1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "heap.h"
18
19 #include <sys/types.h>
20 #include <unistd.h>
21
22 #include <limits>
23 #include <memory>
24 #include <random>
25 #include <sstream>
26 #include <vector>
27
28 #include "allocation_listener.h"
29 #include "android-base/stringprintf.h"
30 #include "android-base/thread_annotations.h"
31 #include "art_field-inl.h"
32 #include "backtrace_helper.h"
33 #include "base/allocator.h"
34 #include "base/arena_allocator.h"
35 #include "base/dumpable.h"
36 #include "base/file_utils.h"
37 #include "base/histogram-inl.h"
38 #include "base/logging.h" // For VLOG.
39 #include "base/memory_tool.h"
40 #include "base/mutex.h"
41 #include "base/os.h"
42 #include "base/stl_util.h"
43 #include "base/systrace.h"
44 #include "base/time_utils.h"
45 #include "base/utils.h"
46 #include "class_root-inl.h"
47 #include "common_throws.h"
48 #include "debugger.h"
49 #include "dex/dex_file-inl.h"
50 #include "entrypoints/quick/quick_alloc_entrypoints.h"
51 #include "gc/accounting/card_table-inl.h"
52 #include "gc/accounting/heap_bitmap-inl.h"
53 #include "gc/accounting/mod_union_table-inl.h"
54 #include "gc/accounting/read_barrier_table.h"
55 #include "gc/accounting/remembered_set.h"
56 #include "gc/accounting/space_bitmap-inl.h"
57 #include "gc/collector/concurrent_copying.h"
58 #include "gc/collector/mark_compact.h"
59 #include "gc/collector/mark_sweep.h"
60 #include "gc/collector/partial_mark_sweep.h"
61 #include "gc/collector/semi_space.h"
62 #include "gc/collector/sticky_mark_sweep.h"
63 #include "gc/racing_check.h"
64 #include "gc/reference_processor.h"
65 #include "gc/scoped_gc_critical_section.h"
66 #include "gc/space/bump_pointer_space.h"
67 #include "gc/space/dlmalloc_space-inl.h"
68 #include "gc/space/image_space.h"
69 #include "gc/space/large_object_space.h"
70 #include "gc/space/region_space.h"
71 #include "gc/space/rosalloc_space-inl.h"
72 #include "gc/space/space-inl.h"
73 #include "gc/space/zygote_space.h"
74 #include "gc/task_processor.h"
75 #include "gc/verification.h"
76 #include "gc_pause_listener.h"
77 #include "gc_root.h"
78 #include "handle_scope-inl.h"
79 #include "heap-inl.h"
80 #include "heap-visit-objects-inl.h"
81 #include "intern_table.h"
82 #include "jit/jit.h"
83 #include "jit/jit_code_cache.h"
84 #include "jni/java_vm_ext.h"
85 #include "mirror/class-inl.h"
86 #include "mirror/executable-inl.h"
87 #include "mirror/field.h"
88 #include "mirror/method_handle_impl.h"
89 #include "mirror/object-inl.h"
90 #include "mirror/object-refvisitor-inl.h"
91 #include "mirror/object_array-inl.h"
92 #include "mirror/reference-inl.h"
93 #include "mirror/var_handle.h"
94 #include "nativehelper/scoped_local_ref.h"
95 #include "oat/image.h"
96 #include "obj_ptr-inl.h"
97 #ifdef ART_TARGET_ANDROID
98 #include "perfetto/heap_profile.h"
99 #endif
100 #include "reflection.h"
101 #include "runtime.h"
102 #include "javaheapprof/javaheapsampler.h"
103 #include "scoped_thread_state_change-inl.h"
104 #include "thread-inl.h"
105 #include "thread_list.h"
106 #include "verify_object-inl.h"
107 #include "well_known_classes.h"
108
109 #if defined(__BIONIC__) || defined(__GLIBC__) || defined(ANDROID_HOST_MUSL)
110 #include <malloc.h> // For mallinfo()
111 #endif
112
113 namespace art HIDDEN {
114
115 #ifdef ART_TARGET_ANDROID
116 namespace {
117
118 // Enable the heap sampler Callback function used by Perfetto.
EnableHeapSamplerCallback(void * enable_ptr,const AHeapProfileEnableCallbackInfo * enable_info_ptr)119 void EnableHeapSamplerCallback(void* enable_ptr,
120 const AHeapProfileEnableCallbackInfo* enable_info_ptr) {
121 HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(enable_ptr);
122 // Set the ART profiler sampling interval to the value from Perfetto.
123 uint64_t interval = AHeapProfileEnableCallbackInfo_getSamplingInterval(enable_info_ptr);
124 if (interval > 0) {
125 sampler_self->SetSamplingInterval(interval);
126 }
127 // Else default is 4K sampling interval. However, default case shouldn't happen for Perfetto API.
128 // AHeapProfileEnableCallbackInfo_getSamplingInterval should always give the requested
129 // (non-negative) sampling interval. It is a uint64_t and gets checked for != 0
130 // Do not call heap as a temp here, it will build but test run will silently fail.
131 // Heap is not fully constructed yet in some cases.
132 sampler_self->EnableHeapSampler();
133 }
134
135 // Disable the heap sampler Callback function used by Perfetto.
DisableHeapSamplerCallback(void * disable_ptr,const AHeapProfileDisableCallbackInfo * info_ptr)136 void DisableHeapSamplerCallback(void* disable_ptr,
137 [[maybe_unused]] const AHeapProfileDisableCallbackInfo* info_ptr) {
138 HeapSampler* sampler_self = reinterpret_cast<HeapSampler*>(disable_ptr);
139 sampler_self->DisableHeapSampler();
140 }
141
142 } // namespace
143 #endif
144
145 namespace gc {
146
147 DEFINE_RUNTIME_DEBUG_FLAG(Heap, kStressCollectorTransition);
148
149 // Minimum amount of remaining bytes before a concurrent GC is triggered.
150 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
151 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
152 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
153 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
154 // threads (lower pauses, use less memory bandwidth).
GetStickyGcThroughputAdjustment(bool use_generational_cc)155 static double GetStickyGcThroughputAdjustment(bool use_generational_cc) {
156 return use_generational_cc ? 0.5 : 1.0;
157 }
158 // Whether or not we compact the zygote in PreZygoteFork.
