholds[j]; } } values = sensors[i]["ColdHysteresis"]; if (!values.size()) { LOG(INFO) << "Sensor[" << name << "]'s ColdHysteresis, default all to 0.0"; } else if (values.size() != kThrottlingSeverityCount) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s ColdHysteresis count:" << values.size(); sensors_parsed->clear(); return false; } else { for (Json::Value::ArrayIndex j = 0; j < kThrottlingSeverityCount; ++j) { cold_hysteresis[j] = getFloatFromValue(values[j]); if (std::isnan(cold_hysteresis[j])) { LOG(ERROR) << "Invalid Sensor[" << name << "]'s ColdHysteresis: " << cold_hysteresis[j]; sensors_parsed->clear(); return false; } LOG(INFO) << "Sensor[" << name << "]'s ColdHysteresis[" << j << "]: " << cold_hysteresis[j]; } } for (Json::Value::ArrayIndex j = 0; j < (kThrottlingSeverityCount - 1); ++j) { if (std::isnan(cold_thresholds[j])) { continue; } for (auto k = j + 1; k < kThrottlingSeverityCount; ++k) { if (std::isnan(cold_thresholds[k])) { continue; } else if (cold_thresholds[j] < (cold_thresholds[k] + cold_hysteresis[k])) { LOG(ERROR) << "Sensor[" << name << "]'s cold threshold " << j << " is overlapped"; sensors_parsed->clear(); return false; } else { break; } } } std::string temp_path; if (!sensors[i]["TempPath"].empty()) { temp_path = sensors[i]["TempPath"].asString(); LOG(INFO) << "Sensor[" << name << "]'s TempPath: " << temp_path; } float vr_threshold = NAN; if (!sensors[i]["VrThreshold"].empty()) { vr_threshold = getFloatFromValue(sensors[i]["VrThreshold"]); LOG(INFO) << "Sensor[" << name << "]'s VrThreshold: " << vr_threshold; } float multiplier = 1.0; if (!sensors[i]["Multiplier"].empty()) { multiplier = sensors[i]["Multiplier"].asFloat(); } LOG(INFO) << "Sensor[" << name << "]'s Multiplier: " << multiplier; std::chrono::milliseconds polling_delay = kUeventPollTimeoutMs; if (!sensors[i]["PollingDelay"].empty()) { const auto value = getIntFromValue(sensors[i]["PollingDelay"]); polling_delay = (value > 0) ? std::chrono::milliseconds(value) : std::chrono::milliseconds::max(); } LOG(INFO) << "Sensor[" << name << "]'s Polling delay: " << polling_delay.count(); std::chrono::milliseconds passive_delay = kMinPollIntervalMs; if (!sensors[i]["PassiveDelay"].empty()) { const auto value = getIntFromValue(sensors[i]["PassiveDelay"]); passive_delay = (value > 0) ? std::chrono::milliseconds(value) : std::chrono::milliseconds::max(); } LOG(INFO) << "Sensor[" << name << "]'s Passive delay: " << passive_delay.count(); std::chrono::milliseconds time_resolution; if (sensors[i]["TimeResolution"].empty()) { time_resolution = kMinPollIntervalMs; } else { time_resolution = std::chrono::milliseconds(getIntFromValue(sensors[i]["TimeResolution"])); } LOG(INFO) << "Sensor[" << name << "]'s Time resolution: " << time_resolution.count(); float step_ratio = NAN; if (!sensors[i]["StepRatio"].empty()) { step_ratio = sensors[i]["StepRatio"].asFloat(); if (step_ratio < 0 || step_ratio > 1) { LOG(ERROR) << "Sensor[" << name << "]'s StepRatio should be set 0 ~ 1"; sensors_parsed->clear(); return false; } if (sensors[i]["PassiveDelay"].empty()) { LOG(ERROR) << "Sensor[" << name << "] has StepRatio but no explicit PassiveDelay"; sensors_parsed->clear(); return false; } } if (is_hidden && send_cb) { LOG(ERROR) << "is_hidden and send_cb cannot be enabled together"; sensors_parsed->clear(); return false; } std::unique_ptr virtual_sensor_info; if (!ParseVirtualSensorInfo(name, sensors[i], &virtual_sensor_info)) { LOG(ERROR) << "Sensor[" << name << "]: failed to parse virtual sensor info"; sensors_parsed->clear(); return false; } std::unique_ptr predictor_info; if (!ParsePredictorInfo(name, sensors[i], &predictor_info)) { LOG(ERROR) << "Sensor[" << name << "]: failed to parse virtual sensor info"; sensors_parsed->clear(); return false; } bool support_throttling = false; // support pid or hard limit std::shared_ptr throttling_info; if (!ParseSensorThrottlingInfo(name, sensors[i], &support_throttling, &throttling_info, scaling_frequency_map)) { LOG(ERROR) << "Sensor[" << name << "]: failed to parse throttling