#include "wifi_hal.h" #ifndef __WIFI_HAL_GSCAN_H__ #define __WIFI_HAL_GSCAN_H__ // Define static_assert() unless already defined by compiler. #ifndef __has_feature #define __has_feature(__x) 0 #endif #if !(__has_feature(cxx_static_assert)) && !defined(static_assert) #define static_assert(__b, __m) \ extern int compile_time_assert_failed[ ( __b ) ? 1 : -1 ] \ __attribute__( ( unused ) ); #endif /* AP Scans */ typedef enum { WIFI_BAND_UNSPECIFIED, WIFI_BAND_BG = 1, // 2.4 GHz WIFI_BAND_A = 2, // 5 GHz without DFS WIFI_BAND_A_DFS = 4, // 5 GHz DFS only WIFI_BAND_A_WITH_DFS = 6, // 5 GHz with DFS WIFI_BAND_ABG = 3, // 2.4 GHz + 5 GHz; no DFS WIFI_BAND_ABG_WITH_DFS = 7, // 2.4 GHz + 5 GHz with DFS } wifi_band; #define MAX_CHANNELS 16 #define MAX_BUCKETS 16 #define MAX_HOTLIST_APS 128 #define MAX_SIGNIFICANT_CHANGE_APS 64 #define MAX_EPNO_NETWORKS 64 #define MAX_HOTLIST_SSID 8 #define MAX_AP_CACHE_PER_SCAN 32 wifi_error wifi_get_valid_channels(wifi_interface_handle handle, int band, int max_channels, wifi_channel *channels, int *num_channels); typedef struct { int max_scan_cache_size; // total space allocated for scan (in bytes) int max_scan_buckets; // maximum number of channel buckets int max_ap_cache_per_scan; // maximum number of APs that can be stored per scan int max_rssi_sample_size; // number of RSSI samples used for averaging RSSI int max_scan_reporting_threshold; // max possible report_threshold as described // in wifi_scan_cmd_params int max_hotlist_bssids; // maximum number of entries for hotlist BSSIDs int max_hotlist_ssids; // maximum number of entries for hotlist SSIDs int max_significant_wifi_change_aps; // maximum number of entries for // significant wifi change APs int max_bssid_history_entries; // number of BSSID/RSSI entries that device can hold int max_number_epno_networks; // max number of epno entries int max_number_epno_networks_by_ssid; // max number of epno entries if ssid is specified, // that is, epno entries for which an exact match is // required, or entries corresponding to hidden ssids int max_number_of_white_listed_ssid; // max number of white listed SSIDs, M target is 2 to 4 } wifi_gscan_capabilities; wifi_error wifi_get_gscan_capabilities(wifi_interface_handle handle, wifi_gscan_capabilities *capabilities); typedef enum { WIFI_SCAN_RESULTS_AVAILABLE, // reported when REPORT_EVENTS_EACH_SCAN is set and a scan // completes. WIFI_SCAN_THRESHOLD_NUM_SCANS or // WIFI_SCAN_THRESHOLD_PERCENT can be reported instead if the // reason for the event is available; however, at most one of // these events should be reported per scan. If there are // multiple buckets that were scanned this period and one has the // EACH_SCAN flag set then this event should be prefered. WIFI_SCAN_THRESHOLD_NUM_SCANS, // can be reported when REPORT_EVENTS_EACH_SCAN is not set and // report_threshold_num_scans is reached. WIFI_SCAN_THRESHOLD_PERCENT, // can be reported when REPORT_EVENTS_EACH_SCAN is not set and // report_threshold_percent is reached. WIFI_SCAN_FAILED, // reported when currently executing gscans have failed. // start_gscan will need to be called again in order to continue // scanning. This is intended to indicate abnormal scan // terminations (not those as a result of stop_gscan). } wifi_scan_event; /* Format of information elements found in the beacon */ typedef struct { byte id; // element identifier byte len; // number of bytes to follow byte data[]; } wifi_information_element; typedef struct { wifi_timestamp ts; // time since boot (in microsecond) when the result was // retrieved char ssid[32+1]; // null terminated mac_addr bssid; wifi_channel channel; // channel frequency in MHz wifi_rssi rssi; // in db wifi_timespan rtt; // in nanoseconds wifi_timespan rtt_sd; // standard deviation in rtt unsigned short beacon_period; // period advertised in the beacon unsigned short capability; // capabilities advertised in the beacon unsigned int ie_length; // size of the ie_data blob char ie_data[1]; // blob of all the information elements found in the // beacon; this data should be a packed list of // wifi_information_element objects, one after the other. // other fields } wifi_scan_result; static_assert(MAX_BUCKETS <= 8 * sizeof(unsigned), "The buckets_scanned bitset is represented by an unsigned int and cannot support this many " "buckets on this platform."); typedef struct { /* reported when each probe response is received, if report_events * enabled in wifi_scan_cmd_params. buckets_scanned is a bitset of the * buckets that are