1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 //#define LOG_NNDEBUG 0
19 #include "system/graphics-base-v1.1.h"
20 #define LOG_TAG "EmulatedSensor"
21 #define ATRACE_TAG ATRACE_TAG_CAMERA
22
23 #ifdef LOG_NNDEBUG
24 #define ALOGVV(...) ALOGV(__VA_ARGS__)
25 #else
26 #define ALOGVV(...) ((void)0)
27 #endif
28
29 #include <android/hardware/graphics/common/1.2/types.h>
30 #include <cutils/properties.h>
31 #include <inttypes.h>
32 #include <libyuv.h>
33 #include <memory.h>
34 #include <system/camera_metadata.h>
35 #include <utils/Log.h>
36 #include <utils/Trace.h>
37
38 #include <cmath>
39 #include <cstdlib>
40
41 #include "EmulatedSensor.h"
42 #include "utils/ExifUtils.h"
43 #include "utils/HWLUtils.h"
44
45 namespace android {
46
47 using android::google_camera_hal::ErrorCode;
48 using google_camera_hal::HalCameraMetadata;
49 using google_camera_hal::MessageType;
50 using google_camera_hal::NotifyMessage;
51
52 using android::hardware::graphics::common::V1_2::Dataspace;
53
54 // Copied from ColorSpace.java (see Named)
55 enum ColorSpaceNamed {
56 SRGB,
57 LINEAR_SRGB,
58 EXTENDED_SRGB,
59 LINEAR_EXTENDED_SRGB,
60 BT709,
61 BT2020,
62 DCI_P3,
63 DISPLAY_P3,
64 NTSC_1953,
65 SMPTE_C,
66 ADOBE_RGB,
67 PRO_PHOTO_RGB,
68 ACES,
69 ACESCG,
70 CIE_XYZ,
71 CIE_LAB
72 };
73
74 const uint32_t EmulatedSensor::kRegularSceneHandshake = 1; // Scene handshake divider
75 const uint32_t EmulatedSensor::kReducedSceneHandshake = 2; // Scene handshake divider
76
77 // 1 us - 30 sec
78 const nsecs_t EmulatedSensor::kSupportedExposureTimeRange[2] = {1000LL,
79 30000000000LL};
80
81 // ~1/30 s - 30 sec
82 const nsecs_t EmulatedSensor::kSupportedFrameDurationRange[2] = {33331760LL,
83 30000000000LL};
84
85 const int32_t EmulatedSensor::kSupportedSensitivityRange[2] = {100, 1600};
86 const int32_t EmulatedSensor::kDefaultSensitivity = 100; // ISO
87 const nsecs_t EmulatedSensor::kDefaultExposureTime = ms2ns(15);
88 const nsecs_t EmulatedSensor::kDefaultFrameDuration = ms2ns(33);
89 // Deadline within we should return the results as soon as possible to
90 // avoid skewing the frame cycle due to external delays.
91 const nsecs_t EmulatedSensor::kReturnResultThreshod = 3 * kDefaultFrameDuration;
92
93 // Sensor defaults
94 const uint8_t EmulatedSensor::kSupportedColorFilterArrangement =
95 ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_RGGB;
96 const uint32_t EmulatedSensor::kDefaultMaxRawValue = 4000;
97 const uint32_t EmulatedSensor::kDefaultBlackLevelPattern[4] = {1000, 1000, 1000,
98 1000};
99
100 const nsecs_t EmulatedSensor::kMinVerticalBlank = 10000L;
101
102 // Sensor sensitivity
103 const float EmulatedSensor::kSaturationVoltage = 0.520f;
104 const uint32_t EmulatedSensor::kSaturationElectrons = 2000;
105 const float EmulatedSensor::kVoltsPerLuxSecond = 0.100f;
106
107 const float EmulatedSensor::kElectronsPerLuxSecond =
108 EmulatedSensor::kSaturationElectrons / EmulatedSensor::kSaturationVoltage *
109 EmulatedSensor::kVoltsPerLuxSecond;
110
111 const float EmulatedSensor::kReadNoiseStddevBeforeGain = 1.177; // in electrons
112 const float EmulatedSensor::kReadNoiseStddevAfterGain =
113 2.100; // in digital counts
114 const float EmulatedSensor::kReadNoiseVarBeforeGain =
115 EmulatedSensor::kReadNoiseStddevBeforeGain *
116 EmulatedSensor::kReadNoiseStddevBeforeGain;
117 const float EmulatedSensor::kReadNoiseVarAfterGain =
118 EmulatedSensor::kReadNoiseStddevAfterGain *
119 EmulatedSensor::kReadNoiseStddevAfterGain;
120
121 const uint32_t EmulatedSensor::kMaxRAWStreams = 1;
122 const uint32_t EmulatedSensor::kMaxProcessedStreams = 3;
123 const uint32_t EmulatedSensor::kMaxStallingStreams = 2;
124 const uint32_t EmulatedSensor::kMaxInputStreams = 1;
125
126 const uint32_t EmulatedSensor::kMaxLensShadingMapSize[2]{64, 64};
127 const int32_t EmulatedSensor::kFixedBitPrecision = 64; // 6-bit
128 // In fixed-point math, saturation point of sensor after gain
129 const int32_t EmulatedSensor::kSaturationPoint = kFixedBitPrecision * 255;
130 const camera_metadata_rational EmulatedSensor::kNeutralColorPoint[3] = {
131 {255, 1}, {255, 1}, {255, 1}};
132 const float EmulatedSensor::kGreenSplit = 1.f; // No divergence
133 // Reduce memory usage by allowing only one buffer in sensor, one in jpeg
134 // compressor and one pending request to avoid stalls.
135 const uint8_t EmulatedSensor::kPipelineDepth = 3;
136
137 const camera_metadata_rational EmulatedSensor::kDefaultColorTransform[9] = {
138 {1, 1}, {0, 1}, {0, 1}, {0, 1}, {1, 1}, {0, 1}, {0, 1}, {0, 1}, {1, 1}};
139 const float EmulatedSensor::kDefaultColorCorrectionGains[4] = {1.0f, 1.0f, 1.0f,
140 1.0f};
141
142 const float EmulatedSensor::kDefaultToneMapCurveRed[4] = {.0f, .0f, 1.f, 1.f};
143 const float EmulatedSensor::kDefaultToneMapCurveGreen[4] = {.0f, .0f, 1.f, 1.f};
144 const float EmulatedSensor::kDefaultToneMapCurveBlue[4] = {.0f, .0f, 1.f, 1.f};
145
146 // All XY matrix coefficients sourced from
147 // https://developer.android.com/reference/kotlin/android/graphics/ColorSpace.Named
148 // and XYZ coefficients calculated using the method found in
149 // ColorSpace.Rgb.computeXyzMatrix
150 struct XyzMatrix {
151 float xR = 3.2406f;
152 float yR = -1.5372f;
153 float zR = -0.4986f;
154 float xG = -0.9689f;
155 float yG = 1.8758f;
156 float zG = 0.0415f;
157 float xB = 0.0557f;
158 float yB = -0.2040f;
159 float zB = 1.0570f;
160 };
161
162 static const XyzMatrix kSrgbXyzMatrix = {3.2406f, -1.5372f, -0.4986f,
163 -0.9689f, 1.8758f, 0.0415f,
164 0.0557f, -0.2040f, 1.0570f};
165
166 static const XyzMatrix kDisplayP3Matrix = {2.4931f, -0.9316f, -0.4023f,
167 -0.8291f, 1.7627f, 0.0234f,
168 0.0361f, -0.0761f, 0.9570f};
169
170 static const XyzMatrix kBt709Matrix = {3.2410f, -1.5374f, -0.4986f,
171 -0.9692f, 1.8760f, 0.0416f,
172 0.0556f, -0.2040f, 1.0570f};
173
174 static const XyzMatrix kBt2020Matrix = {1.7167f, -0.3556f, -0.2534f,
175 -0.6666f, 1.6164f, 0.0158f,
176 0.0177f, -0.0428f, 0.9421f};
177
178 /** A few utility functions for math, normal distributions */
179
180 // Take advantage of IEEE floating-point format to calculate an approximate
181 // square root. Accurate to within +-3.6%
sqrtf_approx(float r)182 float sqrtf_approx(float r) {
183 // Modifier is based on IEEE floating-point representation; the
184 // manipulations boil down to finding approximate log2, dividing by two, and
185 // then inverting the log2. A bias is added to make the relative error
186 // symmetric about the real answer.
187 const int32_t modifier = 0x1FBB4000;
188
189 int32_t r_i = *(int32_t*)(&r);
190 r_i = (r_i >> 1) + modifier;
191
192 return *(float*)(&r_i);
193 }
194
EmulatedSensor()195 EmulatedSensor::EmulatedSensor() : Thread(false), got_vsync_(false) {
196 gamma_table_sRGB_.resize(kSaturationPoint + 1);
197 gamma_table_smpte170m_.resize(kSaturationPoint + 1);
198 gamma_table_hlg_.resize(kSaturationPoint + 1);
199 for (int32_t i = 0; i <= kSaturationPoint; i++) {
200 gamma_table_sRGB_[i] = ApplysRGBGamma(i, kSaturationPoint);
201 gamma_table_smpte170m_[i] = ApplySMPTE170MGamma(i, kSaturationPoint);
202 gamma_table_hlg_[i] = ApplyHLGGamma(i, kSaturationPoint);
203 }
204 }
205
~EmulatedSensor()206 EmulatedSensor::~EmulatedSensor() {
207 ShutDown();
208 }
209
AreCharacteristicsSupported(const SensorCharacteristics & characteristics)210 bool EmulatedSensor::AreCharacteristicsSupported(
211 const SensorCharacteristics& characteristics) {
212 if ((characteristics.width == 0) || (characteristics.height == 0)) {
213 ALOGE("%s: Invalid sensor size %zux%zu", __FUNCTION__,
214 characteristics.width, characteristics.height);
215 return false;
216 }
217
218 if ((characteristics.full_res_width == 0) ||
219 (characteristics.full_res_height == 0)) {
220 ALOGE("%s: Invalid sensor full res size %zux%zu", __FUNCTION__,
221 characteristics.full_res_width, characteristics.full_res_height);
222 return false;
223 }
224
225 if (characteristics.is_10bit_dynamic_range_capable) {
226 // We support only HLG10 at the moment
227 const auto& hlg10_entry = characteristics.dynamic_range_profiles.find(
228 ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HLG10);
229 if ((characteristics.dynamic_range_profiles.size() != 1) ||
230 (hlg10_entry == characteristics.dynamic_range_profiles.end())) {
231 ALOGE("%s: Only support for HLG10 is available!", __FUNCTION__);
232 return false;
233 }
234 }
235
236 if ((characteristics.exposure_time_range[0] >=
237 characteristics.exposure_time_range[1]) ||
238 ((characteristics.exposure_time_range[0] < kSupportedExposureTimeRange[0]) ||
239 (characteristics.exposure_time_range[1] >
240 kSupportedExposureTimeRange[1]))) {
241 ALOGE("%s: Unsupported exposure range", __FUNCTION__);
242 return false;
243 }
244
245 if ((characteristics.frame_duration_range[0] >=
246 characteristics.frame_duration_range[1]) ||
247 ((characteristics.frame_duration_range[0] <
248 kSupportedFrameDurationRange[0]) ||
249 (characteristics.frame_duration_range[1] >
250 kSupportedFrameDurationRange[1]))) {
251 ALOGE("%s: Unsupported frame duration range", __FUNCTION__);
252 return false;
253 }
254
255 if ((characteristics.sensitivity_range[0] >=
256 characteristics.sensitivity_range[1]) ||
257 ((characteristics.sensitivity_range[0] < kSupportedSensitivityRange[0]) ||
258 (characteristics.sensitivity_range[1] > kSupportedSensitivityRange[1])) ||
259 (!((kDefaultSensitivity >= characteristics.sensitivity_range[0]) &&
260 (kDefaultSensitivity <= characteristics.sensitivity_range[1])))) {
261 ALOGE("%s: Unsupported sensitivity range", __FUNCTION__);
262 return false;
263 }
264
265 if (characteristics.color_arangement != kSupportedColorFilterArrangement) {
266 ALOGE("%s: Unsupported color arrangement!", __FUNCTION__);
267 return false;
268 }
269
270 for (const auto& blackLevel : characteristics.black_level_pattern) {
271 if (blackLevel >= characteristics.max_raw_value) {
272 ALOGE("%s: Black level matches or exceeds max RAW value!", __FUNCTION__);
273 return false;
274 }
275 }
276
277 if ((characteristics.frame_duration_range[0] / characteristics.height) == 0) {
278 ALOGE("%s: Zero row readout time!", __FUNCTION__);
279 return false;
280 }
281
282 if (characteristics.max_raw_streams > kMaxRAWStreams) {
283 ALOGE("%s: RAW streams maximum %u exceeds supported maximum %u",
284 __FUNCTION__, characteristics.max_raw_streams, kMaxRAWStreams);
285 return false;
286 }
287
288 if (characteristics.max_processed_streams > kMaxProcessedStreams) {
289 ALOGE("%s: Processed streams maximum %u exceeds supported maximum %u",
290 __FUNCTION__, characteristics.max_processed_streams,
291 kMaxProcessedStreams);
292 return false;
293 }
294
295 if (characteristics.max_stalling_streams > kMaxStallingStreams) {
296 ALOGE("%s: Stalling streams maximum %u exceeds supported maximum %u",
297 __FUNCTION__, characteristics.max_stalling_streams,
298 kMaxStallingStreams);
299 return false;
300 }
301