info"; sensors_parsed->clear(); return false; } bool is_watch = (send_cb | send_powerhint | support_throttling); LOG(INFO) << "Sensor[" << name << "]'s is_watch: " << std::boolalpha << is_watch; (*sensors_parsed)[name] = { .type = sensor_type, .hot_thresholds = hot_thresholds, .cold_thresholds = cold_thresholds, .hot_hysteresis = hot_hysteresis, .cold_hysteresis = cold_hysteresis, .temp_path = temp_path, .vr_threshold = vr_threshold, .multiplier = multiplier, .polling_delay = polling_delay, .passive_delay = passive_delay, .time_resolution = time_resolution, .step_ratio = step_ratio, .send_cb = send_cb, .send_powerhint = send_powerhint, .is_watch = is_watch, .is_hidden = is_hidden, .virtual_sensor_info = std::move(virtual_sensor_info), .throttling_info = std::move(throttling_info), .predictor_info = std::move(predictor_info), }; ++total_parsed; } LOG(INFO) << total_parsed << " Sensors parsed successfully"; return true; } bool ParseCoolingDevice(const Json::Value &config, std::unordered_map *cooling_devices_parsed) { Json::Value cooling_devices = config["CoolingDevices"]; std::size_t total_parsed = 0; std::unordered_set cooling_devices_name_parsed; for (Json::Value::ArrayIndex i = 0; i < cooling_devices.size(); ++i) { const std::string &name = cooling_devices[i]["Name"].asString(); LOG(INFO) << "CoolingDevice[" << i << "]'s Name: " << name; if (name.empty()) { LOG(ERROR) << "Failed to read CoolingDevice[" << i << "]'s Name"; cooling_devices_parsed->clear(); return false; } auto result = cooling_devices_name_parsed.insert(name.data()); if (!result.second) { LOG(ERROR) << "Duplicate CoolingDevice[" << i << "]'s Name"; cooling_devices_parsed->clear(); return false; } std::string cooling_device_type_str = cooling_devices[i]["Type"].asString(); LOG(INFO) << "CoolingDevice[" << name << "]'s Type: " << cooling_device_type_str; CoolingType cooling_device_type; if (!getTypeFromString(cooling_device_type_str, &cooling_device_type)) { LOG(ERROR) << "Invalid CoolingDevice[" << name << "]'s Type: " << cooling_device_type_str; cooling_devices_parsed->clear(); return false; } const std::string &read_path = cooling_devices[i]["ReadPath"].asString(); LOG(INFO) << "Cdev Read Path: " << (read_path.empty() ? "default" : read_path); const std::string &write_path = cooling_devices[i]["WritePath"].asString(); LOG(INFO) << "Cdev Write Path: " << (write_path.empty() ? "default" : write_path); std::vector state2power; Json::Value values = cooling_devices[i]["State2Power"]; if (values.size()) { state2power.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { state2power.emplace_back(getFloatFromValue(values[j])); LOG(INFO) << "Cooling device[" << name << "]'s Power2State[" << j << "]: " << state2power[j]; if (j > 0 && state2power[j] < state2power[j - 1]) { LOG(ERROR) << "Higher power with higher state on cooling device " << name << "'s state" << j; } } } else { LOG(INFO) << "CoolingDevice[" << i << "]'s Name: " << name << " does not support State2Power"; } const std::string &power_rail = cooling_devices[i]["PowerRail"].asString(); LOG(INFO) << "Cooling device power rail : " << power_rail; (*cooling_devices_parsed)[name] = { .type = cooling_device_type, .read_path = read_path, .write_path = write_path, .state2power = state2power, }; ++total_parsed; } LOG(INFO) << total_parsed << " CoolingDevices parsed successfully"; return true; } bool ParsePowerRailInfo(const Json::Value &config, std::unordered_map *power_rails_parsed) { Json::Value power_rails = config["PowerRails"]; std::size_t total_parsed = 0; std::unordered_set power_rails_name_parsed; for (Json::Value::ArrayIndex i = 0; i < power_rails.size(); ++i) { const std::string &name = power_rails[i]["Name"].asString(); LOG(INFO) << "PowerRail[" << i << "]'s Name: " << name; if (name.empty()) { LOG(ERROR) << "Failed to read PowerRail[" << i << "]'s Name"; power_rails_parsed->clear(); return false; } std::vector linked_power_rails; std::vector coefficient; float offset = 0; FormulaOption formula = FormulaOption::COUNT_THRESHOLD; bool is_virtual_power_rail = false; Json::Value values; int power_sample_count = 0; std::chrono::milliseconds power_sample_delay; if (!power_rails[i]["VirtualRails"].empty() && power_rails[i]["VirtualRails"].isBool()) { is_virtual_power_rail = power_rails[i]["VirtualRails"].asBool(); LOG(INFO) << "PowerRails[" << name << "]'s VirtualRail, set to 'true'"; } if (is_virtual_power_rail) { values = power_rails[i]["Combination"]; if (values.size()) { linked_power_rails.