currently being scanned. See the buckets_scanned field * in the wifi_cached_scan_results struct for more details. */ void (*on_full_scan_result) (wifi_request_id id, wifi_scan_result *result, unsigned buckets_scanned); /* indicates progress of scanning statemachine */ void (*on_scan_event) (wifi_request_id id, wifi_scan_event event); } wifi_scan_result_handler; typedef struct { wifi_channel channel; // frequency int dwellTimeMs; // dwell time hint int passive; // 0 => active, 1 => passive scan; ignored for DFS /* Add channel class */ } wifi_scan_channel_spec; #define REPORT_EVENTS_EACH_SCAN (1 << 0) #define REPORT_EVENTS_FULL_RESULTS (1 << 1) #define REPORT_EVENTS_NO_BATCH (1 << 2) typedef struct { int bucket; // bucket index, 0 based wifi_band band; // when UNSPECIFIED, use channel list int period; // desired period, in millisecond; if this is too // low, the firmware should choose to generate results as // fast as it can instead of failing the command. // for exponential backoff bucket this is the min_period /* report_events semantics - * This is a bit field; which defines following bits - * REPORT_EVENTS_EACH_SCAN => report a scan completion event after scan. If this is not set * then scan completion events should be reported if * report_threshold_percent or report_threshold_num_scans is * reached. * REPORT_EVENTS_FULL_RESULTS => forward scan results (beacons/probe responses + IEs) * in real time to HAL, in addition to completion events * Note: To keep backward compatibility, fire completion * events regardless of REPORT_EVENTS_EACH_SCAN. * REPORT_EVENTS_NO_BATCH => controls if scans for this bucket should be placed in the * history buffer */ byte report_events; int max_period; // if max_period is non zero or different than period, then this bucket is // an exponential backoff bucket and the scan period will grow exponentially // as per formula: actual_period(N) = period * (base ^ (N/step_count)) // to a maximum period of max_period int base; // for exponential back off bucket: multiplier: new_period=old_period*base int step_count; // for exponential back off bucket, number of scans to perform for a given // period int num_channels; // channels to scan; these may include DFS channels // Note that a given channel may appear in multiple buckets wifi_scan_channel_spec channels[MAX_CHANNELS]; } wifi_scan_bucket_spec; typedef struct { int base_period; // base timer period in ms int max_ap_per_scan; // number of access points to store in each scan entry in // the BSSID/RSSI history buffer (keep the highest RSSI // access points) int report_threshold_percent; // in %, when scan buffer is this much full, wake up apps // processor int report_threshold_num_scans; // in number of scans, wake up AP after these many scans int num_buckets; wifi_scan_bucket_spec buckets[MAX_BUCKETS]; } wifi_scan_cmd_params; /* * Start periodic GSCAN * When this is called all requested buckets should be scanned, starting the beginning of the cycle * * For example: * If there are two buckets specified * - Bucket 1: period=10s * - Bucket 2: period=20s * - Bucket 3: period=30s * Then the following scans should occur * - t=0 buckets 1, 2, and 3 are scanned * - t=10 bucket 1 is scanned * - t=20 bucket 1 and 2 are scanned * - t=30 bucket 1 and 3 are scanned * - t=40 bucket 1 and 2 are scanned * - t=50 bucket 1 is scanned * - t=60 buckets 1, 2, and 3 are scanned * - and the patter repeats * * If any scan does not occur or is incomplete (error, interrupted, etc) then a cached scan result * should still be recorded with the WIFI_SCAN_FLAG_INTERRUPTED flag set. */ wifi_error wifi_start_gscan(wifi_request_id id, wifi_interface_handle iface, wifi_scan_cmd_params params, wifi_scan_result_handler handler); /* Stop periodic GSCAN */ wifi_error wifi_stop_gscan(wifi_request_id id, wifi_interface_handle iface); typedef enum { WIFI_SCAN_FLAG_INTERRUPTED = 1 // Indicates that scan results are not complete because // probes were not sent on some channels } wifi_scan_flags; /* Get the GSCAN cached scan results */ typedef struct { int scan_id; // a unique identifier for the scan unit int flags; // a bitmask with additional // information about scan. unsigned buckets_scanned; // a bitset of the buckets that were scanned. // for example a value of 13 (0b1101) would // indicate that buckets 0, 2 and 3 were // scanned to produce this list of results. // should be set to 0 if this information is // not available. int num_results; // number of bssids retrieved by the scan wifi_scan_result