302 if (characteristics.max_input_streams > kMaxInputStreams) {
303 ALOGE("%s: Input streams maximum %u exceeds supported maximum %u",
304 __FUNCTION__, characteristics.max_input_streams, kMaxInputStreams);
305 return false;
306 }
307
308 if ((characteristics.lens_shading_map_size[0] > kMaxLensShadingMapSize[0]) ||
309 (characteristics.lens_shading_map_size[1] > kMaxLensShadingMapSize[1])) {
310 ALOGE("%s: Lens shading map [%dx%d] exceeds supprorted maximum [%dx%d]",
311 __FUNCTION__, characteristics.lens_shading_map_size[0],
312 characteristics.lens_shading_map_size[1], kMaxLensShadingMapSize[0],
313 kMaxLensShadingMapSize[1]);
314 return false;
315 }
316
317 if (characteristics.max_pipeline_depth < kPipelineDepth) {
318 ALOGE("%s: Pipeline depth %d smaller than supprorted minimum %d",
319 __FUNCTION__, characteristics.max_pipeline_depth, kPipelineDepth);
320 return false;
321 }
322
323 return true;
324 }
325
SplitStreamCombination(const StreamConfiguration & original_config,StreamConfiguration * default_mode_config,StreamConfiguration * max_resolution_mode_config,StreamConfiguration * input_stream_config)326 static void SplitStreamCombination(
327 const StreamConfiguration& original_config,
328 StreamConfiguration* default_mode_config,
329 StreamConfiguration* max_resolution_mode_config,
330 StreamConfiguration* input_stream_config) {
331 // Go through the streams
332 if (default_mode_config == nullptr || max_resolution_mode_config == nullptr ||
333 input_stream_config == nullptr) {
334 ALOGE("%s: Input stream / output stream configs are nullptr", __FUNCTION__);
335 return;
336 }
337 for (const auto& stream : original_config.streams) {
338 if (stream.stream_type == google_camera_hal::StreamType::kInput) {
339 input_stream_config->streams.push_back(stream);
340 continue;
341 }
342 if (stream.intended_for_default_resolution_mode) {
343 default_mode_config->streams.push_back(stream);
344 }
345 if (stream.intended_for_max_resolution_mode) {
346 max_resolution_mode_config->streams.push_back(stream);
347 }
348 }
349 }
350
IsStreamCombinationSupported(uint32_t logical_id,const StreamConfiguration & config,StreamConfigurationMap & default_config_map,StreamConfigurationMap & max_resolution_config_map,const PhysicalStreamConfigurationMap & physical_map,const PhysicalStreamConfigurationMap & physical_map_max_resolution,const LogicalCharacteristics & sensor_chars)351 bool EmulatedSensor::IsStreamCombinationSupported(
352 uint32_t logical_id, const StreamConfiguration& config,
353 StreamConfigurationMap& default_config_map,
354 StreamConfigurationMap& max_resolution_config_map,
355 const PhysicalStreamConfigurationMap& physical_map,
356 const PhysicalStreamConfigurationMap& physical_map_max_resolution,
357 const LogicalCharacteristics& sensor_chars) {
358 StreamConfiguration default_mode_config, max_resolution_mode_config,
359 input_stream_config;
360 SplitStreamCombination(config, &default_mode_config,
361 &max_resolution_mode_config, &input_stream_config);
362
363 return IsStreamCombinationSupported(logical_id, default_mode_config,
364 default_config_map, physical_map,
365 sensor_chars) &&
366 IsStreamCombinationSupported(
367 logical_id, max_resolution_mode_config, max_resolution_config_map,
368 physical_map_max_resolution, sensor_chars, /*is_max_res*/ true) &&
369
370 (IsStreamCombinationSupported(logical_id, input_stream_config,
371 default_config_map, physical_map,
372 sensor_chars) ||
373 IsStreamCombinationSupported(
374 logical_id, input_stream_config, max_resolution_config_map,
375 physical_map_max_resolution, sensor_chars, /*is_max_res*/ true));
376 }
377
IsStreamCombinationSupported(uint32_t logical_id,const StreamConfiguration & config,StreamConfigurationMap & config_map,const PhysicalStreamConfigurationMap & physical_map,const LogicalCharacteristics & sensor_chars,bool is_max_res)378 bool EmulatedSensor::IsStreamCombinationSupported(
379 uint32_t logical_id, const StreamConfiguration& config,
380 StreamConfigurationMap& config_map,
381 const PhysicalStreamConfigurationMap& physical_map,
382 const LogicalCharacteristics& sensor_chars, bool is_max_res) {
383 uint32_t input_stream_count = 0;
384 // Map from physical camera id to number of streams for that physical camera
385 std::map<uint32_t, uint32_t> raw_stream_count;
386 std::map<uint32_t, uint32_t> processed_stream_count;
387 std::map<uint32_t, uint32_t> stalling_stream_count;
388
389 // Only allow the stream configurations specified in
390 // dynamicSizeStreamConfigurations.
391 for (const auto& stream : config.streams) {
392 bool is_dynamic_output =
393 (stream.is_physical_camera_stream && stream.group_id != -1);
394 if (stream.rotation != google_camera_hal::StreamRotation::kRotation0) {
395 ALOGE("%s: Stream rotation: 0x%x not supported!", __FUNCTION__,
396 stream.rotation);
397 return false;
398 }
399
400 if (stream.stream_type == google_camera_hal::StreamType::kInput) {
401 if (sensor_chars.at(logical_id).max_input_streams == 0) {
402 ALOGE("%s: Input streams are not supported on this device!",
403 __FUNCTION__);
404 return false;
405 }
406
407 auto const& supported_outputs =
408 config_map.GetValidOutputFormatsForInput(stream.format);
409 if (supported_outputs.empty()) {
410 ALOGE("%s: Input stream with format: 0x%x no supported on this device!",
411 __FUNCTION__, stream.format);
412 return false;
413 }
414
415 input_stream_count++;
416 } else {
417 if (stream.is_physical_camera_stream &&
418 physical_map.find(stream.physical_camera_id) == physical_map.end()) {
419 ALOGE("%s: Invalid physical camera id %d", __FUNCTION__,
420 stream.physical_camera_id);
421 return false;
422 }
423
424 if (is_dynamic_output) {
425 auto dynamic_physical_output_formats =
426 physical_map.at(stream.physical_camera_id)
427 ->GetDynamicPhysicalStreamOutputFormats();
428 if (dynamic_physical_output_formats.find(stream.format) ==
429 dynamic_physical_output_formats.end()) {
430 ALOGE("%s: Unsupported physical stream format %d", __FUNCTION__,
431 stream.format);
432 return false;
433 }
434 }
435
436 if (stream.dynamic_profile !=
437 ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD) {
438 const SensorCharacteristics& sensor_char =
439 stream.is_physical_camera_stream
440 ? sensor_chars.at(stream.physical_camera_id)
441 : sensor_chars.at(logical_id);
442 if (!sensor_char.is_10bit_dynamic_range_capable) {
443 ALOGE("%s: 10-bit dynamic range output not supported on this device!",
444 __FUNCTION__);
445 return false;
446 }
447
448 if ((stream.format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) &&
449 (static_cast<android_pixel_format_v1_1_t>(stream.format) !=
450 HAL_PIXEL_FORMAT_YCBCR_P010)) {
451 ALOGE(
452 "%s: 10-bit dynamic range profile 0x%x not supported on a non "
453 "10-bit output stream"
454 " pixel format 0x%x",
455 __FUNCTION__, stream.dynamic_profile, stream.format);
456 return false;
457 }
458
459 if ((static_cast<android_pixel_format_v1_1_t>(stream.format) ==
460 HAL_PIXEL_FORMAT_YCBCR_P010) &&
461 ((stream.data_space !=
462 static_cast<android_dataspace_t>(Dataspace::BT2020_ITU_HLG)) &&
463 (stream.data_space !=
464 static_cast<android_dataspace_t>(Dataspace::BT2020_HLG)) &&
465 (stream.data_space !=
466 static_cast<android_dataspace_t>(Dataspace::UNKNOWN)))) {
467 ALOGE(
468 "%s: Unsupported stream data space 0x%x for 10-bit YUV "
469 "output",
470 __FUNCTION__, stream.data_space);
471 return false;
472 }
473 }
474
475 switch (stream.format) {
476 case HAL_PIXEL_FORMAT_BLOB:
477 if ((stream.data_space != HAL_DATASPACE_V0_JFIF) &&
478 (stream.data_space != HAL_DATASPACE_UNKNOWN)) {
479 ALOGE("%s: Unsupported Blob dataspace 0x%x", __FUNCTION__,
480 stream.data_space);
481 return false;
482 }
483 if (stream.is_physical_camera_stream) {
484 stalling_stream_count[stream.physical_camera_id]++;
485 } else {
486 for (const auto& p : physical_map) {
487 stalling_stream_count[p.first]++;
488 }
489 }
490 break;
491 case HAL_PIXEL_FORMAT_RAW16: {
492 const SensorCharacteristics& sensor_char =
493 stream.is_physical_camera_stream
494 ? sensor_chars.at(stream.physical_camera_id)
495 : sensor_chars.at(logical_id);
496 auto sensor_height =
497 is_max_res ? sensor_char.full_res_height : sensor_char.height;
498 auto sensor_width =
499 is_max_res ? sensor_char.full_res_width : sensor_char.width;
500 if (stream.height != sensor_height || stream.width != sensor_width) {
501 ALOGE(
502 "%s, RAW16 buffer height %d and width %d must match sensor "
503 "height: %zu"
504 " and width: %zu",
505 __FUNCTION__, stream.height, stream.width, sensor_height,
506 sensor_width);
507 return false;
508 }
509 if (stream.is_physical_camera_stream) {
510 raw_stream_count[stream.physical_camera_id]++;
511 } else {
512 for (const auto& p : physical_map) {
513 raw_stream_count[p.first]++;
514 }
515 }
516 } break;
517 default:
518 if (stream.is_physical_camera_stream) {
519 processed_stream_count[stream.physical_camera_id]++;
520 } else {
521 for (const auto& p : physical_map) {
522 processed_stream_count[p.first]++;
523 }
524 }
525 }
526
527 auto output_sizes =
528 is_dynamic_output
529 ? physical_map.at(stream.physical_camera_id)
530 ->GetDynamicPhysicalStreamOutputSizes(stream.format)
531 : stream.is_physical_camera_stream
532 ? physical_map.at(stream.physical_camera_id)
533 ->GetOutputSizes(stream.format)
534 : config_map.GetOutputSizes(stream.format);
535
536 auto stream_size = std::make_pair(stream.width, stream.height);
537 if (output_sizes.find(stream_size) == output_sizes.end()) {
538 ALOGE("%s: Stream with size %dx%d and format 0x%x is not supported!",
539 __FUNCTION__, stream.width, stream.height, stream.format);
540 return false;
541 }
542 }
543
544 if (!sensor_chars.at(logical_id).support_stream_use_case) {
545 if (stream.use_case != ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_DEFAULT) {
546 ALOGE("%s: Camera device doesn't support non-default stream use case!",
547 __FUNCTION__);
548 return false;
549 }
550 } else if (stream.use_case >
551 sensor_chars.at(logical_id).end_valid_stream_use_case) {
552 ALOGE("%s: Stream with use case %d is not supported!", __FUNCTION__,
553 stream.use_case);
554 return false;
555 } else if (stream.use_case !=
556 ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_DEFAULT) {
557 if (stream.use_case ==
558 ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_STILL_CAPTURE) {
559 if (stream.format != HAL_PIXEL_FORMAT_YCBCR_420_888 &&
560 stream.format != HAL_PIXEL_FORMAT_BLOB) {
561 ALOGE("%s: Stream with use case %d isn't compatible with format %d",
562 __FUNCTION__, stream.use_case, stream.format);
563 return false;
564 }
565 } else if ((stream.format == HAL_PIXEL_FORMAT_RAW16) ^
566 (stream.use_case ==
567 ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_CROPPED_RAW)) {
568 // Either both stream use case == CROPPED_RAW and format == RAW16, or
569 // stream use case != CROPPED_RAW and format != RAW16 for the
570 // combination to be valid.