159 static constexpr bool kCompactZygote = kMovingCollector;
160 // How many reserve entries are at the end of the allocation stack, these are only needed if the
161 // allocation stack overflows.
162 static constexpr size_t kAllocationStackReserveSize = 1024;
163 // Default mark stack size in bytes.
164 static const size_t kDefaultMarkStackSize = 64 * KB;
165 // Define space name.
166 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
167 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
168 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
169 static const char* kNonMovingSpaceName = "non moving space";
170 static const char* kZygoteSpaceName = "zygote space";
171 static constexpr bool kGCALotMode = false;
172 // GC alot mode uses a small allocation stack to stress test a lot of GC.
173 static constexpr size_t kGcAlotAllocationStackSize = 4 * KB /
174 sizeof(mirror::HeapReference<mirror::Object>);
175 // Verify objet has a small allocation stack size since searching the allocation stack is slow.
176 static constexpr size_t kVerifyObjectAllocationStackSize = 16 * KB /
177 sizeof(mirror::HeapReference<mirror::Object>);
178 static constexpr size_t kDefaultAllocationStackSize = 8 * MB /
179 sizeof(mirror::HeapReference<mirror::Object>);
180
181 // If we violate BOTH of the following constraints, we throw OOME.
182 // They differ due to concurrent allocation.
183 // After a GC (due to allocation failure) we should retrieve at least this
184 // fraction of the current max heap size.
185 static constexpr double kMinFreedHeapAfterGcForAlloc = 0.05;
186 // After a GC (due to allocation failure), at least this fraction of the
187 // heap should be available.
188 static constexpr double kMinFreeHeapAfterGcForAlloc = 0.01;
189
190 // For deterministic compilation, we need the heap to be at a well-known address.
191 static constexpr uint32_t kAllocSpaceBeginForDeterministicAoT = 0x40000000;
192 // Dump the rosalloc stats on SIGQUIT.
193 static constexpr bool kDumpRosAllocStatsOnSigQuit = false;
194
195 static const char* kRegionSpaceName = "main space (region space)";
196
197 // If true, we log all GCs in the both the foreground and background. Used for debugging.
198 static constexpr bool kLogAllGCs = false;
199
200 // Use Max heap for 2 seconds, this is smaller than the usual 5s window since we don't want to leave
201 // allocate with relaxed ergonomics for that long.
202 static constexpr size_t kPostForkMaxHeapDurationMS = 2000;
203
204 #if defined(__LP64__) || !defined(ADDRESS_SANITIZER)
205 // 320 MB (0x14000000) - (default non-moving space capacity).
206 // The value is picked to ensure it is aligned to the largest supported PMD
207 // size, which is 32mb with a 16k page size on AArch64.
__anon0f53ace70202() 208 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(([]() constexpr {
209 constexpr size_t kBegin = 320 * MB - Heap::kDefaultNonMovingSpaceCapacity;
210 constexpr int kMaxPMDSize = (kMaxPageSize / sizeof(uint64_t)) * kMaxPageSize;
211 static_assert(IsAligned<kMaxPMDSize>(kBegin),
212 "kPreferredAllocSpaceBegin should be aligned to the maximum "
213 "supported PMD size.");
214 return kBegin;
215 })());
216 #else
217 #ifdef __ANDROID__
218 // For 32-bit Android, use 0x20000000 because asan reserves 0x04000000 - 0x20000000.
219 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x20000000);
220 #else
221 // For 32-bit host, use 0x40000000 because asan uses most of the space below this.
222 uint8_t* const Heap::kPreferredAllocSpaceBegin = reinterpret_cast<uint8_t*>(0x40000000);
223 #endif
224 #endif
225
226 // Log GC on regular (but fairly large) intervals during GC stress mode.
227 // It is expected that the other runtime options will be used to reduce the usual logging.
228 // This allows us to make the logging much less verbose while still reporting some
229 // progress (biased towards expensive GCs), and while still reporting pathological cases.
230 static constexpr int64_t kGcStressModeGcLogSampleFrequencyNs = MsToNs(10000);
231
CareAboutPauseTimes()232 static inline bool CareAboutPauseTimes() {
233 return Runtime::Current()->InJankPerceptibleProcessState();
234 }
235
VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace * > & image_spaces)236 static void VerifyBootImagesContiguity(const std::vector<gc::space::ImageSpace*>& image_spaces) {
237 uint32_t boot_image_size = 0u;
238 for (size_t i = 0u, num_spaces = image_spaces.size(); i != num_spaces; ) {
239 const ImageHeader& image_header = image_spaces[i]->GetImageHeader();
240 uint32_t reservation_size = image_header.GetImageReservationSize();
241 uint32_t image_count = image_header.GetImageSpaceCount();
242
243 CHECK_NE(image_count, 0u);
244 CHECK_LE(image_count, num_spaces - i);
245 CHECK_NE(reservation_size, 0u);
246 for (size_t j = 1u; j != image_count; ++j) {
247 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetComponentCount(), 0u);
248 CHECK_EQ(image_spaces[i + j]->GetImageHeader().GetImageReservationSize(), 0u);
249 }
250
251 // Check the start of the heap.
252 CHECK_EQ(image_spaces[0]->Begin() + boot_image_size, image_spaces[i]->Begin());
253 // Check contiguous layout of images and oat files.
254 const uint8_t* current_heap = image_spaces[i]->Begin();
255 const uint8_t* current_oat = image_spaces[i]->GetImageHeader().GetOatFileBegin();
256 for (size_t j = 0u; j != image_count; ++j) {
257 const ImageHeader& current_header = image_spaces[i + j]->GetImageHeader();
258 CHECK_EQ(current_heap, image_spaces[i + j]->Begin());
259 CHECK_EQ(current_oat, current_header.GetOatFileBegin());
260 current_heap += RoundUp(current_header.GetImageSize(), kElfSegmentAlignment);
261 CHECK_GT(current_header.GetOatFileEnd(), current_header.GetOatFileBegin());
262 current_oat = current_header.GetOatFileEnd();
263 }
264 // Check that oat files start at the end of images.
265 CHECK_EQ(current_heap, image_spaces[i]->GetImageHeader().GetOatFileBegin());
266 // Check that the reservation size equals the size of images and oat files.