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { linked_power_rails.emplace_back(values[j].asString()); LOG(INFO) << "PowerRail[" << name << "]'s combination[" << j << "]: " << linked_power_rails[j]; } } else { LOG(ERROR) << "PowerRails[" << name << "] has no combination for VirtualRail"; power_rails_parsed->clear(); return false; } values = power_rails[i]["Coefficient"]; if (values.size()) { coefficient.reserve(values.size()); for (Json::Value::ArrayIndex j = 0; j < values.size(); ++j) { coefficient.emplace_back(getFloatFromValue(values[j])); LOG(INFO) << "PowerRail[" << name << "]'s coefficient[" << j << "]: " << coefficient[j]; } } else { LOG(ERROR) << "PowerRails[" << name << "] has no coefficient for VirtualRail"; power_rails_parsed->clear(); return false; } if (linked_power_rails.size() != coefficient.size()) { LOG(ERROR) << "PowerRails[" << name << "]'s combination size is not matched with coefficient size"; power_rails_parsed->clear(); return false; } if (!power_rails[i]["Offset"].empty()) { offset = power_rails[i]["Offset"].asFloat(); } if (linked_power_rails.size() != coefficient.size()) { LOG(ERROR) << "PowerRails[" << name << "]'s combination size is not matched with coefficient size"; power_rails_parsed->clear(); return false; } if (power_rails[i]["Formula"].asString().compare("COUNT_THRESHOLD") == 0) { formula = FormulaOption::COUNT_THRESHOLD; } else if (power_rails[i]["Formula"].asString().compare("WEIGHTED_AVG") == 0) { formula = FormulaOption::WEIGHTED_AVG; } else if (power_rails[i]["Formula"].asString().compare("MAXIMUM") == 0) { formula = FormulaOption::MAXIMUM; } else if (power_rails[i]["Formula"].asString().compare("MINIMUM") == 0) { formula = FormulaOption::MINIMUM; } else { LOG(ERROR) << "PowerRails[" << name << "]'s Formula is invalid"; power_rails_parsed->clear(); return false; } } std::unique_ptr virtual_power_rail_info; if (is_virtual_power_rail) { virtual_power_rail_info.reset( new VirtualPowerRailInfo{linked_power_rails, coefficient, offset, formula}); } power_sample_count = power_rails[i]["PowerSampleCount"].asInt(); LOG(INFO) << "Power sample Count: " << power_sample_count; if (!power_rails[i]["PowerSampleDelay"]) { power_sample_delay = std::chrono::milliseconds::max(); } else { power_sample_delay = std::chrono::milliseconds(getIntFromValue(power_rails[i]["PowerSampleDelay"])); } (*power_rails_parsed)[name] = { .power_sample_count = power_sample_count, .power_sample_delay = power_sample_delay, .virtual_power_rail_info = std::move(virtual_power_rail_info), }; ++total_parsed; } LOG(INFO) << total_parsed << " PowerRails parsed successfully"; return true; } template bool ParseStatsInfo(const Json::Value &stats_config, const std::unordered_map &entity_info, StatsInfo *stats_info, T min_value) { if (stats_config.empty()) { LOG(INFO) << "No stats config"; return true; } std::variant> record_by_default_threshold_all_or_name_set_ = false; if (stats_config["DefaultThresholdEnableAll"].empty() || !stats_config["DefaultThresholdEnableAll"].isBool()) { LOG(INFO) << "Failed to read stats DefaultThresholdEnableAll, set to 'false'"; } else if (stats_config["DefaultThresholdEnableAll"].asBool()) { record_by_default_threshold_all_or_name_set_ = true; } LOG(INFO) << "DefaultThresholdEnableAll " << std::boolalpha << std::get(record_by_default_threshold_all_or_name_set_) << std::noboolalpha; Json::Value values = stats_config["RecordWithDefaultThreshold"]; if (values.size()) { if (std::get(record_by_default_threshold_all_or_name_set_)) { LOG(ERROR) << "Cannot enable record with default threshold when " "DefaultThresholdEnableAll true."; return