571 ALOGE(
572 "%s: Stream with use case CROPPED_RAW isn't compatible with non "
573 "RAW_SENSOR formats",
574 __FUNCTION__);
575 return false;
576
577 } else if (stream.format != HAL_PIXEL_FORMAT_YCBCR_420_888 &&
578 stream.format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED &&
579 stream.format != HAL_PIXEL_FORMAT_RAW16) {
580 ALOGE("%s: Stream with use case %d isn't compatible with format %d",
581 __FUNCTION__, stream.use_case, stream.format);
582 return false;
583 }
584 }
585 }
586
587 for (const auto& raw_count : raw_stream_count) {
588 unsigned int max_raw_streams =
589 sensor_chars.at(raw_count.first).max_raw_streams +
590 (is_max_res
591 ? 1
592 : 0); // The extra raw stream is allowed for remosaic reprocessing.
593 if (raw_count.second > max_raw_streams) {
594 ALOGE("%s: RAW streams maximum %u exceeds supported maximum %u",
595 __FUNCTION__, raw_count.second, max_raw_streams);
596 return false;
597 }
598 }
599
600 for (const auto& stalling_count : stalling_stream_count) {
601 if (stalling_count.second >
602 sensor_chars.at(stalling_count.first).max_stalling_streams) {
603 ALOGE("%s: Stalling streams maximum %u exceeds supported maximum %u",
604 __FUNCTION__, stalling_count.second,
605 sensor_chars.at(stalling_count.first).max_stalling_streams);
606 return false;
607 }
608 }
609
610 for (const auto& processed_count : processed_stream_count) {
611 if (processed_count.second >
612 sensor_chars.at(processed_count.first).max_processed_streams) {
613 ALOGE("%s: Processed streams maximum %u exceeds supported maximum %u",
614 __FUNCTION__, processed_count.second,
615 sensor_chars.at(processed_count.first).max_processed_streams);
616 return false;
617 }
618 }
619
620 if (input_stream_count > sensor_chars.at(logical_id).max_input_streams) {
621 ALOGE("%s: Input stream maximum %u exceeds supported maximum %u",
622 __FUNCTION__, input_stream_count,
623 sensor_chars.at(logical_id).max_input_streams);
624 return false;
625 }
626
627 // TODO: Check session parameters. For now assuming all combinations
628 // are supported.
629
630 return true;
631 }
632
StartUp(uint32_t logical_camera_id,std::unique_ptr<LogicalCharacteristics> logical_chars)633 status_t EmulatedSensor::StartUp(
634 uint32_t logical_camera_id,
635 std::unique_ptr<LogicalCharacteristics> logical_chars) {
636 if (isRunning()) {
637 return OK;
638 }
639
640 if (logical_chars.get() == nullptr) {
641 return BAD_VALUE;
642 }
643
644 chars_ = std::move(logical_chars);
645 auto device_chars = chars_->find(logical_camera_id);
646 if (device_chars == chars_->end()) {
647 ALOGE(
648 "%s: Logical camera id: %u absent from logical camera characteristics!",
649 __FUNCTION__, logical_camera_id);
650 return BAD_VALUE;
651 }
652
653 for (const auto& it : *chars_) {
654 if (!AreCharacteristicsSupported(it.second)) {
655 ALOGE("%s: Sensor characteristics for camera id: %u not supported!",
656 __FUNCTION__, it.first);
657 return BAD_VALUE;
658 }
659 }
660
661 logical_camera_id_ = logical_camera_id;
662 scene_ = std::make_unique<EmulatedScene>(
663 device_chars->second.full_res_width, device_chars->second.full_res_height,
664 kElectronsPerLuxSecond, device_chars->second.orientation,
665 device_chars->second.is_front_facing);
666 jpeg_compressor_ = std::make_unique<JpegCompressor>();
667
668 auto res = run(LOG_TAG, ANDROID_PRIORITY_URGENT_DISPLAY);
669 if (res != OK) {
670 ALOGE("Unable to start up sensor capture thread: %d", res);
671 }
672
673 return res;
674 }
675
ShutDown()676 status_t EmulatedSensor::ShutDown() {
677 int res;
678 res = requestExitAndWait();
679 if (res != OK) {
680 ALOGE("Unable to shut down sensor capture thread: %d", res);
681 }
682 return res;
683 }
684
SetCurrentRequest(std::unique_ptr<LogicalCameraSettings> logical_settings,std::unique_ptr<HwlPipelineResult> result,std::unique_ptr<HwlPipelineResult> partial_result,std::unique_ptr<Buffers> input_buffers,std::unique_ptr<Buffers> output_buffers)685 void EmulatedSensor::SetCurrentRequest(
686 std::unique_ptr<LogicalCameraSettings> logical_settings,
687 std::unique_ptr<HwlPipelineResult> result,
688 std::unique_ptr<HwlPipelineResult> partial_result,
689 std::unique_ptr<Buffers> input_buffers,
690 std::unique_ptr<Buffers> output_buffers) {
691 Mutex::Autolock lock(control_mutex_);
692 current_settings_ = std::move(logical_settings);
693 current_result_ = std::move(result);
694 current_input_buffers_ = std::move(input_buffers);
695 current_output_buffers_ = std::move(output_buffers);
696 partial_result_ = std::move(partial_result);
697 }
698
WaitForVSyncLocked(nsecs_t reltime)699 bool EmulatedSensor::WaitForVSyncLocked(nsecs_t reltime) {
700 got_vsync_ = false;
701 while (!got_vsync_) {
702 auto res = vsync_.waitRelative(control_mutex_, reltime);
703 if (res != OK && res != TIMED_OUT) {
704 ALOGE("%s: Error waiting for VSync signal: %d", __FUNCTION__, res);
705 return false;
706 }
707 }
708
709 return got_vsync_;
710 }
711
WaitForVSync(nsecs_t reltime)712 bool EmulatedSensor::WaitForVSync(nsecs_t reltime) {
713 Mutex::Autolock lock(control_mutex_);
714
715 return WaitForVSyncLocked(reltime);
716 }
717
Flush()718 status_t EmulatedSensor::Flush() {
719 Mutex::Autolock lock(control_mutex_);
720 auto ret = WaitForVSyncLocked(kSupportedFrameDurationRange[1]);
721
722 // First recreate the jpeg compressor. This will abort any ongoing processing
723 // and flush any pending jobs.
724 jpeg_compressor_ = std::make_unique<JpegCompressor>();
725
726 // Then return any pending frames here
727 if ((current_input_buffers_.get() != nullptr) &&
728 (!current_input_buffers_->empty())) {
729 current_input_buffers_->clear();
730 }
731 if ((current_output_buffers_.get() != nullptr) &&
732 (!current_output_buffers_->empty())) {
733 for (const auto& buffer : *current_output_buffers_) {
734 buffer->stream_buffer.status = BufferStatus::kError;
735 }
736
737 if ((current_result_.get() != nullptr) &&
738 (current_result_->result_metadata.get() != nullptr)) {
739 if (current_output_buffers_->at(0)->callback.notify != nullptr) {
740 NotifyMessage msg{
741 .type = MessageType::kError,
742 .message.error = {
743 .frame_number = current_output_buffers_->at(0)->frame_number,
744 .error_stream_id = -1,
745 .error_code = ErrorCode::kErrorResult,
746 }};
747
748 current_output_buffers_->at(0)->callback.notify(
749 current_result_->pipeline_id, msg);
750 }
751 }
752
753 current_output_buffers_->clear();
754 }
755
756 return ret ? OK : TIMED_OUT;
757 }
758
getSystemTimeWithSource(uint32_t timestamp_source)759 nsecs_t EmulatedSensor::getSystemTimeWithSource(uint32_t timestamp_source) {
760 if (timestamp_source == ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_REALTIME) {
761 return systemTime(SYSTEM_TIME_BOOTTIME);
762 }
763 return systemTime(SYSTEM_TIME_MONOTONIC);
764 }
765
threadLoop()766 bool EmulatedSensor::threadLoop() {
767 ATRACE_CALL();
768 /**
769 * Sensor capture operation main loop.
770 *
771 */
772
773 /**
774 * Stage 1: Read in latest control parameters
775 */
776 std::unique_ptr<Buffers> next_buffers;
777 std::unique_ptr<Buffers> next_input_buffer;
778 std::unique_ptr<HwlPipelineResult> next_result;
779 std::unique_ptr<HwlPipelineResult> partial_result;
780 std::unique_ptr<LogicalCameraSettings> settings;
781 HwlPipelineCallback callback = {
782 .process_pipeline_result = nullptr,
783 .process_pipeline_batch_result = nullptr,
784 .notify = nullptr,
785 };
786 {
787 Mutex::Autolock lock(control_mutex_);
788 std::swap(settings, current_settings_);
789 std::swap(next_buffers, current_output_buffers_);
790 std::swap(next_input_buffer, current_input_buffers_);
791 std::swap(next_result, current_result_);
792 std::swap(partial_result, partial_result_);
793
794 // Signal VSync for start of readout
795 ALOGVV("Sensor VSync");
796 got_vsync_ = true;
797 vsync_.signal();
798 }
799
800 auto frame_duration = EmulatedSensor::kSupportedFrameDurationRange[0];
801 auto exposure_time = EmulatedSensor::kSupportedExposureTimeRange[0];
802 uint32_t timestamp_source = ANDROID_SENSOR_INFO_TIMESTAMP_SOURCE_UNKNOWN;
803 // Frame duration must always be the same among all physical devices
804 if ((settings.get() != nullptr) && (!settings->empty())) {
805 frame_duration = settings->begin()->second.frame_duration;
806 exposure_time = settings->begin()->second.exposure_time;
807 timestamp_source = settings->begin()->second.timestamp_source;
808 }
809
810 nsecs_t start_real_time = getSystemTimeWithSource(timestamp_source);
811 // Stagefright cares about system time for timestamps, so base simulated
812 // time on that.