267 CHECK_EQ(reservation_size, static_cast<size_t>(current_oat - image_spaces[i]->Begin()));
268
269 boot_image_size += reservation_size;
270 i += image_count;
271 }
272 }
273
Heap(size_t initial_size,size_t growth_limit,size_t min_free,size_t max_free,double target_utilization,double foreground_heap_growth_multiplier,size_t stop_for_native_allocs,size_t capacity,size_t non_moving_space_capacity,const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,ArrayRef<File> boot_class_path_files,ArrayRef<File> boot_class_path_image_files,ArrayRef<File> boot_class_path_vdex_files,ArrayRef<File> boot_class_path_oat_files,const std::vector<std::string> & image_file_names,const InstructionSet image_instruction_set,CollectorType foreground_collector_type,CollectorType background_collector_type,space::LargeObjectSpaceType large_object_space_type,size_t large_object_threshold,size_t parallel_gc_threads,size_t conc_gc_threads,bool low_memory_mode,size_t long_pause_log_threshold,size_t long_gc_log_threshold,bool ignore_target_footprint,bool always_log_explicit_gcs,bool use_tlab,bool verify_pre_gc_heap,bool verify_pre_sweeping_heap,bool verify_post_gc_heap,bool verify_pre_gc_rosalloc,bool verify_pre_sweeping_rosalloc,bool verify_post_gc_rosalloc,bool gc_stress_mode,bool measure_gc_performance,bool use_homogeneous_space_compaction_for_oom,bool use_generational_cc,uint64_t min_interval_homogeneous_space_compaction_by_oom,bool dump_region_info_before_gc,bool dump_region_info_after_gc)274 Heap::Heap(size_t initial_size,
275 size_t growth_limit,
276 size_t min_free,
277 size_t max_free,
278 double target_utilization,
279 double foreground_heap_growth_multiplier,
280 size_t stop_for_native_allocs,
281 size_t capacity,
282 size_t non_moving_space_capacity,
283 const std::vector<std::string>& boot_class_path,
284 const std::vector<std::string>& boot_class_path_locations,
285 ArrayRef<File> boot_class_path_files,
286 ArrayRef<File> boot_class_path_image_files,
287 ArrayRef<File> boot_class_path_vdex_files,
288 ArrayRef<File> boot_class_path_oat_files,
289 const std::vector<std::string>& image_file_names,
290 const InstructionSet image_instruction_set,
291 CollectorType foreground_collector_type,
292 CollectorType background_collector_type,
293 space::LargeObjectSpaceType large_object_space_type,
294 size_t large_object_threshold,
295 size_t parallel_gc_threads,
296 size_t conc_gc_threads,
297 bool low_memory_mode,
298 size_t long_pause_log_threshold,
299 size_t long_gc_log_threshold,
300 bool ignore_target_footprint,
301 bool always_log_explicit_gcs,
302 bool use_tlab,
303 bool verify_pre_gc_heap,
304 bool verify_pre_sweeping_heap,
305 bool verify_post_gc_heap,
306 bool verify_pre_gc_rosalloc,
307 bool verify_pre_sweeping_rosalloc,
308 bool verify_post_gc_rosalloc,
309 bool gc_stress_mode,
310 bool measure_gc_performance,
311 bool use_homogeneous_space_compaction_for_oom,
312 bool use_generational_cc,
313 uint64_t min_interval_homogeneous_space_compaction_by_oom,
314 bool dump_region_info_before_gc,
315 bool dump_region_info_after_gc)
316 : non_moving_space_(nullptr),
317 rosalloc_space_(nullptr),
318 dlmalloc_space_(nullptr),
319 main_space_(nullptr),
320 collector_type_(kCollectorTypeNone),
321 foreground_collector_type_(foreground_collector_type),
322 background_collector_type_(background_collector_type),
323 desired_collector_type_(foreground_collector_type_),
324 pending_task_lock_(nullptr),
325 parallel_gc_threads_(parallel_gc_threads),
326 conc_gc_threads_(conc_gc_threads),
327 low_memory_mode_(low_memory_mode),
328 long_pause_log_threshold_(long_pause_log_threshold),
329 long_gc_log_threshold_(long_gc_log_threshold),
330 process_cpu_start_time_ns_(ProcessCpuNanoTime()),
331 pre_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
332 post_gc_last_process_cpu_time_ns_(process_cpu_start_time_ns_),
333 pre_gc_weighted_allocated_bytes_(0.0),
334 post_gc_weighted_allocated_bytes_(0.0),
335 ignore_target_footprint_(ignore_target_footprint),
336 always_log_explicit_gcs_(always_log_explicit_gcs),
337 zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
338 zygote_space_(nullptr),
339 large_object_threshold_(large_object_threshold),
340 disable_thread_flip_count_(0),
341 thread_flip_running_(false),
342 collector_type_running_(kCollectorTypeNone),
343 last_gc_cause_(kGcCauseNone),
344 thread_running_gc_(nullptr),
345 last_gc_type_(collector::kGcTypeNone),
346 next_gc_type_(collector::kGcTypePartial),
347 capacity_(capacity),
348 growth_limit_(growth_limit),
349 initial_heap_size_(initial_size),
350 target_footprint_(initial_size),
351 // Using kPostMonitorLock as a lock at kDefaultMutexLevel is acquired after
352 // this one.
353 process_state_update_lock_("process state update lock", kPostMonitorLock),
354 min_foreground_target_footprint_(0),
355 min_foreground_concurrent_start_bytes_(0),
356 concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
357 total_bytes_freed_ever_(0),
358 total_objects_freed_ever_(0),
359 num_bytes_allocated_(0),
360 native_bytes_registered_(0),
361 old_native_bytes_allocated_(0),
362 native_objects_notified_(0),
363 num_bytes_freed_revoke_(0),
364 num_bytes_alive_after_gc_(0),
365 verify_missing_card_marks_(false),
366 verify_system_weaks_(false),
367 verify_pre_gc_heap_(verify_pre_gc_heap),
368 verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
369 verify_post_gc_heap_(verify_post_gc_heap),
370 verify_mod_union_table_(false),
371 verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
372 verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
373 verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
374 gc_stress_mode_(gc_stress_mode),
375 /* For GC a lot mode, we limit the allocation stacks to be kGcAlotInterval allocations. This
376 * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
377 * verification is enabled, we limit the size of allocation stacks to speed up their
378 * searching.
