/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "chre/util/macros.h" #include "chre/util/nanoapp/log.h" #include "chre/util/nanoapp/wifi.h" #include "chre/util/time.h" #include "chre_api/chre.h" using chre::kOneMillisecondInNanoseconds; using chre::Nanoseconds; using chre::Seconds; //#define WIFI_WORLD_VERBOSE_WIFI_RESULT_LOGS #ifdef CHRE_NANOAPP_INTERNAL namespace chre { namespace { #endif // CHRE_NANOAPP_INTERNAL namespace { //! A fake/unused cookie to pass into the configure scan monitoring async //! request. constexpr uint32_t kScanMonitoringCookie = 0x1337; //! A fake/unused cookie to pass into on-demand scan async request. constexpr uint32_t kOnDemandScanCookie = 0xcafe; //! A fake/unused cookie to pass into ranging async request. constexpr uint32_t kRangingCookie = 0xbeef; //! The interval for on-demand wifi scans. constexpr Nanoseconds kWifiScanInterval = Nanoseconds(Seconds(10)); //! A handle for the cyclic timer to request periodic on-demand wifi-scans. uint32_t gWifiScanTimerHandle; //! A global instance of wifi capabilities to use when reqeuesting wifi //! functionality. This is populated at startup. uint32_t gWifiCapabilities; //! The last time in nanoseconds a wifi scan request was sucessfully made. uint64_t gLastRequestTimeNs = 0; //! True if CHRE_WIFI_REQUEST_TYPE_REQUEST_SCAN mode is requested. bool gPendingOnDemandScan = false; //! Accumulating count of the scan request results so far. uint32_t gScanResultAcc = 0; //! The currently requested on-demand wifi scan parameters. chreWifiScanParams gWifiScanParams = {}; //! The sequence of on-demand wifi scan types to request for. constexpr chreWifiScanType gWifiScanTypes[] = { CHRE_WIFI_SCAN_TYPE_ACTIVE, CHRE_WIFI_SCAN_TYPE_ACTIVE_PLUS_PASSIVE_DFS, CHRE_WIFI_SCAN_TYPE_PASSIVE}; //! The index of the next wifi scan type to request for. uint8_t gScanTypeIndex = 0; //! Whether to enable WiFi RTT ranging requests. bool gEnableRanging = true; //! The number of targets to make ranging request for. uint8_t gTargetCount = 0; //! The list of ranging targets. chreWifiRangingTarget gTargetList[CHRE_WIFI_RANGING_LIST_MAX_LEN]; //! TIme last ranging request was made. uint64_t gLastRangingTimeNs = 0; //! Whether the app is awaiting any ranging event. bool gPendingRanging = false; /** * Logs a CHRE WiFi ranging result. * * @param result the ranging result to log. */ void logChreRangingResult(const chreWifiRangingResult &result) { const char *bssidStr = ""; char bssidBuffer[chre::kBssidStrLen]; if (chre::parseBssidToStr(result.macAddress, bssidBuffer, sizeof(bssidBuffer))) { bssidStr = bssidBuffer; } LOGI("BSSID %s", bssidStr); LOGI(" age: %" PRIu64 " ms", (chreGetTime() - result.timestamp) / kOneMillisecondInNanoseconds); if (result.status != CHRE_WIFI_RANGING_STATUS_SUCCESS) { LOGE(" ranging failed"); } else { LOGI(" rssi: %" PRId8 " dBm", result.rssi); LOGI(" distance: %" PRIu32 " mm", result.distance); LOGI(" distanceStdDev: %" PRIu32 " mm", result.distanceStdDev); if (result.flags & CHRE_WIFI_RTT_RESULT_HAS_LCI) { const chreWifiRangingResult::chreWifiLci lci = result.lci; LOGI(" latitude: 0x%" PRIx64 ", %f degs", lci.latitude, static_cast(lci.latitude) / static_cast(1 << 25)); LOGI(" longitude: 0x%" PRIx64 ", %f degs", lci.longitude, static_cast(lci.longitude) / static_cast(1 << 25)); float altitude = static_cast(lci.altitude) / static_cast(1 << 8); if (lci.altitudeType == CHRE_WIFI_LCI_UNCERTAINTY_UNKNOWN) { LOGI(" altitude: unknown"); } else if (lci.altitudeType == CHRE_WIFI_LCI_ALTITUDE_TYPE_METERS) { LOGI(" altitude: 0x%" PRIx32 ", %f m", lci.altitude, altitude); } else if (lci.altitudeType == CHRE_WIFI_LCI_ALTITUDE_TYPE_FLOORS) { LOGI(" altitude: 0x%" PRIx32 ", %f floors", lci.altitude, altitude); } else { LOGE(" altitude: undefined"); } if (lci.latitudeUncertainty == CHRE_WIFI_LCI_UNCERTAINTY_UNKNOWN) { LOGI(" latitude uncertainty: unknown"); } else { LOGI(" latitude uncertainty: %f degs", powf(2, 8 - lci.latitudeUncertainty)); } if (lci.longitudeUncertainty == CHRE_WIFI_LCI_UNCERTAINTY_UNKNOWN) { LOGI(" longitude uncertainty: unknown"); } else { LOGI(" longitude uncertainty: %f degs", powf(2, 8 - lci.longitudeUncertainty)); } if (lci.altitudeUncertainty == CHRE_WIFI_LCI_UNCERTAINTY_UNKNOWN || lci.altitudeType != CHRE_WIFI_LCI_ALTITUDE_TYPE_METERS) { LOGI(" altitude uncertainty: unknown"); } else { LOGI(" altitude uncertainty: %f m", powf(2, 21 - lci.altitudeUncertainty)); } } } } /** * Requests a delayed WiFi scan using a one-shot timer. The interval is * specified as a constant at the top of this file. */ void requestDelayedWifiScan() { if (gWifiCapabilities & CHRE_WIFI_CAPABILITIES_ON_DEMAND_SCAN) { // Schedule a timer to send an active WiFi scan. gWifiScanTimerHandle = chreTimerSet(kWifiScanInterval.toRawNanoseconds(), &gWifiScanTimerHandle /* data */, true /* oneShot */); if (gWifiScanTimerHandle == CHRE_TIMER_INVALID) { LOGE("Failed to set timer for delayed WiFi scan"); } else { LOGI("Set a timer to request a WiFi scan"); } } } /** * Handles the result of an asynchronous request for a WiFi resource. * * @param result a pointer to the event structure containing the result of the * request. */ void handleWifiAsyncResult(const chreAsyncResult *result) { if (result->requestType == CHRE_WIFI_REQUEST_TYPE_CONFIGURE_SCAN_MONITOR) { if (result->success) { LOGI("Successfully requested WiFi scan monitoring"); } else { LOGE("Error requesting WiFi scan monitoring with %" PRIu8, result->errorCode); } if (result->cookie != &kScanMonitoringCookie) { LOGE("Scan monitoring request cookie mismatch"); } } else if (result->requestType == CHRE_WIFI_REQUEST_TYPE_REQUEST_SCAN) { uint64_t timeSinceRequest = chreGetTime() - gLastRequestTimeNs; if (result->success) { LOGI( "Successfully requested an on-demand WiFi scan (response time " "%" PRIu64 " ms)", timeSinceRequest / kOneMillisecondInNanoseconds); gPendingOnDemandScan = true; } else { LOGE("Error requesting an on-demand WiFi scan with %" PRIu8, result->errorCode); } if (result->cookie != &kOnDemandScanCookie) { LOGE("On-demand scan cookie mismatch"); } requestDelayedWifiScan(); } else if (result->requestType == CHRE_WIFI_REQUEST_TYPE_RANGING) { uint64_t timeSinceRequest = chreGetTime() - gLastRangingTimeNs; if (result->success) { LOGI("Successfully requested WiFi ranging (response time %" PRIu64 " ms)", timeSinceRequest / kOneMillisecondInNanoseconds); } else { gPendingRanging = false; LOGE("Error requesting a WiFi ranging with %" PRIu8, result->errorCode); } if (result->cookie != &kRangingCookie) { LOGE("Ranging cookie mismatch"); } } else { LOGE("Received invalid async result"); } } void prepareRanging(const chreWifiScanEvent *event) { if (gWifiCapabilities & CHRE_WIFI_CAPABILITIES_RTT_RANGING) { // Collect the first CHRE_WIFI_RANGING_LIST_MAX_LEN AP's that support the // capability. for (uint8_t i = 0; i < event->resultCount; i++) { if (gTargetCount < CHRE_WIFI_RANGING_LIST_MAX_LEN && (event->results[i].flags & CHRE_WIFI_SCAN_RESULT_FLAGS_IS_FTM_RESPONDER)) { chreWifiRangingTargetFromScanResult(&event->results[i], &gTargetList[gTargetCount++]); } } // Make ranging request only when all scan events are received. if (!gPendingOnDemandScan) { if (gTargetCount == 0 && event->resultCount == 0) { LOGI("No AP to make ranging request to"); } else if (gTargetCount == 0) { LOGI("No AP with RTT capability found"); // Adding one AP to exercise ranging API. chreWifiRangingTargetFromScanResult(&event->results[0], &gTargetList[gTargetCount++]); } if (gTargetCount > 0) { struct chreWifiRangingParams params = { .targetListLen = gTargetCount, .targetList = &gTargetList[0], }; gLastRangingTimeNs = chreGetTime(); if (!chreWifiRequestRangingAsync(¶ms, &kRangingCookie)) { LOGE("Failed to request WiFi ranging"); } else { gPendingRanging = true; } gTargetCount = 0; } } } } /** * Handles a WiFi scan event. * * @param event a pointer to the details of the WiFi scan event. */ void handleWifiScanEvent(const chreWifiScanEvent *event) { LOGI("Received Wifi scan event of type %" PRIu8 " with %" PRIu8 " results at %" PRIu64 "ns", event->scanType, event->resultCount, event->referenceTime); if (gPendingOnDemandScan) { uint64_t timeSinceRequest = chreGetTime() - gLastRequestTimeNs; LOGI("Time since scan request = %" PRIu64 " ms", timeSinceRequest / kOneMillisecondInNanoseconds); if (event->scanType != gWifiScanParams.scanType) { LOGE("Invalid scan event type (expected %" PRIu8 ", received %" PRIu8 ")", gWifiScanParams.scanType, event->scanType); } gScanResultAcc += event->resultCount; if (gScanResultAcc >= event->resultTotal) { gPendingOnDemandScan = false; gScanResultAcc = 0; } if (gEnableRanging) { prepareRanging(event); } } for (uint8_t i = 0; i < event->resultCount; i++) { const chreWifiScanResult &result = event->results[i]; #ifdef WIFI_WORLD_VERBOSE_WIFI_RESULT_LOGS chre::logChreWifiResult(result); #else chre::logChreWifiResult(result, true /* logSsidOnly */); #endif } } void handleWifiRangingEvent(const chreWifiRangingEvent *event) { LOGI("Received Wifi ranging event with %" PRIu8 " results", event->resultCount); if (!gPendingRanging) { LOGE("WiFi ranging event not expected"); } else { gPendingRanging = false; for (uint8_t i = 0; i < event->resultCount; i++) { logChreRangingResult(event->results[i]); } } } /** * Handles a timer event. * * @param eventData The cookie passed to the timer request. */ void handleTimerEvent(const void *eventData) { const uint32_t *timerHandle = static_cast(eventData); if (*timerHandle == gWifiScanTimerHandle) { gWifiScanParams.scanType = gWifiScanTypes[gScanTypeIndex]; gWifiScanParams.maxScanAgeMs = 5000; // 5 seconds gWifiScanParams.frequencyListLen = 0; gWifiScanParams.ssidListLen = 0; gScanTypeIndex = (gScanTypeIndex + 1) % ARRAY_SIZE(gWifiScanTypes); if (chreWifiRequestScanAsync(&gWifiScanParams, &kOnDemandScanCookie)) { LOGI("Requested a WiFi scan successfully"); gLastRequestTimeNs = chreGetTime(); } else { LOGE("Failed to request a WiFi scan"); } } else { LOGE("Received invalid timer handle"); } } } // namespace bool nanoappStart() { LOGI("App started as instance %" PRIu32, chreGetInstanceId()); gWifiCapabilities = chreWifiGetCapabilities(); LOGI("Detected WiFi support as: 0x%" PRIx32, gWifiCapabilities); if (gWifiCapabilities & CHRE_WIFI_CAPABILITIES_SCAN_MONITORING) { if (chreWifiConfigureScanMonitorAsync(true, &kScanMonitoringCookie)) { LOGI("Scan monitor enable request successful"); } else { LOGE("Error sending scan monitoring request"); } } requestDelayedWifiScan(); return true; } void nanoappHandleEvent(uint32_t senderInstanceId, uint16_t eventType, const void *eventData) { UNUSED_VAR(senderInstanceId); switch (eventType) { case CHRE_EVENT_WIFI_ASYNC_RESULT: handleWifiAsyncResult(static_cast(eventData)); break; case CHRE_EVENT_WIFI_SCAN_RESULT: handleWifiScanEvent(static_cast(eventData)); break; case CHRE_EVENT_WIFI_RANGING_RESULT: handleWifiRangingEvent( static_cast(eventData)); break; case CHRE_EVENT_TIMER: handleTimerEvent(eventData); break; default: LOGW("Unhandled event type %" PRIu16, eventType); } } void nanoappEnd() { LOGI("Wifi world app stopped"); } #ifdef CHRE_NANOAPP_INTERNAL } // anonymous namespace } // namespace chre #include "chre/platform/static_nanoapp_init.h" #include "chre/util/nanoapp/app_id.h" #include "chre/util/system/napp_permissions.h" CHRE_STATIC_NANOAPP_INIT(WifiWorld, chre::kWifiWorldAppId, 0, chre::NanoappPermissions::CHRE_PERMS_WIFI); #endif // CHRE_NANOAPP_INTERNAL