results[MAX_AP_CACHE_PER_SCAN]; // scan results - one for each bssid } wifi_cached_scan_results; wifi_error wifi_get_cached_gscan_results(wifi_interface_handle iface, byte flush, int max, wifi_cached_scan_results *results, int *num); /* BSSID Hotlist */ typedef struct { void (*on_hotlist_ap_found)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); void (*on_hotlist_ap_lost)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); } wifi_hotlist_ap_found_handler; typedef struct { mac_addr bssid; // AP BSSID wifi_rssi low; // low threshold wifi_rssi high; // high threshold } ap_threshold_param; typedef struct { int lost_ap_sample_size; int num_bssid; // number of hotlist APs ap_threshold_param ap[MAX_HOTLIST_APS]; // hotlist APs } wifi_bssid_hotlist_params; /* Set the BSSID Hotlist */ wifi_error wifi_set_bssid_hotlist(wifi_request_id id, wifi_interface_handle iface, wifi_bssid_hotlist_params params, wifi_hotlist_ap_found_handler handler); /* Clear the BSSID Hotlist */ wifi_error wifi_reset_bssid_hotlist(wifi_request_id id, wifi_interface_handle iface); /* SSID Hotlist */ typedef struct { void (*on_hotlist_ssid_found)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); void (*on_hotlist_ssid_lost)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); } wifi_hotlist_ssid_handler; typedef struct { char ssid[32+1]; // SSID wifi_band band; // band for this set of threshold params wifi_rssi low; // low threshold wifi_rssi high; // high threshold } ssid_threshold_param; typedef struct { int lost_ssid_sample_size; int num_ssid; // number of hotlist SSIDs ssid_threshold_param ssid[MAX_HOTLIST_SSID]; // hotlist SSIDs } wifi_ssid_hotlist_params; /* Significant wifi change */ typedef struct { mac_addr bssid; // BSSID wifi_channel channel; // channel frequency in MHz int num_rssi; // number of rssi samples wifi_rssi rssi[]; // RSSI history in db } wifi_significant_change_result; typedef struct { void (*on_significant_change)(wifi_request_id id, unsigned num_results, wifi_significant_change_result **results); } wifi_significant_change_handler; // The sample size parameters in the wifi_significant_change_params structure // represent the number of occurence of a g-scan where the BSSID was seen and RSSI was // collected for that BSSID, or, the BSSID was expected to be seen and didn't. // for instance: lost_ap_sample_size : number of time a g-scan was performed on the // channel the BSSID was seen last, and the BSSID was not seen during those g-scans typedef struct { int rssi_sample_size; // number of samples for averaging RSSI int lost_ap_sample_size; // number of samples to confirm AP loss int min_breaching; // number of APs breaching threshold int num_bssid; // max 64 ap_threshold_param ap[MAX_SIGNIFICANT_CHANGE_APS]; } wifi_significant_change_params; /* Set the Signifcant AP change list */ wifi_error wifi_set_significant_change_handler(wifi_request_id id, wifi_interface_handle iface, wifi_significant_change_params params, wifi_significant_change_handler handler); /* Clear the Signifcant AP change list */ wifi_error wifi_reset_significant_change_handler(wifi_request_id id, wifi_interface_handle iface); /* Random MAC OUI for PNO */ wifi_error wifi_set_scanning_mac_oui(wifi_interface_handle handle, oui scan_oui); // Enhanced PNO: // Enhanced PNO feature is expected to be enabled all of the time (e.g. screen lit) and may thus // require firmware to store a large number of networks, covering the whole list of known networks. // Therefore, it is acceptable for firmware to store a crc24, crc32 or other short hash of the SSID, // such that a low but non-zero probability of collision exist. With that scheme it should be // possible for firmware to keep an entry as small as 4 bytes for each pno network. // For instance, a firmware pn0 entry can be implemented in the form of: // PNO ENTRY = crc24(3 bytes) | flags>>3 (5 bits) | auth flags(3 bits) // // No scans should be automatically performed by the chip. Instead all scan results from gscan // should be scored and the wifi_epno_handler on_network_found callback should be called with // the scan results. // // A PNO network shall be reported once, that is, once a network is reported by firmware // its entry shall be marked as "done" until framework calls wifi_set_epno_list again. // Calling wifi_set_epno_list shall reset the "done" status of pno networks in firmware. // // A network should only be considered found if its RSSI is above the minimum RSSI for its // frequency range (min5GHz_rssi and min24GHz_rssi for 5GHz