813 nsecs_t frame_end_real_time = start_real_time + frame_duration;
814
815 /**
816 * Stage 2: Capture new image
817 */
818 next_capture_time_ = frame_end_real_time;
819 next_readout_time_ = frame_end_real_time + exposure_time;
820
821 sensor_binning_factor_info_.clear();
822
823 bool reprocess_request = false;
824 if ((next_input_buffer.get() != nullptr) && (!next_input_buffer->empty())) {
825 if (next_input_buffer->size() > 1) {
826 ALOGW("%s: Reprocess supports only single input!", __FUNCTION__);
827 }
828
829 camera_metadata_ro_entry_t entry;
830 auto ret =
831 next_result->result_metadata->Get(ANDROID_SENSOR_TIMESTAMP, &entry);
832 if ((ret == OK) && (entry.count == 1)) {
833 next_capture_time_ = entry.data.i64[0];
834 } else {
835 ALOGW("%s: Reprocess timestamp absent!", __FUNCTION__);
836 }
837
838 ret = next_result->result_metadata->Get(ANDROID_SENSOR_EXPOSURE_TIME,
839 &entry);
840 if ((ret == OK) && (entry.count == 1)) {
841 next_readout_time_ = next_capture_time_ + entry.data.i64[0];
842 } else {
843 next_readout_time_ = next_capture_time_;
844 }
845
846 reprocess_request = true;
847 }
848
849 if ((next_buffers != nullptr) && (settings != nullptr)) {
850 callback = next_buffers->at(0)->callback;
851 if (callback.notify != nullptr) {
852 NotifyMessage msg{
853 .type = MessageType::kShutter,
854 .message.shutter = {
855 .frame_number = next_buffers->at(0)->frame_number,
856 .timestamp_ns = static_cast<uint64_t>(next_capture_time_),
857 .readout_timestamp_ns =
858 static_cast<uint64_t>(next_readout_time_)}};
859 callback.notify(next_result->pipeline_id, msg);
860 }
861 auto b = next_buffers->begin();
862 while (b != next_buffers->end()) {
863 auto device_settings = settings->find((*b)->camera_id);
864 if (device_settings == settings->end()) {
865 ALOGE("%s: Sensor settings absent for device: %d", __func__,
866 (*b)->camera_id);
867 b = next_buffers->erase(b);
868 continue;
869 }
870
871 auto device_chars = chars_->find((*b)->camera_id);
872 if (device_chars == chars_->end()) {
873 ALOGE("%s: Sensor characteristics absent for device: %d", __func__,
874 (*b)->camera_id);
875 b = next_buffers->erase(b);
876 continue;
877 }
878
879 sensor_binning_factor_info_[(*b)->camera_id].quad_bayer_sensor =
880 device_chars->second.quad_bayer_sensor;
881
882 ALOGVV("Starting next capture: Exposure: %" PRIu64 " ms, gain: %d",
883 ns2ms(device_settings->second.exposure_time),
884 device_settings->second.gain);
885
886 scene_->Initialize(device_chars->second.full_res_width,
887 device_chars->second.full_res_height,
888 kElectronsPerLuxSecond);
889 scene_->SetExposureDuration((float)device_settings->second.exposure_time /
890 1e9);
891 scene_->SetColorFilterXYZ(device_chars->second.color_filter.rX,
892 device_chars->second.color_filter.rY,
893 device_chars->second.color_filter.rZ,
894 device_chars->second.color_filter.grX,
895 device_chars->second.color_filter.grY,
896 device_chars->second.color_filter.grZ,
897 device_chars->second.color_filter.gbX,
898 device_chars->second.color_filter.gbY,
899 device_chars->second.color_filter.gbZ,
900 device_chars->second.color_filter.bX,
901 device_chars->second.color_filter.bY,
902 device_chars->second.color_filter.bZ);
903 scene_->SetTestPattern(device_settings->second.test_pattern_mode ==
904 ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
905 scene_->SetTestPatternData(device_settings->second.test_pattern_data);
906 scene_->SetScreenRotation(device_settings->second.screen_rotation);
907
908 uint32_t handshake_divider =
909 (device_settings->second.video_stab ==
910 ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_ON) ||
911 (device_settings->second.video_stab ==
912 ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_PREVIEW_STABILIZATION)
913 ? kReducedSceneHandshake
914 : kRegularSceneHandshake;
915 scene_->CalculateScene(next_capture_time_, handshake_divider);
916
917 (*b)->stream_buffer.status = BufferStatus::kOk;
918 bool max_res_mode = device_settings->second.sensor_pixel_mode;
919 sensor_binning_factor_info_[(*b)->camera_id].max_res_request =
920 max_res_mode;
921 switch ((*b)->format) {
922 case PixelFormat::RAW16:
923 sensor_binning_factor_info_[(*b)->camera_id].has_raw_stream = true;
924 if (!sensor_binning_factor_info_[(*b)->camera_id]
925 .has_cropped_raw_stream &&
926 (*b)->use_case ==
927 ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_CROPPED_RAW) {
928 sensor_binning_factor_info_[(*b)->camera_id].has_cropped_raw_stream =
929 true;
930 }
931 break;
932 default:
933 sensor_binning_factor_info_[(*b)->camera_id].has_non_raw_stream = true;
934 }
935
936 // TODO: remove hack. Implement RAW -> YUV / JPEG reprocessing http://b/192382904
937 bool treat_as_reprocess =
938 (device_chars->second.quad_bayer_sensor && reprocess_request &&
939 (*next_input_buffer->begin())->format == PixelFormat::RAW16)
940 ? false
941 : reprocess_request;
942 ProcessType process_type = treat_as_reprocess ? REPROCESS
943 : (device_settings->second.edge_mode ==
944 ANDROID_EDGE_MODE_HIGH_QUALITY)
945 ? HIGH_QUALITY
946 : REGULAR;
947
948 if ((*b)->color_space !=
949 ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_UNSPECIFIED) {
950 CalculateRgbRgbMatrix((*b)->color_space, device_chars->second);
951 }
952
953 switch ((*b)->format) {
954 case PixelFormat::RAW16:
955 if (!reprocess_request) {
956 uint64_t min_full_res_raw_size =
957 2 * device_chars->second.full_res_width *
958 device_chars->second.full_res_height;
959 uint64_t min_default_raw_size =
960 2 * device_chars->second.width * device_chars->second.height;
961 bool default_mode_for_qb =
962 device_chars->second.quad_bayer_sensor && !max_res_mode;
963 size_t buffer_size = (*b)->plane.img.buffer_size;
964 if (default_mode_for_qb) {
965 if (buffer_size < min_default_raw_size) {
966 ALOGE(
967 "%s: Output buffer size too small for RAW capture in "
968 "default "
969 "mode, "
970 "expected %" PRIu64 ", got %zu, for camera id %d",
971 __FUNCTION__, min_default_raw_size, buffer_size,
972 (*b)->camera_id);
973 (*b)->stream_buffer.status = BufferStatus::kError;
974 break;
975 }
976 } else if (buffer_size < min_full_res_raw_size) {
977 ALOGE(
978 "%s: Output buffer size too small for RAW capture in max res "
979 "mode, "
980 "expected %" PRIu64 ", got %zu, for camera id %d",
981 __FUNCTION__, min_full_res_raw_size, buffer_size,
982 (*b)->camera_id);
983 (*b)->stream_buffer.status = BufferStatus::kError;
984 break;
985 }
986 if (default_mode_for_qb) {
987 if (device_settings->second.zoom_ratio > 2.0f &&
988 ((*b)->use_case ==
989 ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_CROPPED_RAW)) {
990 sensor_binning_factor_info_[(*b)->camera_id]
991 .raw_in_sensor_zoom_applied = true;
992 CaptureRawInSensorZoom(
993 (*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
994 device_settings->second.gain, device_chars->second);
995
996 } else {
997 CaptureRawBinned(
998 (*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
999 device_settings->second.gain, device_chars->second);
1000 }
1001 } else {
1002 CaptureRawFullRes(
1003 (*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
1004 device_settings->second.gain, device_chars->second);
1005 }
1006 } else {
1007 if (!device_chars->second.quad_bayer_sensor) {
1008 ALOGE(
1009 "%s: Reprocess requests with output format %x no supported!",
1010 __FUNCTION__, (*b)->format);
1011 (*b)->stream_buffer.status = BufferStatus::kError;
1012 break;
1013 }
1014 // Remosaic the RAW input buffer
1015 if ((*next_input_buffer->begin())->width != (*b)->width ||
1016 (*next_input_buffer->begin())->height != (*b)->height) {
1017 ALOGE(
1018 "%s: RAW16 input dimensions %dx%d don't match output buffer "
1019 "dimensions %dx%d",
1020 __FUNCTION__, (*next_input_buffer->begin())->width,
1021 (*next_input_buffer->begin())->height, (*b)->width,
1022 (*b)->height);
1023 (*b)->stream_buffer.status = BufferStatus::kError;
1024 break;
1025 }
1026 ALOGV("%s remosaic Raw16 Image", __FUNCTION__);
1027 RemosaicRAW16Image(
1028 (uint16_t*)(*next_input_buffer->begin())->plane.img.img,
1029 (uint16_t*)(*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
1030 device_chars->second);
1031 }
1032 break;
1033 case PixelFormat::RGB_888:
1034 if (!reprocess_request) {
1035 CaptureRGB((*b)->plane.img.img, (*b)->width, (*b)->height,
1036 (*b)->plane.img.stride_in_bytes, RGBLayout::RGB,
1037 device_settings->second.gain, (*b)->color_space,
1038 device_chars->second);
1039 } else {
1040 ALOGE("%s: Reprocess requests with output format %x no supported!",
1041 __FUNCTION__, (*b)->format);
1042 (*b)->stream_buffer.status = BufferStatus::kError;
1043 }
1044 break;
1045 case PixelFormat::RGBA_8888:
1046 if (!reprocess_request) {
1047 CaptureRGB((*b)->plane.img.img, (*b)->width, (*b)->height,
1048 (*b)->plane.img.stride_in_bytes, RGBLayout::RGBA,
1049 device_settings->second.gain, (*b)->color_space,
1050 device_chars->second);
1051 } else {
1052 ALOGE("%s: Reprocess requests with output format %x no supported!",
1053 __FUNCTION__, (*b)->format);
1054 (*b)->stream_buffer.status = BufferStatus::kError;
1055 }
1056 break;
1057 case PixelFormat::BLOB:
1058 if ((*b)->dataSpace == HAL_DATASPACE_V0_JFIF) {
1059 YUV420Frame yuv_input{
1060 .width = treat_as_reprocess
1061 ? (*next_input_buffer->begin())->width
1062 : 0,
1063 .height = treat_as_reprocess
1064 ? (*next_input_buffer->begin())->height
1065 : 0,
1066 .planes = treat_as_reprocess
1067 ? (*next_input_buffer->begin())->plane.img_y_crcb
1068 : YCbCrPlanes{}};
1069 auto jpeg_input = std::make_unique<JpegYUV420Input>();
1070 jpeg_input->width = (*b)->width;
1071 jpeg_input->height = (*b)->height;
1072 jpeg_input->color_space = (*b)->color_space;
1073 auto img =
1074 new uint8_t[(jpeg_input->width * jpeg_input->height * 3) / 2];
1075 jpeg_input->yuv_planes = {
1076 .img_y = img,
1077 .img_cb = img + jpeg_input->width * jpeg_input->height,
1078 .img_cr = img + (jpeg_input->width * jpeg_input->height * 5) / 4,
1079 .y_stride = jpeg_input->width,
1080 .cbcr_stride = jpeg_input->width / 2,
1081 .cbcr_step = 1};
1082 jpeg_input->buffer_owner = true;
1083 YUV420Frame yuv_output{.width = jpeg_input->width,
1084 .height = jpeg_input->height,
1085 .planes = jpeg_input->yuv_planes};
1086
1087 bool rotate = device_settings->second.rotate_and_crop ==
1088 ANDROID_SCALER_ROTATE_AND_CROP_90;
1089 auto ret = ProcessYUV420(yuv_input, yuv_output,
1090 device_settings->second.gain, process_type,
1091 device_settings->second.zoom_ratio, rotate,
1092 (*b)->color_space, device_chars->second);
1093 if (ret != 0) {
1094 (*b)->stream_buffer.status = BufferStatus::kError;
1095 break;
1096 }
1097
1098 auto jpeg_job = std::make_unique<JpegYUV420Job>();
1099 jpeg_job->exif_utils = std::unique_ptr<ExifUtils>(
1100 ExifUtils::Create(device_chars->second));
1101 jpeg_job->input = std::move(jpeg_input);
1102 // If jpeg compression is successful, then the jpeg compressor
1103 // must set the corresponding status.