379 */
380 max_allocation_stack_size_(kGCALotMode
381 ? kGcAlotAllocationStackSize
382 : (kVerifyObjectSupport > kVerifyObjectModeFast)
383 ? kVerifyObjectAllocationStackSize
384 : kDefaultAllocationStackSize),
385 current_allocator_(kAllocatorTypeDlMalloc),
386 current_non_moving_allocator_(kAllocatorTypeNonMoving),
387 bump_pointer_space_(nullptr),
388 temp_space_(nullptr),
389 region_space_(nullptr),
390 min_free_(min_free),
391 max_free_(max_free),
392 target_utilization_(target_utilization),
393 foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
394 stop_for_native_allocs_(stop_for_native_allocs),
395 total_wait_time_(0),
396 verify_object_mode_(kVerifyObjectModeDisabled),
397 disable_moving_gc_count_(0),
398 semi_space_collector_(nullptr),
399 active_concurrent_copying_collector_(nullptr),
400 young_concurrent_copying_collector_(nullptr),
401 concurrent_copying_collector_(nullptr),
402 is_running_on_memory_tool_(Runtime::Current()->IsRunningOnMemoryTool()),
403 use_tlab_(use_tlab),
404 main_space_backup_(nullptr),
405 min_interval_homogeneous_space_compaction_by_oom_(
406 min_interval_homogeneous_space_compaction_by_oom),
407 last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
408 gcs_completed_(0u),
409 max_gc_requested_(0u),
410 pending_collector_transition_(nullptr),
411 pending_heap_trim_(nullptr),
412 use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom),
413 use_generational_cc_(use_generational_cc),
414 running_collection_is_blocking_(false),
415 blocking_gc_count_(0U),
416 blocking_gc_time_(0U),
417 last_update_time_gc_count_rate_histograms_( // Round down by the window duration.
418 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration),
419 gc_count_last_window_(0U),
420 blocking_gc_count_last_window_(0U),
421 gc_count_rate_histogram_("gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
422 blocking_gc_count_rate_histogram_(
423 "blocking gc count rate histogram", 1U, kGcCountRateMaxBucketCount),
424 alloc_tracking_enabled_(false),
425 alloc_record_depth_(AllocRecordObjectMap::kDefaultAllocStackDepth),
426 backtrace_lock_(nullptr),
427 seen_backtrace_count_(0u),
428 unique_backtrace_count_(0u),
429 gc_disabled_for_shutdown_(false),
430 dump_region_info_before_gc_(dump_region_info_before_gc),
431 dump_region_info_after_gc_(dump_region_info_after_gc),
432 boot_image_spaces_(),
433 boot_images_start_address_(0u),
434 boot_images_size_(0u),
435 pre_oome_gc_count_(0u) {
436 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
437 LOG(INFO) << "Heap() entering";
438 }
439
440 LOG(INFO) << "Using " << foreground_collector_type_ << " GC.";
441 if (gUseUserfaultfd) {
442 CHECK_EQ(foreground_collector_type_, kCollectorTypeCMC);
443 CHECK_EQ(background_collector_type_, kCollectorTypeCMCBackground);
444 } else {
445 // This ensures that userfaultfd syscall is done before any seccomp filter is installed.
446 // TODO(b/266731037): Remove this when we no longer need to collect metric on userfaultfd
447 // support.
448 auto [uffd_supported, minor_fault_supported] = collector::MarkCompact::GetUffdAndMinorFault();
449 // The check is just to ensure that compiler doesn't eliminate the function call above.
450 // Userfaultfd support is certain to be there if its minor-fault feature is supported.
451 CHECK_IMPLIES(minor_fault_supported, uffd_supported);
452 }
453
454 if (gUseReadBarrier) {
455 CHECK_EQ(foreground_collector_type_, kCollectorTypeCC);
456 CHECK_EQ(background_collector_type_, kCollectorTypeCCBackground);
457 } else if (background_collector_type_ != gc::kCollectorTypeHomogeneousSpaceCompact) {
458 CHECK_EQ(IsMovingGc(foreground_collector_type_), IsMovingGc(background_collector_type_))
459 << "Changing from " << foreground_collector_type_ << " to "
460 << background_collector_type_ << " (or visa versa) is not supported.";
461 }
462 verification_.reset(new Verification(this));
463 CHECK_GE(large_object_threshold, kMinLargeObjectThreshold);
464 ScopedTrace trace(__FUNCTION__);
465 Runtime* const runtime = Runtime::Current();
466 // If we aren't the zygote, switch to the default non zygote allocator. This may update the
467 // entrypoints.
468 const bool is_zygote = runtime->IsZygote();
469 if (!is_zygote) {
470 // Background compaction is currently not supported for command line runs.
471 if (background_collector_type_ != foreground_collector_type_) {
472 VLOG(heap) << "Disabling background compaction for non zygote";
473 background_collector_type_ = foreground_collector_type_;
474 }
475 }
476 ChangeCollector(desired_collector_type_);
477 live_bitmap_.reset(new accounting::HeapBitmap(this));
478 mark_bitmap_.reset(new accounting::HeapBitmap(this));
479
480 // We don't have hspace compaction enabled with CC.
481 if (foreground_collector_type_ == kCollectorTypeCC
482 || foreground_collector_type_ == kCollectorTypeCMC) {
483 use_homogeneous_space_compaction_for_oom_ = false;
484 }
485 bool support_homogeneous_space_compaction =
486 background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
487 use_homogeneous_space_compaction_for_oom_;
488 // We may use the same space the main space for the non moving space if we don't need to compact
489 // from the main space.
490 // This is not the case if we support homogeneous compaction or have a moving background
491 // collector type.
492 bool separate_non_moving_space = is_zygote ||
493 support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
494 IsMovingGc(background_collector_type_);
495
496 // Requested begin for the alloc space, to follow the mapped image and oat files
497 uint8_t* request_begin = nullptr;
498 // Calculate the extra space required after the boot image, see allocations below.
499 size_t heap_reservation_size = 0u;
500 if (separate_non_moving_space) {
501 heap_reservation_size = non_moving_space_capacity;
502 } else if (foreground_collector_type_ != kCollectorTypeCC && is_zygote) {
503 heap_reservation_size = capacity_;
504 }
505 heap_reservation_size = RoundUp(heap_reservation_size, gPageSize);
506 // Load image space(s).