and 2.4GHz networks respectively). // When disconnected the list of scan results should be returned if any network is found. // When connected the scan results shall be reported only if the score of any network in the scan // is greater than that of the currently connected BSSID. // // The FW should calculate the score of all the candidates (including currently connected one) // with following equation: // RSSI score = (RSSI + 85) * 4; // If RSSI score > initial_score_max , RSSI score = initial_score_max; // final score = RSSI score // + current_connection_bonus (if currently connected BSSID) // + same_network_bonus (if network has SAME_NETWORK flag) // + secure_bonus (if the network is not open) // + band5GHz_bonus (if BSSID is on 5G) // If there is a BSSID’s score > current BSSID’s score, then report the cached scan results // at the end of the scan (excluding the ones on blacklist) to the upper layer. // Additionally, all BSSIDs that are in the BSSID blacklist should be ignored by Enhanced PNO // Whether directed scan needs to be performed (for hidden SSIDs) #define WIFI_PNO_FLAG_DIRECTED_SCAN (1 << 0) // Whether PNO event shall be triggered if the network is found on A band #define WIFI_PNO_FLAG_A_BAND (1 << 1) // Whether PNO event shall be triggered if the network is found on G band #define WIFI_PNO_FLAG_G_BAND (1 << 2) // Whether strict matching is required // If required then the firmware must store the network's SSID and not just a hash #define WIFI_PNO_FLAG_STRICT_MATCH (1 << 3) // If this SSID should be considered the same network as the currently connected one for scoring #define WIFI_PNO_FLAG_SAME_NETWORK (1 << 4) // Code for matching the beacon AUTH IE - additional codes TBD #define WIFI_PNO_AUTH_CODE_OPEN (1 << 0) // open #define WIFI_PNO_AUTH_CODE_PSK (1 << 1) // WPA_PSK or WPA2PSK #define WIFI_PNO_AUTH_CODE_EAPOL (1 << 2) // any EAPOL typedef struct { char ssid[32+1]; // null terminated byte flags; // WIFI_PNO_FLAG_XXX byte auth_bit_field; // auth bit field for matching WPA IE } wifi_epno_network; /* ePNO Parameters */ typedef struct { int min5GHz_rssi; // minimum 5GHz RSSI for a BSSID to be considered int min24GHz_rssi; // minimum 2.4GHz RSSI for a BSSID to be considered int initial_score_max; // the maximum score that a network can have before bonuses int current_connection_bonus; // only report when there is a network's score this much higher // than the current connection. int same_network_bonus; // score bonus for all networks with the same network flag int secure_bonus; // score bonus for networks that are not open int band5GHz_bonus; // 5GHz RSSI score bonus (applied to all 5GHz networks) int num_networks; // number of wifi_epno_network objects wifi_epno_network networks[MAX_EPNO_NETWORKS]; // PNO networks } wifi_epno_params; typedef struct { // on results void (*on_network_found)(wifi_request_id id, unsigned num_results, wifi_scan_result *results); } wifi_epno_handler; /* Set the ePNO list - enable ePNO with the given parameters */ wifi_error wifi_set_epno_list(wifi_request_id id, wifi_interface_handle iface, const wifi_epno_params *epno_params, wifi_epno_handler handler); /* Reset the ePNO list - no ePNO networks should be matched after this */ wifi_error wifi_reset_epno_list(wifi_request_id id, wifi_interface_handle iface); typedef struct { int id; // identifier of this network block, report this in event char realm[256]; // null terminated UTF8 encoded realm, 0 if unspecified int64_t roamingConsortiumIds[16]; // roaming consortium ids to match, 0s if unspecified byte plmn[3]; // mcc/mnc combination as per rules, 0s if unspecified } wifi_passpoint_network; typedef struct { void (*on_passpoint_network_found)( wifi_request_id id, int net_id, // network block identifier for the matched network wifi_scan_result *result, // scan result, with channel and beacon information int anqp_len, // length of ANQP blob byte *anqp // ANQP data, in the information_element format ); } wifi_passpoint_event_handler; /* Sets a list for passpoint networks for PNO purposes; it should be matched * against any passpoint networks (designated by Interworking element) found * during regular PNO scan. */ wifi_error wifi_set_passpoint_list(wifi_request_id id, wifi_interface_handle iface, int num, wifi_passpoint_network *networks, wifi_passpoint_event_handler handler); /* Reset passpoint network list - no Passpoint networks should be matched after this */ wifi_error wifi_reset_passpoint_list(wifi_request_id id, wifi_interface_handle iface); #endif