1104 (*b)->stream_buffer.status = BufferStatus::kError;
1105 std::swap(jpeg_job->output, *b);
1106 jpeg_job->result_metadata =
1107 HalCameraMetadata::Clone(next_result->result_metadata.get());
1108
1109 Mutex::Autolock lock(control_mutex_);
1110 jpeg_compressor_->QueueYUV420(std::move(jpeg_job));
1111 } else {
1112 ALOGE("%s: Format %x with dataspace %x is TODO", __FUNCTION__,
1113 (*b)->format, (*b)->dataSpace);
1114 (*b)->stream_buffer.status = BufferStatus::kError;
1115 }
1116 break;
1117 case PixelFormat::YCRCB_420_SP:
1118 case PixelFormat::YCBCR_420_888: {
1119 YUV420Frame yuv_input{
1120 .width =
1121 treat_as_reprocess ? (*next_input_buffer->begin())->width : 0,
1122 .height =
1123 treat_as_reprocess ? (*next_input_buffer->begin())->height : 0,
1124 .planes = treat_as_reprocess
1125 ? (*next_input_buffer->begin())->plane.img_y_crcb
1126 : YCbCrPlanes{}};
1127 YUV420Frame yuv_output{.width = (*b)->width,
1128 .height = (*b)->height,
1129 .planes = (*b)->plane.img_y_crcb};
1130 bool rotate = device_settings->second.rotate_and_crop ==
1131 ANDROID_SCALER_ROTATE_AND_CROP_90;
1132 auto ret =
1133 ProcessYUV420(yuv_input, yuv_output, device_settings->second.gain,
1134 process_type, device_settings->second.zoom_ratio,
1135 rotate, (*b)->color_space, device_chars->second);
1136 if (ret != 0) {
1137 (*b)->stream_buffer.status = BufferStatus::kError;
1138 }
1139 } break;
1140 case PixelFormat::Y16:
1141 if (!reprocess_request) {
1142 if ((*b)->dataSpace == HAL_DATASPACE_DEPTH) {
1143 CaptureDepth((*b)->plane.img.img, device_settings->second.gain,
1144 (*b)->width, (*b)->height,
1145 (*b)->plane.img.stride_in_bytes,
1146 device_chars->second);
1147 } else {
1148 ALOGE("%s: Format %x with dataspace %x is TODO", __FUNCTION__,
1149 (*b)->format, (*b)->dataSpace);
1150 (*b)->stream_buffer.status = BufferStatus::kError;
1151 }
1152 } else {
1153 ALOGE("%s: Reprocess requests with output format %x no supported!",
1154 __FUNCTION__, (*b)->format);
1155 (*b)->stream_buffer.status = BufferStatus::kError;
1156 }
1157 break;
1158 case PixelFormat::YCBCR_P010:
1159 if (!reprocess_request) {
1160 bool rotate = device_settings->second.rotate_and_crop ==
1161 ANDROID_SCALER_ROTATE_AND_CROP_90;
1162 YUV420Frame yuv_input{};
1163 YUV420Frame yuv_output{.width = (*b)->width,
1164 .height = (*b)->height,
1165 .planes = (*b)->plane.img_y_crcb};
1166 ProcessYUV420(yuv_input, yuv_output, device_settings->second.gain,
1167 process_type, device_settings->second.zoom_ratio,
1168 rotate, (*b)->color_space, device_chars->second);
1169 } else {
1170 ALOGE(
1171 "%s: Reprocess requests with output format %x no supported!",
1172 __FUNCTION__, (*b)->format);
1173 (*b)->stream_buffer.status = BufferStatus::kError;
1174 }
1175 break;
1176 default:
1177 ALOGE("%s: Unknown format %x, no output", __FUNCTION__, (*b)->format);
1178 (*b)->stream_buffer.status = BufferStatus::kError;
1179 break;
1180 }
1181
1182 b = next_buffers->erase(b);
1183 }
1184 }
1185
1186 if (reprocess_request) {
1187 auto input_buffer = next_input_buffer->begin();
1188 while (input_buffer != next_input_buffer->end()) {
1189 (*input_buffer++)->stream_buffer.status = BufferStatus::kOk;
1190 }
1191 next_input_buffer->clear();
1192 }
1193
1194 nsecs_t work_done_real_time = getSystemTimeWithSource(timestamp_source);
1195 // Returning the results at this point is not entirely correct from timing
1196 // perspective. Under ideal conditions where 'ReturnResults' completes
1197 // in less than 'time_accuracy' we need to return the results after the
1198 // frame cycle expires. However under real conditions various system
1199 // components like SurfaceFlinger, Encoder, LMK etc. could be consuming most
1200 // of the resources and the duration of "ReturnResults" can get comparable to
1201 // 'kDefaultFrameDuration'. This will skew the frame cycle and can result in
1202 // potential frame drops. To avoid this scenario when we are running under
1203 // tight deadlines (less than 'kReturnResultThreshod') try to return the
1204 // results immediately. In all other cases with more relaxed deadlines
1205 // the occasional bump during 'ReturnResults' should not have any
1206 // noticeable effect.
1207 if ((work_done_real_time + kReturnResultThreshod) > frame_end_real_time) {
1208 ReturnResults(callback, std::move(settings), std::move(next_result),
1209 reprocess_request, std::move(partial_result));
1210 }
1211
1212 work_done_real_time = getSystemTimeWithSource(timestamp_source);
1213 ALOGVV("Sensor vertical blanking interval");
1214 const nsecs_t time_accuracy = 2e6; // 2 ms of imprecision is ok
1215 if (work_done_real_time < frame_end_real_time - time_accuracy) {
1216 timespec t;
1217 t.tv_sec = (frame_end_real_time - work_done_real_time) / 1000000000L;
1218 t.tv_nsec = (frame_end_real_time - work_done_real_time) % 1000000000L;
1219
1220 int ret;
1221 do {
1222 ret = nanosleep(&t, &t);
1223 } while (ret != 0);
1224 }
1225
1226 ReturnResults(callback, std::move(settings), std::move(next_result),
1227 reprocess_request, std::move(partial_result));
1228
1229 return true;
1230 };
1231
ReturnResults(HwlPipelineCallback callback,std::unique_ptr<LogicalCameraSettings> settings,std::unique_ptr<HwlPipelineResult> result,bool reprocess_request,std::unique_ptr<HwlPipelineResult> partial_result)1232 void EmulatedSensor::ReturnResults(
1233 HwlPipelineCallback callback,
1234 std::unique_ptr<LogicalCameraSettings> settings,
1235 std::unique_ptr<HwlPipelineResult> result, bool reprocess_request,
1236 std::unique_ptr<HwlPipelineResult> partial_result) {
1237 if ((callback.process_pipeline_result != nullptr) &&
1238 (result.get() != nullptr) && (result->result_metadata.get() != nullptr)) {
1239 auto logical_settings = settings->find(logical_camera_id_);
1240 if (logical_settings == settings->end()) {
1241 ALOGE("%s: Logical camera id: %u not found in settings!", __FUNCTION__,
1242 logical_camera_id_);
1243 return;
1244 }
1245 auto device_chars = chars_->find(logical_camera_id_);
1246 if (device_chars == chars_->end()) {
1247 ALOGE("%s: Sensor characteristics absent for device: %d", __func__,
1248 logical_camera_id_);
1249 return;
1250 }
1251 result->result_metadata->Set(ANDROID_SENSOR_TIMESTAMP, &next_capture_time_,
1252 1);
1253
1254 camera_metadata_ro_entry_t lensEntry;
1255 auto lensRet = result->result_metadata->Get(
1256 ANDROID_STATISTICS_LENS_INTRINSIC_SAMPLES, &lensEntry);
1257 if ((lensRet == OK) && (lensEntry.count > 0)) {
1258 result->result_metadata->Set(ANDROID_STATISTICS_LENS_INTRINSIC_TIMESTAMPS,
1259 &next_capture_time_, 1);
1260 }
1261
1262 uint8_t raw_binned_factor_used = false;
1263 if (sensor_binning_factor_info_.find(logical_camera_id_) !=
1264 sensor_binning_factor_info_.end()) {
1265 auto& info = sensor_binning_factor_info_[logical_camera_id_];
1266 // Logical stream was included in the request
1267 if (!reprocess_request && info.quad_bayer_sensor && info.max_res_request &&
1268 info.has_raw_stream && !info.has_non_raw_stream) {
1269 raw_binned_factor_used = true;
1270 }
1271 result->result_metadata->Set(ANDROID_SENSOR_RAW_BINNING_FACTOR_USED,
1272 &raw_binned_factor_used, 1);
1273 if (info.has_cropped_raw_stream) {
1274 if (info.raw_in_sensor_zoom_applied) {
1275 result->result_metadata->Set(
1276 ANDROID_SCALER_RAW_CROP_REGION,
1277 device_chars->second.raw_crop_region_zoomed, 4);
1278
1279 } else {
1280 result->result_metadata->Set(
1281 ANDROID_SCALER_RAW_CROP_REGION,
1282 device_chars->second.raw_crop_region_unzoomed, 4);
1283 }
1284 }
1285 }
1286 if (logical_settings->second.lens_shading_map_mode ==
1287 ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_ON) {
1288 if ((device_chars->second.lens_shading_map_size[0] > 0) &&
1289 (device_chars->second.lens_shading_map_size[1] > 0)) {
1290 // Perfect lens, no actual shading needed.
1291 std::vector<float> lens_shading_map(
1292 device_chars->second.lens_shading_map_size[0] *
1293 device_chars->second.lens_shading_map_size[1] * 4,
1294 1.f);
1295
1296 result->result_metadata->Set(ANDROID_STATISTICS_LENS_SHADING_MAP,
1297 lens_shading_map.data(),
1298 lens_shading_map.size());
1299 }
1300 }
1301 if (logical_settings->second.report_video_stab) {
1302 result->result_metadata->Set(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
1303 &logical_settings->second.video_stab, 1);
1304 }
1305 if (logical_settings->second.report_edge_mode) {
1306 result->result_metadata->Set(ANDROID_EDGE_MODE,
1307 &logical_settings->second.edge_mode, 1);
1308 }
1309 if (logical_settings->second.report_neutral_color_point) {
1310 result->result_metadata->Set(ANDROID_SENSOR_NEUTRAL_COLOR_POINT,
1311 kNeutralColorPoint,
1312 ARRAY_SIZE(kNeutralColorPoint));
1313 }
1314 if (logical_settings->second.report_green_split) {
1315 result->result_metadata->Set(ANDROID_SENSOR_GREEN_SPLIT, &kGreenSplit, 1);
1316 }
1317 if (logical_settings->second.report_noise_profile) {
1318 CalculateAndAppendNoiseProfile(
1319 logical_settings->second.gain,
1320 GetBaseGainFactor(device_chars->second.max_raw_value),
1321 result->result_metadata.get());
1322 }
1323 if (logical_settings->second.report_rotate_and_crop) {
1324 result->result_metadata->Set(ANDROID_SCALER_ROTATE_AND_CROP,
1325 &logical_settings->second.rotate_and_crop, 1);
1326 }
1327
1328 if (!result->physical_camera_results.empty()) {
1329 for (auto& it : result->physical_camera_results) {
1330 auto physical_settings = settings->find(it.first);
1331 if (physical_settings == settings->end()) {
1332 ALOGE("%s: Physical settings for camera id: %u are absent!",
1333 __FUNCTION__, it.first);
1334 continue;
1335 }
1336 uint8_t raw_binned_factor_used = false;
1337 if (sensor_binning_factor_info_.find(it.first) !=
1338 sensor_binning_factor_info_.end()) {
1339 auto& info = sensor_binning_factor_info_[it.first];
1340 // physical stream was included in the request
1341 if (!reprocess_request && info.quad_bayer_sensor &&
1342 info.max_res_request && info.has_raw_stream &&
1343 !info.has_non_raw_stream) {
1344 raw_binned_factor_used = true;
1345 }
1346 it.second->Set(ANDROID_SENSOR_RAW_BINNING_FACTOR_USED,
1347 &raw_binned_factor_used, 1);
1348 }
1349 // Sensor timestamp for all physical devices must be the same.