507 std::vector<std::unique_ptr<space::ImageSpace>> boot_image_spaces;
508 MemMap heap_reservation;
509 if (space::ImageSpace::LoadBootImage(boot_class_path,
510 boot_class_path_locations,
511 boot_class_path_files,
512 boot_class_path_image_files,
513 boot_class_path_vdex_files,
514 boot_class_path_oat_files,
515 image_file_names,
516 image_instruction_set,
517 runtime->ShouldRelocate(),
518 /*executable=*/!runtime->IsAotCompiler(),
519 heap_reservation_size,
520 runtime->AllowInMemoryCompilation(),
521 runtime->GetApexVersions(),
522 &boot_image_spaces,
523 &heap_reservation)) {
524 DCHECK_EQ(heap_reservation_size, heap_reservation.IsValid() ? heap_reservation.Size() : 0u);
525 DCHECK(!boot_image_spaces.empty());
526 request_begin = boot_image_spaces.back()->GetImageHeader().GetOatFileEnd();
527 DCHECK_IMPLIES(heap_reservation.IsValid(), request_begin == heap_reservation.Begin())
528 << "request_begin=" << static_cast<const void*>(request_begin)
529 << " heap_reservation.Begin()=" << static_cast<const void*>(heap_reservation.Begin());
530 for (std::unique_ptr<space::ImageSpace>& space : boot_image_spaces) {
531 boot_image_spaces_.push_back(space.get());
532 AddSpace(space.release());
533 }
534 boot_images_start_address_ = PointerToLowMemUInt32(boot_image_spaces_.front()->Begin());
535 uint32_t boot_images_end =
536 PointerToLowMemUInt32(boot_image_spaces_.back()->GetImageHeader().GetOatFileEnd());
537 boot_images_size_ = boot_images_end - boot_images_start_address_;
538 if (kIsDebugBuild) {
539 VerifyBootImagesContiguity(boot_image_spaces_);
540 }
541 } else {
542 if (foreground_collector_type_ == kCollectorTypeCC) {
543 // Need to use a low address so that we can allocate a contiguous 2 * Xmx space
544 // when there's no image (dex2oat for target).
545 request_begin = kPreferredAllocSpaceBegin;
546 }
547 // Gross hack to make dex2oat deterministic.
548 if (foreground_collector_type_ == kCollectorTypeMS && Runtime::Current()->IsAotCompiler()) {
549 // Currently only enabled for MS collector since that is what the deterministic dex2oat uses.
550 // b/26849108
551 request_begin = reinterpret_cast<uint8_t*>(kAllocSpaceBeginForDeterministicAoT);
552 }
553 }
554
555 /*
556 requested_alloc_space_begin -> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
557 +- nonmoving space (non_moving_space_capacity)+-
558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
559 +-????????????????????????????????????????????+-
560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
561 +-main alloc space / bump space 1 (capacity_) +-
562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
563 +-????????????????????????????????????????????+-
564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
565 +-main alloc space2 / bump space 2 (capacity_)+-
566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
567 */
568
569 MemMap main_mem_map_1;
570 MemMap main_mem_map_2;
571
572 std::string error_str;
573 MemMap non_moving_space_mem_map;
574 if (separate_non_moving_space) {
575 ScopedTrace trace2("Create separate non moving space");
576 // If we are the zygote, the non moving space becomes the zygote space when we run
577 // PreZygoteFork the first time. In this case, call the map "zygote space" since we can't
578 // rename the mem map later.
579 const char* space_name = is_zygote ? kZygoteSpaceName : kNonMovingSpaceName;
580 // Reserve the non moving mem map before the other two since it needs to be at a specific
581 // address.
582 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
583 if (heap_reservation.IsValid()) {
584 non_moving_space_mem_map = heap_reservation.RemapAtEnd(
585 heap_reservation.Begin(), space_name, PROT_READ | PROT_WRITE, &error_str);
586 } else {
587 non_moving_space_mem_map = MapAnonymousPreferredAddress(
588 space_name, request_begin, non_moving_space_capacity, &error_str);
589 }
590 CHECK(non_moving_space_mem_map.IsValid()) << error_str;
591 DCHECK(!heap_reservation.IsValid());
592 // Try to reserve virtual memory at a lower address if we have a separate non moving space.
593 request_begin = kPreferredAllocSpaceBegin + non_moving_space_capacity;
594 }
595 // Attempt to create 2 mem maps at or after the requested begin.
596 if (foreground_collector_type_ != kCollectorTypeCC) {
597 ScopedTrace trace2("Create main mem map");
598 if (separate_non_moving_space || !is_zygote) {
599 main_mem_map_1 = MapAnonymousPreferredAddress(
600 kMemMapSpaceName[0], request_begin, capacity_, &error_str);
601 } else {
602 // If no separate non-moving space and we are the zygote, the main space must come right after
603 // the image space to avoid a gap. This is required since we want the zygote space to be
604 // adjacent to the image space.
605 DCHECK_EQ(heap_reservation.IsValid(), !boot_image_spaces_.empty());
606 main_mem_map_1 = MemMap::MapAnonymous(
607 kMemMapSpaceName[0],
608 request_begin,
609 capacity_,
610 PROT_READ | PROT_WRITE,
611 /* low_4gb= */ true,
612 /* reuse= */ false,
613 heap_reservation.IsValid() ? &heap_reservation : nullptr,
614 &error_str);
615 }
616 CHECK(main_mem_map_1.IsValid()) << error_str;
617 DCHECK(!heap_reservation.IsValid());
618 }
619 if (support_homogeneous_space_compaction ||
620 background_collector_type_ == kCollectorTypeSS ||
621 foreground_collector_type_ == kCollectorTypeSS) {
622 ScopedTrace trace2("Create main mem map 2");
623 main_mem_map_2 = MapAnonymousPreferredAddress(
624 kMemMapSpaceName[1], main_mem_map_1.End(), capacity_, &error_str);
625 CHECK(main_mem_map_2.IsValid()) << error_str;
626 }
627
628 // Create the non moving space first so that bitmaps don't take up the address range.
629 if (separate_non_moving_space) {
630 ScopedTrace trace2("Add non moving space");
631 // Non moving space is always dlmalloc since we currently don't have support for multiple
632 // active rosalloc spaces.