false; } record_by_default_threshold_all_or_name_set_ = std::unordered_set(); for (Json::Value::ArrayIndex i = 0; i < values.size(); ++i) { std::string name = values[i].asString(); if (!entity_info.count(name)) { LOG(ERROR) << "Unknown name [" << name << "] not present in entity_info."; return false; } std::get>(record_by_default_threshold_all_or_name_set_) .insert(name); } } else { LOG(INFO) << "No stat by default threshold enabled."; } std::unordered_map>> record_by_threshold; values = stats_config["RecordWithThreshold"]; if (values.size()) { Json::Value threshold_values; for (Json::Value::ArrayIndex i = 0; i < values.size(); i++) { const std::string &name = values[i]["Name"].asString(); if (!entity_info.count(name)) { LOG(ERROR) << "Unknown name [" << name << "] not present in entity_info."; return false; } std::optional logging_name; if (!values[i]["LoggingName"].empty()) { logging_name = values[i]["LoggingName"].asString(); LOG(INFO) << "For [" << name << "]" << ", stats logging name is [" << logging_name.value() << "]"; } LOG(INFO) << "Start to parse stats threshold for [" << name << "]"; threshold_values = values[i]["Thresholds"]; if (threshold_values.empty()) { LOG(ERROR) << "Empty stats threshold not valid."; return false; } const auto &threshold_values_count = threshold_values.size(); if (threshold_values_count > kMaxStatsThresholdCount) { LOG(ERROR) << "Number of stats threshold " << threshold_values_count << " greater than max " << kMaxStatsThresholdCount; return false; } std::vector stats_threshold(threshold_values_count); T prev_value = min_value; LOG(INFO) << "Thresholds:"; for (Json::Value::ArrayIndex i = 0; i < threshold_values_count; ++i) { stats_threshold[i] = std::is_floating_point_v ? getFloatFromValue(threshold_values[i]) : getIntFromValue(threshold_values[i]); if (stats_threshold[i] <= prev_value) { LOG(ERROR) << "Invalid array[" << i << "]" << stats_threshold[i] << " is <=" << prev_value; return false; } prev_value = stats_threshold[i]; LOG(INFO) << "[" << i << "]: " << stats_threshold[i]; } record_by_threshold[name].emplace_back(logging_name, stats_threshold); } } else { LOG(INFO) << "No stat by threshold enabled."; } (*stats_info) = {.record_by_default_threshold_all_or_name_set_ = record_by_default_threshold_all_or_name_set_, .record_by_threshold = record_by_threshold}; return true; } bool ParseSensorAbnormalStatsConfig( const Json::Value &abnormal_stats_config, const std::unordered_map &sensor_info_map_, AbnormalStatsInfo *abnormal_stats_info_parsed) { if (abnormal_stats_config.empty()) { LOG(INFO) << "No sensors abnormality monitoring info present."; return true; } Json::Value values; std::optional default_temp_range_info; std::vector sensors_temp_range_infos; Json::Value outlier_temp_config = abnormal_stats_config["Outlier"]; if (outlier_temp_config) { LOG(INFO) << "Start to parse outlier temp config."; if (outlier_temp_config["Default"]) { LOG(INFO) << "Start to parse defaultTempRange."; if (!getTempRangeInfoFromJsonValues(outlier_temp_config["Default"], &default_temp_range_info.value())) { LOG(ERROR) << "Failed to parse default temp range config."; return false; } } Json::Value configs = outlier_temp_config["Configs"]; if (configs) { std::unordered_set sensors_parsed; for (Json::Value::ArrayIndex i = 0; i < configs.size(); i++) { LOG(INFO) << "Start to parse temp range config[" << i << "]"; AbnormalStatsInfo::SensorsTempRangeInfo sensors_temp_range_info; values = configs[i]["Monitor"]; if (!values.size()) { LOG(ERROR) << "Invalid config no sensor list present for outlier temp " "config."; return false; } for (Json::Value::ArrayIndex j = 0; j < values.size(); j++) { const std::string &sensor = values[j].asString(); if (!sensor_info_map_.count(sensor)) { LOG(ERROR) << "Unknown sensor " << sensor; return false; } auto result = sensors_parsed.insert(sensor); if (!result.second) { LOG(ERROR) << "Duplicate Sensor Temp Range Config: " << sensor; return false; } LOG(INFO) << "Monitored sensor [" << j << "]: " << sensor; sensors_temp_range_info.sensors.push_back(sensor); } if (!getTempRangeInfoFromJsonValues(configs[i]["TempRange"], &sensors_temp_range_info.temp_range_info)) { LOG(ERROR) << "Failed to parse temp range config."; return false; } sensors_temp_range_infos.push_back(sensors_temp_range_info); } } } std::optional default_temp_stuck_info; std::vector sensors_temp_stuck_infos; Json::Value stuck_temp_config = abnormal_stats_config["Stuck"]; if (stuck_temp_config) { LOG(INFO) << "Start to parse stuck temp config."; if (stuck_temp_config["Default"]) { LOG(INFO) << "Start to parse defaultTempStuck."; if (!getTempStuckInfoFromJsonValue(stuck_temp_config["Default"], &default_temp_stuck_info.value())) { LOG(ERROR) << "Failed to parse default temp stuck config."; return false; } } Json::Value configs = stuck_temp_config["Configs"]; if (configs) { std::unordered_set sensors_parsed; for (Json::Value::ArrayIndex i = 0; i < configs.size(); i++) { LOG(INFO) << "Start to parse temp stuck config[" << i << "]"; AbnormalStatsInfo::SensorsTempStuckInfo sensor_temp_stuck_info; values = configs[i]["Monitor"]; if (!values.size()) { LOG(ERROR) << "Invalid config no sensor list present for stuck temp " "config."; return false; } for (Json::Value::ArrayIndex j = 0; j < values.size(); j++) { const std::string &sensor = values[j].asString(); if (!sensor_info_map_.count(sensor)) { LOG(ERROR) << "Unknown sensor " << sensor; return false; } auto result = sensors_parsed.insert(sensor); if (!result.second) { LOG(ERROR) << "Duplicate Sensor Temp Stuck Config: " << sensor; return false; } LOG(INFO) << "Monitored sensor [" << j << "]: " << sensor; sensor_temp_stuck_info.sensors.push_back(sensor); } if (!getTempStuckInfoFromJsonValue(configs[i]["TempStuck"], &sensor_temp_stuck_info.temp_stuck_info)) { LOG(ERROR) << "Failed to parse temp stuck config."; return false; } sensors_temp_stuck_infos.push_back(sensor_temp_stuck_info); } } } *abnormal_stats_info_parsed = { .default_temp_range_info = default_temp_range_info, .sensors_temp_range_infos = sensors_temp_range_infos, .default_temp_stuck_info = default_temp_stuck_info, .sensors_temp_stuck_infos = sensors_temp_stuck_infos, }; return true; } bool ParseSensorStatsConfig(const Json::Value &config, const std::unordered_map &sensor_info_map_, StatsInfo *sensor_stats_info_parsed, AbnormalStatsInfo *abnormal_stats_info_parsed) { Json::Value stats_config = config["Stats"]; if (stats_config.empty()) { LOG(INFO) << "No Stats Config present."; return true; } // Parse cooling device user vote Json::Value sensor_config = stats_config["Sensors"]; if (sensor_config.empty()) { LOG(INFO) << "No Sensor Stats Config present."; return true; } LOG(INFO) << "Parse Stats Config for Sensor Temp."; // Parse sensor stats config if (!ParseStatsInfo(stats_config["Sensors"], sensor_info_map_, sensor_stats_info_parsed, std::numeric_limits::lowest())) { LOG(ERROR) << "Failed to parse sensor temp stats info."; sensor_stats_info_parsed->clear(); return false; } if (!ParseSensorAbnormalStatsConfig(sensor_config["Abnormality"], sensor_info_map_, abnormal_stats_info_parsed)) { LOG(ERROR) << "Failed to parse sensor abnormal stats config."; return false; } return true; } bool ParseCoolingDeviceStatsConfig( const Json::Value &config, const std::unordered_map &cooling_device_info_map_, StatsInfo *cooling_device_request_info_parsed) { Json::Value stats_config = config["Stats"]; if (stats_config.empty()) { LOG(INFO) << "No Stats Config present."; return true; } // Parse cooling device user vote if (stats_config["CoolingDevices"].empty()) { LOG(INFO) << "No cooling device stats present."; return true; } LOG(INFO) << "Parse Stats Config for Sensor CDev Request."; if (!ParseStatsInfo(stats_config["CoolingDevices"]["RecordVotePerSensor"], cooling_device_info_map_, cooling_device_request_info_parsed, -1)) { LOG(ERROR) << "Failed to parse cooling device user vote stats info."; cooling_device_request_info_parsed->clear(); return false; } return true; } } // namespace implementation } // namespace thermal } // namespace hardware } // namespace android } // namespace aidl