1350 it.second->Set(ANDROID_SENSOR_TIMESTAMP, &next_capture_time_, 1);
1351 if (physical_settings->second.report_neutral_color_point) {
1352 it.second->Set(ANDROID_SENSOR_NEUTRAL_COLOR_POINT, kNeutralColorPoint,
1353 ARRAY_SIZE(kNeutralColorPoint));
1354 }
1355 if (physical_settings->second.report_green_split) {
1356 it.second->Set(ANDROID_SENSOR_GREEN_SPLIT, &kGreenSplit, 1);
1357 }
1358 if (physical_settings->second.report_noise_profile) {
1359 auto device_chars = chars_->find(it.first);
1360 if (device_chars == chars_->end()) {
1361 ALOGE("%s: Sensor characteristics absent for device: %d", __func__,
1362 it.first);
1363 }
1364 CalculateAndAppendNoiseProfile(
1365 physical_settings->second.gain,
1366 GetBaseGainFactor(device_chars->second.max_raw_value),
1367 it.second.get());
1368 }
1369 }
1370 }
1371
1372 // Partial result count for partial result is set to a value
1373 // only when partial results are supported
1374 if (partial_result->partial_result != 0) {
1375 callback.process_pipeline_result(std::move(partial_result));
1376 }
1377 callback.process_pipeline_result(std::move(result));
1378 }
1379 }
1380
CalculateAndAppendNoiseProfile(float gain,float base_gain_factor,HalCameraMetadata * result)1381 void EmulatedSensor::CalculateAndAppendNoiseProfile(
1382 float gain /*in ISO*/, float base_gain_factor,
1383 HalCameraMetadata* result /*out*/) {
1384 if (result != nullptr) {
1385 float total_gain = gain / 100.0 * base_gain_factor;
1386 float noise_var_gain = total_gain * total_gain;
1387 float read_noise_var =
1388 kReadNoiseVarBeforeGain * noise_var_gain + kReadNoiseVarAfterGain;
1389 // Noise profile is the same across all 4 CFA channels
1390 double noise_profile[2 * 4] = {
1391 noise_var_gain, read_noise_var, noise_var_gain, read_noise_var,
1392 noise_var_gain, read_noise_var, noise_var_gain, read_noise_var};
1393 result->Set(ANDROID_SENSOR_NOISE_PROFILE, noise_profile,
1394 ARRAY_SIZE(noise_profile));
1395 }
1396 }
1397
GetQuadBayerColor(uint32_t x,uint32_t y)1398 EmulatedScene::ColorChannels EmulatedSensor::GetQuadBayerColor(uint32_t x,
1399 uint32_t y) {
1400 // Row within larger set of quad bayer filter
1401 uint32_t row_mod = y % 4;
1402 // Column within larger set of quad bayer filter
1403 uint32_t col_mod = x % 4;
1404
1405 // Row is within the left quadrants of a quad bayer sensor
1406 if (row_mod < 2) {
1407 if (col_mod < 2) {
1408 return EmulatedScene::ColorChannels::R;
1409 }
1410 return EmulatedScene::ColorChannels::Gr;
1411 } else {
1412 if (col_mod < 2) {
1413 return EmulatedScene::ColorChannels::Gb;
1414 }
1415 return EmulatedScene::ColorChannels::B;
1416 }
1417 }
1418
RemosaicQuadBayerBlock(uint16_t * img_in,uint16_t * img_out,int xstart,int ystart,int row_stride_in_bytes)1419 void EmulatedSensor::RemosaicQuadBayerBlock(uint16_t* img_in, uint16_t* img_out,
1420 int xstart, int ystart,
1421 int row_stride_in_bytes) {
1422 uint32_t quad_block_copy_idx_map[16] = {0, 2, 1, 3, 8, 10, 6, 11,
1423 4, 9, 5, 7, 12, 14, 13, 15};
1424 uint16_t quad_block_copy[16];
1425 uint32_t i = 0;
1426 for (uint32_t row = 0; row < 4; row++) {
1427 uint16_t* quad_bayer_row =
1428 img_in + (ystart + row) * (row_stride_in_bytes / 2) + xstart;
1429 for (uint32_t j = 0; j < 4; j++, i++) {
1430 quad_block_copy[i] = quad_bayer_row[j];
1431 }
1432 }
1433
1434 for (uint32_t row = 0; row < 4; row++) {
1435 uint16_t* regular_bayer_row =
1436 img_out + (ystart + row) * (row_stride_in_bytes / 2) + xstart;
1437 for (uint32_t j = 0; j < 4; j++, i++) {
1438 uint32_t idx = quad_block_copy_idx_map[row + 4 * j];
1439 regular_bayer_row[j] = quad_block_copy[idx];
1440 }
1441 }
1442 }
1443
RemosaicRAW16Image(uint16_t * img_in,uint16_t * img_out,size_t row_stride_in_bytes,const SensorCharacteristics & chars)1444 status_t EmulatedSensor::RemosaicRAW16Image(uint16_t* img_in, uint16_t* img_out,
1445 size_t row_stride_in_bytes,
1446 const SensorCharacteristics& chars) {
1447 if (chars.full_res_width % 2 != 0 || chars.full_res_height % 2 != 0) {
1448 ALOGE(
1449 "%s RAW16 Image with quad CFA, height %zu and width %zu, not multiples "
1450 "of 4",
1451 __FUNCTION__, chars.full_res_height, chars.full_res_width);
1452 return BAD_VALUE;
1453 }
1454 for (uint32_t i = 0; i < chars.full_res_width; i += 4) {
1455 for (uint32_t j = 0; j < chars.full_res_height; j += 4) {
1456 RemosaicQuadBayerBlock(img_in, img_out, i, j, row_stride_in_bytes);
1457 }
1458 }
1459 return OK;
1460 }
1461
CaptureRawBinned(uint8_t * img,size_t row_stride_in_bytes,uint32_t gain,const SensorCharacteristics & chars)1462 void EmulatedSensor::CaptureRawBinned(uint8_t* img, size_t row_stride_in_bytes,
1463 uint32_t gain,
1464 const SensorCharacteristics& chars) {
1465 CaptureRaw(img, row_stride_in_bytes, gain, chars, /*in_sensor_zoom*/ false,
1466 /*binned*/ true);
1467 return;
1468 }
1469
CaptureRawInSensorZoom(uint8_t * img,size_t row_stride_in_bytes,uint32_t gain,const SensorCharacteristics & chars)1470 void EmulatedSensor::CaptureRawInSensorZoom(uint8_t* img,
1471 size_t row_stride_in_bytes,
1472 uint32_t gain,
1473 const SensorCharacteristics& chars) {
1474 CaptureRaw(img, row_stride_in_bytes, gain, chars, /*in_sensor_zoom*/ true,
1475 /*binned*/ false);
1476 return;
1477 }
1478
CaptureRawFullRes(uint8_t * img,size_t row_stride_in_bytes,uint32_t gain,const SensorCharacteristics & chars)1479 void EmulatedSensor::CaptureRawFullRes(uint8_t* img, size_t row_stride_in_bytes,
1480 uint32_t gain,
1481 const SensorCharacteristics& chars) {
1482 CaptureRaw(img, row_stride_in_bytes, gain, chars, /*inSensorZoom*/ false,
1483 /*binned*/ false);
1484 return;
1485 }
1486
CaptureRaw(uint8_t * img,size_t row_stride_in_bytes,uint32_t gain,const SensorCharacteristics & chars,bool in_sensor_zoom,bool binned)1487 void EmulatedSensor::CaptureRaw(uint8_t* img, size_t row_stride_in_bytes,
1488 uint32_t gain,
1489 const SensorCharacteristics& chars,
1490 bool in_sensor_zoom, bool binned) {
1491 ATRACE_CALL();
1492 if (in_sensor_zoom && binned) {
1493 ALOGE("%s: Can't perform in-sensor zoom in binned mode", __FUNCTION__);
1494 return;
1495 }
1496 float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
1497 float noise_var_gain = total_gain * total_gain;
1498 float read_noise_var =
1499 kReadNoiseVarBeforeGain * noise_var_gain + kReadNoiseVarAfterGain;
1500
1501 scene_->SetReadoutPixel(0, 0);
1502 // RGGB
1503 int bayer_select[4] = {EmulatedScene::R, EmulatedScene::Gr, EmulatedScene::Gb,
1504 EmulatedScene::B};
1505 const float raw_zoom_ratio = in_sensor_zoom ? 2.0f : 1.0f;
1506 unsigned int image_width =
1507 in_sensor_zoom || binned ? chars.width : chars.full_res_width;
1508 unsigned int image_height =
1509 in_sensor_zoom || binned ? chars.height : chars.full_res_height;
1510 const float norm_left_top = 0.5f - 0.5f / raw_zoom_ratio;
1511 for (unsigned int out_y = 0; out_y < image_height; out_y++) {
1512 int* bayer_row = bayer_select + (out_y & 0x1) * 2;
1513 uint16_t* px = (uint16_t*)img + out_y * (row_stride_in_bytes / 2);
1514
1515 float norm_y = out_y / (image_height * raw_zoom_ratio);
1516 int y = static_cast<int>(chars.full_res_height * (norm_left_top + norm_y));
1517 y = std::min(std::max(y, 0), (int)chars.full_res_height - 1);
1518
1519 for (unsigned int out_x = 0; out_x < image_width; out_x++) {
1520 int color_idx = chars.quad_bayer_sensor && !(in_sensor_zoom || binned)
1521 ? GetQuadBayerColor(out_x, out_y)
1522 : bayer_row[out_x & 0x1];
1523 float norm_x = out_x / (image_width * raw_zoom_ratio);
1524 int x = static_cast<int>(chars.full_res_width * (norm_left_top + norm_x));
1525 x = std::min(std::max(x, 0), (int)chars.full_res_width - 1);
1526
1527 uint32_t electron_count;
1528 scene_->SetReadoutPixel(x, y);
1529 electron_count = scene_->GetPixelElectrons()[color_idx];
1530
1531 // TODO: Better pixel saturation curve?
1532 electron_count = (electron_count < kSaturationElectrons)
1533 ? electron_count
1534 : kSaturationElectrons;
1535
1536 // TODO: Better A/D saturation curve?
1537 uint16_t raw_count = electron_count * total_gain;
1538 raw_count =
1539 (raw_count < chars.max_raw_value) ? raw_count : chars.max_raw_value;
1540
1541 // Calculate noise value
1542 // TODO: Use more-correct Gaussian instead of uniform noise
1543 float photon_noise_var = electron_count * noise_var_gain;
1544 float noise_stddev = sqrtf_approx(read_noise_var + photon_noise_var);
1545 // Scaled to roughly match gaussian/uniform noise stddev
1546 float noise_sample = rand_r(&rand_seed_) * (2.5 / (1.0 + RAND_MAX)) - 1.25;
1547
1548 raw_count += chars.black_level_pattern[color_idx];
1549 raw_count += noise_stddev * noise_sample;
1550
1551 *px++ = raw_count;
1552 }
1553 // TODO: Handle this better
1554 // simulatedTime += mRowReadoutTime;
1555 }
1556 ALOGVV("Raw sensor image captured");
1557 }
1558
CaptureRGB(uint8_t * img,uint32_t width,uint32_t height,uint32_t stride,RGBLayout layout,uint32_t gain,int32_t color_space,const SensorCharacteristics & chars)1559 void EmulatedSensor::CaptureRGB(uint8_t* img, uint32_t width, uint32_t height,
1560 uint32_t stride, RGBLayout layout,
1561 uint32_t gain, int32_t color_space,
1562 const SensorCharacteristics& chars) {
1563 ATRACE_CALL();
1564 float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
1565 // In fixed-point math, calculate total scaling from electrons to 8bpp
1566 int scale64x = 64 * total_gain * 255 / chars.max_raw_value;
1567 uint32_t inc_h = ceil((float)chars.full_res_width / width);
1568 uint32_t inc_v = ceil((float)chars.full_res_height / height);
1569
1570 for (unsigned int y = 0, outy = 0; y < chars.full_res_height;
1571 y += inc_v, outy++) {
1572 scene_->SetReadoutPixel(0, y);
1573 uint8_t* px = img + outy * stride;
1574 for (unsigned int x = 0; x < chars.full_res_width; x += inc_h) {
1575 uint32_t r_count, g_count, b_count;
1576 // TODO: Perfect demosaicing is a cheat
1577 const uint32_t* pixel = scene_->GetPixelElectrons();
1578 r_count = pixel[EmulatedScene::R] * scale64x;
1579 g_count = pixel[EmulatedScene::Gr] * scale64x;
1580 b_count = pixel[EmulatedScene::B] * scale64x;
1581
1582 if (color_space !=
1583 ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_UNSPECIFIED) {
1584 RgbToRgb(&r_count, &g_count, &b_count);
1585 }
1586
1587 uint8_t r = r_count < 255 * 64 ? r_count / 64 : 255;
1588 uint8_t g = g_count < 255 * 64 ? g_count / 64 : 255;
1589 uint8_t b = b_count < 255 * 64 ? b_count / 64 : 255;
1590 switch (layout) {
1591 case RGB:
1592 *px++ = r;
1593 *px++ = g;
1594 *px++ = b;
1595 break;
1596 case RGBA:
1597 *px++ = r;
1598 *px++ = g;
1599 *px++ = b;
1600 *px++ = 255;
1601 break;
1602 case ARGB:
1603 *px++ = 255;
1604 *px++ = r;
1605 *px++ = g;
1606 *px++ = b;
1607 break;
1608 default:
1609 ALOGE("%s: RGB layout: %d not supported", __FUNCTION__, layout);
1610 return;
1611 }
1612 for (unsigned int j = 1; j < inc_h; j++) scene_->GetPixelElectrons();
1613 }
1614 }
1615 ALOGVV("RGB sensor image captured");
1616 }
1617
CaptureYUV420(YCbCrPlanes yuv_layout,uint32_t width,uint32_t height,uint32_t gain,float zoom_ratio,bool rotate,int32_t color_space,const SensorCharacteristics & chars)1618 void EmulatedSensor::CaptureYUV420(YCbCrPlanes yuv_layout, uint32_t width,
1619 uint32_t height, uint32_t gain,
1620 float zoom_ratio, bool rotate,
1621 int32_t color_space,
1622 const SensorCharacteristics& chars) {
1623 ATRACE_CALL();
1624 float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
1625 // Using fixed-point math with 6 bits of fractional precision.