633 const size_t size = non_moving_space_mem_map.Size();
634 const void* non_moving_space_mem_map_begin = non_moving_space_mem_map.Begin();
635 non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(std::move(non_moving_space_mem_map),
636 "zygote / non moving space",
637 GetDefaultStartingSize(),
638 initial_size,
639 size,
640 size,
641 /* can_move_objects= */ false);
642 CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
643 << non_moving_space_mem_map_begin;
644 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
645 AddSpace(non_moving_space_);
646 }
647 // Create other spaces based on whether or not we have a moving GC.
648 if (foreground_collector_type_ == kCollectorTypeCC) {
649 CHECK(separate_non_moving_space);
650 // Reserve twice the capacity, to allow evacuating every region for explicit GCs.
651 MemMap region_space_mem_map =
652 space::RegionSpace::CreateMemMap(kRegionSpaceName, capacity_ * 2, request_begin);
653 CHECK(region_space_mem_map.IsValid()) << "No region space mem map";
654 region_space_ = space::RegionSpace::Create(
655 kRegionSpaceName, std::move(region_space_mem_map), use_generational_cc_);
656 AddSpace(region_space_);
657 } else if (IsMovingGc(foreground_collector_type_)) {
658 // Create bump pointer spaces.
659 // We only to create the bump pointer if the foreground collector is a compacting GC.
660 // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
661 bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
662 std::move(main_mem_map_1));
663 CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
664 AddSpace(bump_pointer_space_);
665 // For Concurrent Mark-compact GC we don't need the temp space to be in
666 // lower 4GB. So its temp space will be created by the GC itself.
667 if (foreground_collector_type_ != kCollectorTypeCMC) {
668 temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
669 std::move(main_mem_map_2));
670 CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
671 AddSpace(temp_space_);
672 }
673 CHECK(separate_non_moving_space);
674 } else {
675 CreateMainMallocSpace(std::move(main_mem_map_1), initial_size, growth_limit_, capacity_);
676 CHECK(main_space_ != nullptr);
677 AddSpace(main_space_);
678 if (!separate_non_moving_space) {
679 non_moving_space_ = main_space_;
680 CHECK(!non_moving_space_->CanMoveObjects());
681 }
682 if (main_mem_map_2.IsValid()) {
683 const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
684 main_space_backup_.reset(CreateMallocSpaceFromMemMap(std::move(main_mem_map_2),
685 initial_size,
686 growth_limit_,
687 capacity_,
688 name,
689 /* can_move_objects= */ true));
690 CHECK(main_space_backup_.get() != nullptr);
691 // Add the space so its accounted for in the heap_begin and heap_end.
692 AddSpace(main_space_backup_.get());
693 }
694 }
695 CHECK(non_moving_space_ != nullptr);
696 CHECK(!non_moving_space_->CanMoveObjects());
697 // Allocate the large object space.
698 if (large_object_space_type == space::LargeObjectSpaceType::kFreeList) {
699 large_object_space_ = space::FreeListSpace::Create("free list large object space", capacity_);
700 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
701 } else if (large_object_space_type == space::LargeObjectSpaceType::kMap) {
702 large_object_space_ = space::LargeObjectMapSpace::Create("mem map large object space");
703 CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
704 } else {
705 // Disable the large object space by making the cutoff excessively large.
706 large_object_threshold_ = std::numeric_limits<size_t>::max();
707 large_object_space_ = nullptr;
708 }
709 if (large_object_space_ != nullptr) {
710 AddSpace(large_object_space_);
711 }
712 // Compute heap capacity. Continuous spaces are sorted in order of Begin().
713 CHECK(!continuous_spaces_.empty());
714 // Relies on the spaces being sorted.
715 uint8_t* heap_begin = continuous_spaces_.front()->Begin();
716 uint8_t* heap_end = continuous_spaces_.back()->Limit();
717 size_t heap_capacity = heap_end - heap_begin;
718 // Remove the main backup space since it slows down the GC to have unused extra spaces.
719 // TODO: Avoid needing to do this.
720 if (main_space_backup_.get() != nullptr) {
721 RemoveSpace(main_space_backup_.get());
722 }
723 // Allocate the card table.
724 // We currently don't support dynamically resizing the card table.
725 // Since we don't know where in the low_4gb the app image will be located, make the card table
726 // cover the whole low_4gb. TODO: Extend the card table in AddSpace.
727 UNUSED(heap_capacity);
728 // Start at 4 KB, we can be sure there are no spaces mapped this low since the address range is
729 // reserved by the kernel.
730 static constexpr size_t kMinHeapAddress = 4 * KB;
731 card_table_.reset(accounting::CardTable::Create(reinterpret_cast<uint8_t*>(kMinHeapAddress),
732 4 * GB - kMinHeapAddress));
733 CHECK(card_table_.get() != nullptr) << "Failed to create card table";
734 if (foreground_collector_type_ == kCollectorTypeCC && kUseTableLookupReadBarrier) {
735 rb_table_.reset(new accounting::ReadBarrierTable());
736 DCHECK(rb_table_->IsAllCleared());
737 }
738 if (HasBootImageSpace()) {
739 // Don't add the image mod union table if we are running without an image, this can crash if
740 // we use the CardCache implementation.
741 for (space::ImageSpace* image_space : GetBootImageSpaces()) {
742 accounting::ModUnionTable* mod_union_table = new accounting::ModUnionTableToZygoteAllocspace(
743 "Image mod-union table", this, image_space);
744 CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
745 AddModUnionTable(mod_union_table);
746 }
747 }
748 if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
749 accounting::RememberedSet* non_moving_space_rem_set =
750 new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
751 CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
752 AddRememberedSet(non_moving_space_rem_set);
753 }
754 // TODO: Count objects in the image space here?
755 num_bytes_allocated_.store(0, std::memory_order_relaxed);
756 mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
757 kDefaultMarkStackSize));
758 const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
759 allocation_stack_.reset(accounting::ObjectStack::Create(
760 "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
761 live_stack_.reset(accounting::ObjectStack::Create(
762 "live stack", max_allocation_stack_size_, alloc_stack_capacity));
763 // It's still too early to take a lock because there are no threads yet, but we can create locks
764 // now. We don't create it earlier to make it clear that you can't use locks during heap
765 // initialization.