1626 // In fixed-point math, calculate total scaling from electrons to 8bpp
1627 const int scale64x =
1628 kFixedBitPrecision * total_gain * 255 / chars.max_raw_value;
1629 // Fixed-point coefficients for RGB-YUV transform
1630 // Based on JFIF RGB->YUV transform.
1631 // Cb/Cr offset scaled by 64x twice since they're applied post-multiply
1632 const int rgb_to_y[] = {19, 37, 7};
1633 const int rgb_to_cb[] = {-10, -21, 32, 524288};
1634 const int rgb_to_cr[] = {32, -26, -5, 524288};
1635 // Scale back to 8bpp non-fixed-point
1636 const int scale_out = 64;
1637 const int scale_out_sq = scale_out * scale_out; // after multiplies
1638
1639 // inc = how many pixels to skip while reading every next pixel
1640 const float aspect_ratio = static_cast<float>(width) / height;
1641
1642 // precalculate normalized coordinates and dimensions
1643 const float norm_left_top = 0.5f - 0.5f / zoom_ratio;
1644 const float norm_rot_top = norm_left_top;
1645 const float norm_width = 1 / zoom_ratio;
1646 const float norm_rot_width = norm_width / aspect_ratio;
1647 const float norm_rot_height = norm_width;
1648 const float norm_rot_left =
1649 norm_left_top + (norm_width + norm_rot_width) * 0.5f;
1650
1651 for (unsigned int out_y = 0; out_y < height; out_y++) {
1652 uint8_t* px_y = yuv_layout.img_y + out_y * yuv_layout.y_stride;
1653 uint8_t* px_cb = yuv_layout.img_cb + (out_y / 2) * yuv_layout.cbcr_stride;
1654 uint8_t* px_cr = yuv_layout.img_cr + (out_y / 2) * yuv_layout.cbcr_stride;
1655
1656 for (unsigned int out_x = 0; out_x < width; out_x++) {
1657 int x, y;
1658 float norm_x = out_x / (width * zoom_ratio);
1659 float norm_y = out_y / (height * zoom_ratio);
1660 if (rotate) {
1661 x = static_cast<int>(chars.full_res_width *
1662 (norm_rot_left - norm_y * norm_rot_width));
1663 y = static_cast<int>(chars.full_res_height *
1664 (norm_rot_top + norm_x * norm_rot_height));
1665 } else {
1666 x = static_cast<int>(chars.full_res_width * (norm_left_top + norm_x));
1667 y = static_cast<int>(chars.full_res_height * (norm_left_top + norm_y));
1668 }
1669 x = std::min(std::max(x, 0), (int)chars.full_res_width - 1);
1670 y = std::min(std::max(y, 0), (int)chars.full_res_height - 1);
1671 scene_->SetReadoutPixel(x, y);
1672
1673 uint32_t r_count, g_count, b_count;
1674 // TODO: Perfect demosaicing is a cheat
1675 const uint32_t* pixel = rotate ? scene_->GetPixelElectronsColumn()
1676 : scene_->GetPixelElectrons();
1677 r_count = pixel[EmulatedScene::R] * scale64x;
1678 g_count = pixel[EmulatedScene::Gr] * scale64x;
1679 b_count = pixel[EmulatedScene::B] * scale64x;
1680
1681 if (color_space !=
1682 ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_UNSPECIFIED) {
1683 RgbToRgb(&r_count, &g_count, &b_count);
1684 }
1685
1686 r_count = r_count < kSaturationPoint ? r_count : kSaturationPoint;
1687 g_count = g_count < kSaturationPoint ? g_count : kSaturationPoint;
1688 b_count = b_count < kSaturationPoint ? b_count : kSaturationPoint;
1689
1690 // Gamma correction
1691 r_count = GammaTable(r_count, color_space);
1692 g_count = GammaTable(g_count, color_space);
1693 b_count = GammaTable(b_count, color_space);
1694
1695 uint8_t y8 = (rgb_to_y[0] * r_count + rgb_to_y[1] * g_count +
1696 rgb_to_y[2] * b_count) /
1697 scale_out_sq;
1698 if (yuv_layout.bytesPerPixel == 1) {
1699 *px_y = y8;
1700 } else if (yuv_layout.bytesPerPixel == 2) {
1701 *(reinterpret_cast<uint16_t*>(px_y)) = htole16(y8 << 8);
1702 } else {
1703 ALOGE("%s: Unsupported bytes per pixel value: %zu", __func__,
1704 yuv_layout.bytesPerPixel);
1705 return;
1706 }
1707 px_y += yuv_layout.bytesPerPixel;
1708
1709 if (out_y % 2 == 0 && out_x % 2 == 0) {
1710 uint8_t cb8 = (rgb_to_cb[0] * r_count + rgb_to_cb[1] * g_count +
1711 rgb_to_cb[2] * b_count + rgb_to_cb[3]) /
1712 scale_out_sq;
1713 uint8_t cr8 = (rgb_to_cr[0] * r_count + rgb_to_cr[1] * g_count +
1714 rgb_to_cr[2] * b_count + rgb_to_cr[3]) /
1715 scale_out_sq;
1716 if (yuv_layout.bytesPerPixel == 1) {
1717 *px_cb = cb8;
1718 *px_cr = cr8;
1719 } else if (yuv_layout.bytesPerPixel == 2) {
1720 *(reinterpret_cast<uint16_t*>(px_cb)) = htole16(cb8 << 8);
1721 *(reinterpret_cast<uint16_t*>(px_cr)) = htole16(cr8 << 8);
1722 } else {
1723 ALOGE("%s: Unsupported bytes per pixel value: %zu", __func__,
1724 yuv_layout.bytesPerPixel);
1725 return;
1726 }
1727 px_cr += yuv_layout.cbcr_step;
1728 px_cb += yuv_layout.cbcr_step;
1729 }
1730 }
1731 }
1732 ALOGVV("YUV420 sensor image captured");
1733 }
1734
CaptureDepth(uint8_t * img,uint32_t gain,uint32_t width,uint32_t height,uint32_t stride,const SensorCharacteristics & chars)1735 void EmulatedSensor::CaptureDepth(uint8_t* img, uint32_t gain, uint32_t width,
1736 uint32_t height, uint32_t stride,
1737 const SensorCharacteristics& chars) {
1738 ATRACE_CALL();
1739 float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
1740 // In fixed-point math, calculate scaling factor to 13bpp millimeters
1741 int scale64x = 64 * total_gain * 8191 / chars.max_raw_value;
1742 uint32_t inc_h = ceil((float)chars.full_res_width / width);
1743 uint32_t inc_v = ceil((float)chars.full_res_height / height);
1744
1745 for (unsigned int y = 0, out_y = 0; y < chars.full_res_height;
1746 y += inc_v, out_y++) {
1747 scene_->SetReadoutPixel(0, y);
1748 uint16_t* px = (uint16_t*)(img + (out_y * stride));
1749 for (unsigned int x = 0; x < chars.full_res_width; x += inc_h) {
1750 uint32_t depth_count;
1751 // TODO: Make up real depth scene instead of using green channel
1752 // as depth
1753 const uint32_t* pixel = scene_->GetPixelElectrons();
1754 depth_count = pixel[EmulatedScene::Gr] * scale64x;
1755
1756 *px++ = depth_count < 8191 * 64 ? depth_count / 64 : 0;
1757 for (unsigned int j = 1; j < inc_h; j++) scene_->GetPixelElectrons();
1758 }
1759 // TODO: Handle this better
1760 // simulatedTime += mRowReadoutTime;
1761 }
1762 ALOGVV("Depth sensor image captured");
1763 }
1764
ProcessYUV420(const YUV420Frame & input,const YUV420Frame & output,uint32_t gain,ProcessType process_type,float zoom_ratio,bool rotate_and_crop,int32_t color_space,const SensorCharacteristics & chars)1765 status_t EmulatedSensor::ProcessYUV420(const YUV420Frame& input,
1766 const YUV420Frame& output, uint32_t gain,
1767 ProcessType process_type,
1768 float zoom_ratio, bool rotate_and_crop,
1769 int32_t color_space,
1770 const SensorCharacteristics& chars) {
1771 ATRACE_CALL();
1772 size_t input_width, input_height;
1773 YCbCrPlanes input_planes, output_planes;
1774 std::vector<uint8_t> temp_yuv, temp_output_uv, temp_input_uv;
1775
1776 // Overwrite HIGH_QUALITY to REGULAR for Emulator if property
1777 // ro.boot.qemu.camera_hq_edge_processing is false;
1778 if (process_type == HIGH_QUALITY &&
1779 !property_get_bool("ro.boot.qemu.camera_hq_edge_processing", true)) {
1780 process_type = REGULAR;
1781 }
1782
1783 size_t bytes_per_pixel = output.planes.bytesPerPixel;
1784 switch (process_type) {
1785 case HIGH_QUALITY:
1786 CaptureYUV420(output.planes, output.width, output.height, gain,
1787 zoom_ratio, rotate_and_crop, color_space, chars);
1788 return OK;
1789 case REPROCESS:
1790 input_width = input.width;
1791 input_height = input.height;
1792 input_planes = input.planes;
1793
1794 // libyuv only supports planar YUV420 during scaling.
1795 // Split the input U/V plane in separate planes if needed.
1796 if (input_planes.cbcr_step == 2) {
1797 temp_input_uv.resize(input_width * input_height / 2);
1798 auto temp_uv_buffer = temp_input_uv.data();
1799 input_planes.img_cb = temp_uv_buffer;
1800 input_planes.img_cr = temp_uv_buffer + (input_width * input_height) / 4;
1801 input_planes.cbcr_stride = input_width / 2;
1802 if (input.planes.img_cb < input.planes.img_cr) {
1803 libyuv::SplitUVPlane(input.planes.img_cb, input.planes.cbcr_stride,
1804 input_planes.img_cb, input_planes.cbcr_stride,
1805 input_planes.img_cr, input_planes.cbcr_stride,
1806 input_width / 2, input_height / 2);
1807 } else {
1808 libyuv::SplitUVPlane(input.planes.img_cr, input.planes.cbcr_stride,
1809 input_planes.img_cr, input_planes.cbcr_stride,
1810 input_planes.img_cb, input_planes.cbcr_stride,
1811 input_width / 2, input_height / 2);
1812 }
1813 }
1814 break;
1815 case REGULAR:
1816 default:
1817 // Generate the smallest possible frame with the expected AR and
1818 // then scale using libyuv.
1819 float aspect_ratio = static_cast<float>(output.width) / output.height;
1820 zoom_ratio = std::max(1.f, zoom_ratio);
1821 input_width = EmulatedScene::kSceneWidth * aspect_ratio;
1822 input_height = EmulatedScene::kSceneHeight;
1823 temp_yuv.reserve((input_width * input_height * 3 * bytes_per_pixel) / 2);
1824 auto temp_yuv_buffer = temp_yuv.data();
1825 input_planes = {
1826 .img_y = temp_yuv_buffer,
1827 .img_cb =
1828 temp_yuv_buffer + input_width * input_height * bytes_per_pixel,
1829 .img_cr = temp_yuv_buffer +
1830 (input_width * input_height * bytes_per_pixel * 5) / 4,
1831 .y_stride = static_cast<uint32_t>(input_width * bytes_per_pixel),
1832 .cbcr_stride =
1833 static_cast<uint32_t>(input_width * bytes_per_pixel) / 2,
1834 .cbcr_step = 1,
1835 .bytesPerPixel = bytes_per_pixel};
1836 CaptureYUV420(input_planes, input_width, input_height, gain, zoom_ratio,
1837 rotate_and_crop, color_space, chars);
1838 }
1839
1840 output_planes = output.planes;
1841 // libyuv only supports planar YUV420 during scaling.
1842 // Treat the output UV space as planar first and then
1843 // interleave in the second step.
1844 if (output_planes.cbcr_step == 2) {
1845 temp_output_uv.resize(output.width * output.height * bytes_per_pixel / 2);
1846 auto temp_uv_buffer = temp_output_uv.data();
1847 output_planes.img_cb = temp_uv_buffer;
1848 output_planes.img_cr =
1849 temp_uv_buffer + output.width * output.height * bytes_per_pixel / 4;
1850 output_planes.cbcr_stride = output.width * bytes_per_pixel / 2;
1851 }
1852
1853 // NOTE: libyuv takes strides in pixels, not bytes.
1854 int ret = 0;
1855 if (bytes_per_pixel == 2) {
1856 ret = I420Scale_16((const uint16_t*)input_planes.img_y,
1857 input_planes.y_stride / bytes_per_pixel,
1858 (const uint16_t*)input_planes.img_cb,
1859 input_planes.cbcr_stride / bytes_per_pixel,
1860 (const uint16_t*)input_planes.img_cr,
1861 input_planes.cbcr_stride / bytes_per_pixel, input_width,
1862 input_height, (uint16_t*)output_planes.img_y,
1863 output_planes.y_stride / bytes_per_pixel,
1864 (uint16_t*)output_planes.img_cb,
1865 output_planes.cbcr_stride / bytes_per_pixel,
1866 (uint16_t*)output_planes.img_cr,
1867 output_planes.cbcr_stride / bytes_per_pixel,
1868 output.width, output.height, libyuv::kFilterNone);
1869 } else {
1870 ret = I420Scale(input_planes.img_y, input_planes.y_stride,
1871 input_planes.img_cb, input_planes.cbcr_stride,
1872 input_planes.img_cr, input_planes.cbcr_stride, input_width,
1873 input_height, output_planes.img_y, output_planes.y_stride,
1874 output_planes.img_cb, output_planes.cbcr_stride,
1875 output_planes.img_cr, output_planes.cbcr_stride,
1876 output.width, output.height, libyuv::kFilterNone);
1877 }
1878 if (ret != 0) {
1879 ALOGE("%s: Failed during YUV scaling: %d", __FUNCTION__, ret);
1880 return ret;
1881 }
1882
1883 // Merge U/V Planes for the interleaved case
1884 if (output_planes.cbcr_step == 2) {
1885 if (output.planes.img_cb < output.planes.img_cr) {
1886 if (bytes_per_pixel == 2) {
1887 libyuv::MergeUVPlane_16((const uint16_t*)output_planes.img_cb,
1888 output_planes.cbcr_stride / bytes_per_pixel,
1889 (const uint16_t*)output_planes.img_cr,
1890 output_planes.cbcr_stride / bytes_per_pixel,
1891 (uint16_t*)output.planes.img_cb,
1892 output.planes.cbcr_stride / bytes_per_pixel,
1893 output.width / 2, output.height / 2,
1894 /*depth*/ 16);
1895 } else {
1896 libyuv::MergeUVPlane(output_planes.img_cb, output_planes.cbcr_stride,
1897 output_planes.img_cr, output_planes.cbcr_stride,
1898 output.planes.img_cb, output.planes.cbcr_stride,
1899 output.width / 2, output.height / 2);
1900 }
1901 } else {
1902 if (bytes_per_pixel == 2) {
1903 libyuv::MergeUVPlane_16((const uint16_t*)output_planes.img_cr,
1904 output_planes.cbcr_stride / bytes_per_pixel,
1905 (const uint16_t*)output_planes.img_cb,
1906 output_planes.cbcr_stride / bytes_per_pixel,
1907 (uint16_t*)output.planes.img_cr,
1908 output.planes.cbcr_stride / bytes_per_pixel,
1909 output.width / 2, output.height / 2,
1910 /*depth*/ 16);
1911 } else {
1912 libyuv::MergeUVPlane(output_planes.img_cr, output_planes.cbcr_stride,
1913 output_planes.img_cb, output_planes.cbcr_stride,
1914 output.planes.img_cr, output.planes.cbcr_stride,
1915 output.width / 2, output.height / 2);
1916 }
1917 }
1918 }
1919
1920 return ret;
1921 }
1922
ApplysRGBGamma(int32_t value,int32_t saturation)1923 int32_t EmulatedSensor::ApplysRGBGamma(int32_t value, int32_t saturation) {
1924 float n_value = (static_cast<float>(value) / saturation);
1925 n_value = (n_value <= 0.0031308f)
1926 ? n_value * 12.92f
1927 : 1.055f * pow(n_value, 0.4166667f) - 0.055f;
1928 return n_value * saturation;
1929 }
1930
ApplySMPTE170MGamma(int32_t value,int32_t saturation)1931 int32_t EmulatedSensor::ApplySMPTE170MGamma(int32_t value, int32_t saturation) {
1932 float n_value = (static_cast<float>(value) / saturation);
1933 n_value = (n_value <= 0.018f) ? n_value * 4.5f
1934 : 1.099f * pow(n_value, 0.45f) - 0.099f;
1935 return n_value * saturation;
1936 }
1937
ApplyST2084Gamma(int32_t value,int32_t saturation)1938 int32_t EmulatedSensor::ApplyST2084Gamma(int32_t value, int32_t saturation) {
1939 float n_value = (static_cast<float>(value) / saturation);
1940 float c2 = 32.f * 2413.f / 4096.f;
1941 float c3 = 32.f * 2392.f / 4096.f;
1942 float c1 = c3 - c2 + 1.f;
1943 float m = 128.f * 2523.f / 4096.f;
1944 float n = 0.25f * 2610.f / 4096.f;
1945 n_value = pow((c1 + c2 * pow(n_value, n)) / (1 + c3 * pow(n_value, n)), m);
1946 return n_value * saturation;
1947 }
1948
ApplyHLGGamma(int32_t value,int32_t saturation)1949 int32_t EmulatedSensor::ApplyHLGGamma(int32_t value, int32_t saturation) {
1950 float n_value = (static_cast<float>(value) / saturation);
1951 // The full HLG gamma curve has additional parameters for n_value > 1, but n_value
1952 // in the emulated camera is always <= 1 due to lack of HDR display features.
1953 n_value = 0.5f * pow(n_value, 0.5f);
1954 return n_value * saturation;
1955 }
1956
GammaTable(int32_t value,int32_t color_space)1957 int32_t EmulatedSensor::GammaTable(int32_t value, int32_t color_space) {
1958 switch (color_space) {
1959 case ColorSpaceNamed::BT709:
1960 return gamma_table_smpte170m_[value];
1961 case ColorSpaceNamed::BT2020:
1962 return gamma_table_hlg_[value]; // Assume HLG
1963 case ColorSpaceNamed::DISPLAY_P3:
1964 case ColorSpaceNamed::SRGB:
1965 default:
1966 return gamma_table_sRGB_[value];
1967 }
1968
1969 return 0;
1970 }
1971
RgbToRgb(uint32_t * r_count,uint32_t * g_count,uint32_t * b_count)1972 void EmulatedSensor::RgbToRgb(uint32_t* r_count, uint32_t* g_count,
1973 uint32_t* b_count) {
1974 uint32_t r = *r_count;
1975 uint32_t g = *g_count;
1976 uint32_t b = *b_count;
1977 *r_count = (uint32_t)std::max(
1978 r * rgb_rgb_matrix_.rR + g * rgb_rgb_matrix_.gR + b * rgb_rgb_matrix_.bR,
1979 0.0f);
1980 *g_count = (uint32_t)std::max(
1981 r * rgb_rgb_matrix_.rG + g * rgb_rgb_matrix_.gG + b * rgb_rgb_matrix_.bG,
1982 0.0f);
1983 *b_count = (uint32_t)std::max(
1984 r * rgb_rgb_matrix_.rB + g * rgb_rgb_matrix_.gB + b * rgb_rgb_matrix_.bB,
1985 0.0f);
1986 }
1987
CalculateRgbRgbMatrix(int32_t color_space,const SensorCharacteristics & chars)1988 void EmulatedSensor::CalculateRgbRgbMatrix(int32_t color_space,
1989 const SensorCharacteristics& chars) {
1990 const XyzMatrix* xyzMatrix;
1991 switch (color_space) {
1992 case ColorSpaceNamed::DISPLAY_P3:
1993 xyzMatrix = &kDisplayP3Matrix;
1994 break;
1995 case ColorSpaceNamed::BT709:
1996 xyzMatrix = &kBt709Matrix;
1997 break;
1998 case ColorSpaceNamed::BT2020:
1999 xyzMatrix = &kBt2020Matrix;
2000 break;
2001 case ColorSpaceNamed::SRGB:
2002 default:
2003 xyzMatrix = &kSrgbXyzMatrix;
2004 break;
2005 }
2006
2007 rgb_rgb_matrix_.rR = xyzMatrix->xR * chars.forward_matrix.rX +
2008 xyzMatrix->yR * chars.forward_matrix.rY +
2009 xyzMatrix->zR * chars.forward_matrix.rZ;
2010 rgb_rgb_matrix_.gR = xyzMatrix->xR * chars.forward_matrix.gX +
2011 xyzMatrix->yR * chars.forward_matrix.gY +
2012 xyzMatrix->zR * chars.forward_matrix.gZ;
2013 rgb_rgb_matrix_.bR = xyzMatrix->xR * chars.forward_matrix.bX +
2014 xyzMatrix->yR * chars.forward_matrix.bY +
2015 xyzMatrix->zR * chars.forward_matrix.bZ;
2016 rgb_rgb_matrix_.rG = xyzMatrix->xG * chars.forward_matrix.rX +
2017 xyzMatrix->yG * chars.forward_matrix.rY +
2018 xyzMatrix->zG * chars.forward_matrix.rZ;
2019 rgb_rgb_matrix_.gG = xyzMatrix->xG * chars.forward_matrix.gX +
2020 xyzMatrix->yG * chars.forward_matrix.gY +
2021 xyzMatrix->zG * chars.forward_matrix.gZ;
2022 rgb_rgb_matrix_.bG = xyzMatrix->xG * chars.forward_matrix.bX +
2023 xyzMatrix->yG * chars.forward_matrix.bY +
2024 xyzMatrix->zG * chars.forward_matrix.bZ;
2025 rgb_rgb_matrix_.rB = xyzMatrix->xB * chars.forward_matrix.rX +
2026 xyzMatrix->yB * chars.forward_matrix.rY +
2027 xyzMatrix->zB * chars.forward_matrix.rZ;
2028 rgb_rgb_matrix_.gB = xyzMatrix->xB * chars.forward_matrix.gX +
2029 xyzMatrix->yB * chars.forward_matrix.gY +
2030 xyzMatrix->zB * chars.forward_matrix.gZ;
2031 rgb_rgb_matrix_.bB = xyzMatrix->xB * chars.forward_matrix.bX +
2032 xyzMatrix->yB * chars.forward_matrix.bY +
2033 xyzMatrix->zB * chars.forward_matrix.bZ;
2034 }
2035
2036 } // namespace android
2037