766 gc_complete_lock_ = new Mutex("GC complete lock");
767 gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
768 *gc_complete_lock_));
769
770 thread_flip_lock_ = new Mutex("GC thread flip lock");
771 thread_flip_cond_.reset(new ConditionVariable("GC thread flip condition variable",
772 *thread_flip_lock_));
773 task_processor_.reset(new TaskProcessor());
774 reference_processor_.reset(new ReferenceProcessor());
775 pending_task_lock_ = new Mutex("Pending task lock");
776 if (ignore_target_footprint_) {
777 SetIdealFootprint(std::numeric_limits<size_t>::max());
778 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
779 }
780 CHECK_NE(target_footprint_.load(std::memory_order_relaxed), 0U);
781 // Create our garbage collectors.
782 for (size_t i = 0; i < 2; ++i) {
783 const bool concurrent = i != 0;
784 if ((MayUseCollector(kCollectorTypeCMS) && concurrent) ||
785 (MayUseCollector(kCollectorTypeMS) && !concurrent)) {
786 garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
787 garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
788 garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
789 }
790 }
791 if (kMovingCollector) {
792 if (MayUseCollector(kCollectorTypeSS) ||
793 MayUseCollector(kCollectorTypeHomogeneousSpaceCompact) ||
794 use_homogeneous_space_compaction_for_oom_) {
795 semi_space_collector_ = new collector::SemiSpace(this);
796 garbage_collectors_.push_back(semi_space_collector_);
797 }
798 if (MayUseCollector(kCollectorTypeCMC)) {
799 mark_compact_ = new collector::MarkCompact(this);
800 garbage_collectors_.push_back(mark_compact_);
801 }
802 if (MayUseCollector(kCollectorTypeCC)) {
803 concurrent_copying_collector_ = new collector::ConcurrentCopying(this,
804 /*young_gen=*/false,
805 use_generational_cc_,
806 "",
807 measure_gc_performance);
808 if (use_generational_cc_) {
809 young_concurrent_copying_collector_ = new collector::ConcurrentCopying(
810 this,
811 /*young_gen=*/true,
812 use_generational_cc_,
813 "young",
814 measure_gc_performance);
815 }
816 active_concurrent_copying_collector_.store(concurrent_copying_collector_,
817 std::memory_order_relaxed);
818 DCHECK(region_space_ != nullptr);
819 concurrent_copying_collector_->SetRegionSpace(region_space_);
820 if (use_generational_cc_) {
821 young_concurrent_copying_collector_->SetRegionSpace(region_space_);
822 // At this point, non-moving space should be created.
823 DCHECK(non_moving_space_ != nullptr);
824 concurrent_copying_collector_->CreateInterRegionRefBitmaps();
825 }
826 garbage_collectors_.push_back(concurrent_copying_collector_);
827 if (use_generational_cc_) {
828 garbage_collectors_.push_back(young_concurrent_copying_collector_);
829 }
830 }
831 }
832 if (!GetBootImageSpaces().empty() && non_moving_space_ != nullptr &&
833 (is_zygote || separate_non_moving_space)) {
834 // Check that there's no gap between the image space and the non moving space so that the
835 // immune region won't break (eg. due to a large object allocated in the gap). This is only
836 // required when we're the zygote.
837 // Space with smallest Begin().
838 space::ImageSpace* first_space = nullptr;
839 for (space::ImageSpace* space : boot_image_spaces_) {
840 if (first_space == nullptr || space->Begin() < first_space->Begin()) {
841 first_space = space;
842 }
843 }
844 bool no_gap = MemMap::CheckNoGaps(*first_space->GetMemMap(), *non_moving_space_->GetMemMap());
845 if (!no_gap) {
846 PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
847 MemMap::DumpMaps(LOG_STREAM(ERROR), /* terse= */ true);
848 LOG(FATAL) << "There's a gap between the image space and the non-moving space";
849 }
850 }
851 // Perfetto Java Heap Profiler Support.
852 if (runtime->IsPerfettoJavaHeapStackProfEnabled()) {
853 // Perfetto Plugin is loaded and enabled, initialize the Java Heap Profiler.
854 InitPerfettoJavaHeapProf();
855 } else {
856 // Disable the Java Heap Profiler.
857 GetHeapSampler().DisableHeapSampler();
858 }
859
860 instrumentation::Instrumentation* const instrumentation = runtime->GetInstrumentation();
861 if (gc_stress_mode_) {
862 backtrace_lock_ = new Mutex("GC complete lock");
863 }
864 if (is_running_on_memory_tool_ || gc_stress_mode_) {
865 instrumentation->InstrumentQuickAllocEntryPoints();
866 }
867 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
868 LOG(INFO) << "Heap() exiting";
869 }
870 }
871
MapAnonymousPreferredAddress(const char * name,uint8_t * request_begin,size_t capacity,std::string * out_error_str)872 MemMap Heap::MapAnonymousPreferredAddress(const char* name,
873 uint8_t* request_begin,
874 size_t capacity,
875 std::string* out_error_str) {
876 while (true) {
877 MemMap map = MemMap::MapAnonymous(name,
878 request_begin,
879 capacity,
880 PROT_READ | PROT_WRITE,
881 /*low_4gb=*/ true,
882 /*reuse=*/ false,
883 /*reservation=*/ nullptr,
884 out_error_str);
885 if (map.IsValid() || request_begin == nullptr) {
886 return map;
887 }
888 // Retry a second time with no specified request begin.
889 request_begin = nullptr;
890 }
891 }
892
MayUseCollector(CollectorType type) const893 bool Heap::MayUseCollector(CollectorType type) const {
894 return foreground_collector_type_ == type || background_collector_type_ == type;
895 }
896
CreateMallocSpaceFromMemMap(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity,const char * name,bool can_move_objects)897 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap&& mem_map,
898 size_t initial_size,
899 size_t growth_limit,
900 size_t capacity,
901 const char* name,
902 bool can_move_objects) {
903 space::MallocSpace* malloc_space = nullptr;
904 if (kUseRosAlloc) {
905 // Create rosalloc space.
906 malloc_space = space::RosAllocSpace::CreateFromMemMap(std::move(mem_map),
907 name,
908 GetDefaultStartingSize(),
909 initial_size,
910 growth_limit,
911 capacity,
912 low_memory_mode_,
913 can_move_objects);
914 } else {
915 malloc_space = space::DlMallocSpace::CreateFromMemMap(std::move(mem_map),
916 name,
917 GetDefaultStartingSize(),
918 initial_size,
919 growth_limit,
920 capacity,
921 can_move_objects);
922 }
923 if (collector::SemiSpace::kUseRememberedSet) {
924 accounting::RememberedSet* rem_set =
925 new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
926 CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
927 AddRememberedSet(rem_set);
928 }
929 CHECK(malloc_space != nullptr) << "Failed to create " << name;
930 malloc_space->SetFootprintLimit(malloc_space->Capacity());
931 return malloc_space;
932 }
933
CreateMainMallocSpace(MemMap && mem_map,size_t initial_size,size_t growth_limit,size_t capacity)934 void Heap::CreateMainMallocSpace(MemMap&& mem_map,
935 size_t initial_size,
936 size_t growth_limit,
937 size_t capacity) {
938 // Is background compaction is enabled?
939 bool can_move_objects = IsMovingGc(background_collector_type_) !=
940 IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
941 // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
942 // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
943 // from the main space to the zygote space. If background compaction is enabled, always pass in
944 // that we can move objets.
945 if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
946 // After the zygote we want this to be false if we don't have background compaction enabled so
947 // that getting primitive array elements is faster.
948 can_move_objects = !HasZygoteSpace();
949 }
950 if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
951 RemoveRememberedSet(main_space_);
952 }
953 const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
954 main_space_ = CreateMallocSpaceFromMemMap(std::move(mem_map),
955 initial_size,
956 growth_limit,
957 capacity, name,
958 can_move_objects);
959 SetSpaceAsDefault(main_space_);
960 VLOG(heap) << "Created main space " << main_space_;
961 }
962
ChangeAllocator(AllocatorType allocator)963 void Heap::ChangeAllocator(AllocatorType allocator) {
964 if (current_allocator_ != allocator) {
965 // These two allocators are only used internally and don't have any entrypoints.
966 CHECK_NE(allocator, kAllocatorTypeLOS);
967 CHECK_NE(allocator, kAllocatorTypeNonMoving);
968 current_allocator_ = allocator;
969 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
970 SetQuickAllocEntryPointsAllocator(current_allocator_);
971 Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
972 }
973 }
974
IsCompilingBoot() const975 bool Heap::IsCompilingBoot() const {
976 if (!Runtime::Current()->IsAotCompiler()) {
977 return false;
978 }
979 ScopedObjectAccess soa(Thread::Current());
980 for (const auto& space : continuous_spaces_) {
981 if (space->IsImageSpace() || space->IsZygoteSpace()) {
982 return false;
983 }
984 }
985 return true;
986 }
987
IncrementDisableMovingGC(Thread * self)988 void Heap::IncrementDisableMovingGC(Thread* self) {
989 // Need to do this holding the lock to prevent races where the GC is about to run / running when
990 // we attempt to disable it.
991 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete);
992 MutexLock mu(self, *gc_complete_lock_);
993 ++disable_moving_gc_count_;
994 if (IsMovingGc(collector_type_running_)) {
995 WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
996 }
997 }
998
DecrementDisableMovingGC(Thread * self)999 void Heap::DecrementDisableMovingGC(Thread* self) {
1000 MutexLock mu(self, *gc_complete_lock_);
1001 CHECK_GT(disable_moving_gc_count_, 0U);
1002 --disable_moving_gc_count_;
1003 }
1004
IncrementDisableThreadFlip(Thread * self)1005 void Heap::IncrementDisableThreadFlip(Thread* self) {
1006 // Supposed to be called by mutators. If thread_flip_running_ is true, block. Otherwise, go ahead.
1007 bool is_nested = self->GetDisableThreadFlipCount() > 0;
1008 self->IncrementDisableThreadFlipCount();
1009 if (is_nested) {
1010 // If this is a nested JNI critical section enter, we don't need to wait or increment the global
1011 // counter. The global counter is incremented only once for a thread for the outermost enter.
1012 return;
1013 }
1014 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip);
1015 MutexLock mu(self, *thread_flip_lock_);
1016 thread_flip_cond_->CheckSafeToWait(self);
1017 bool has_waited = false;
1018 uint64_t wait_start = 0;
1019 if (thread_flip_running_) {
1020 wait_start = NanoTime();
1021 ScopedTrace trace("IncrementDisableThreadFlip");
1022 while (thread_flip_running_) {
1023 has_waited = true;
1024 thread_flip_cond_->Wait(self);
1025 }
1026 }
1027 ++disable_thread_flip_count_;
1028 if (has_waited) {
1029 uint64_t wait_time = NanoTime() - wait_start;
1030 total_wait_time_ += wait_time;
1031 if (wait_time > long_pause_log_threshold_) {
1032 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
1033 }
1034 }
1035 }
1036
EnsureObjectUserfaulted(ObjPtr<mirror::Object> obj)1037 void Heap::EnsureObjectUserfaulted(ObjPtr<mirror::Object> obj) {
1038 if (gUseUserfaultfd) {
1039 // Use volatile to ensure that compiler loads from memory to trigger userfaults, if required.
1040 const uint8_t* start = reinterpret_cast<uint8_t*>(obj.Ptr());
1041 const uint8_t* end = AlignUp(start + obj->SizeOf(), gPageSize);
1042 // The first page is already touched by SizeOf().
1043 start += gPageSize;
1044 while (start < end) {
1045 ForceRead(start);
1046 start += gPageSize;
1047 }
1048 }
1049 }
1050
DecrementDisableThreadFlip(Thread * self)1051 void Heap::DecrementDisableThreadFlip(Thread* self) {
1052 // Supposed to be called by mutators. Decrement disable_thread_flip_count_ and potentially wake up
1053 // the GC waiting before doing a thread flip.
1054 self->DecrementDisableThreadFlipCount();
1055 bool is_outermost = self->GetDisableThreadFlipCount() == 0;
1056 if (!is_outermost) {
1057 // If this is not an outermost JNI critical exit, we don't need to decrement the global counter.
1058 // The global counter is decremented only once for a thread for the outermost exit.
1059 return;
1060 }
1061 MutexLock mu(self, *thread_flip_lock_);
1062 CHECK_GT(disable_thread_flip_count_, 0U);
1063 --disable_thread_flip_count_;
1064 if (disable_thread_flip_count_ == 0) {
1065 // Potentially notify the GC thread blocking to begin a thread flip.
1066 thread_flip_cond_->Broadcast(self);
1067 }
1068 }
1069
ThreadFlipBegin(Thread * self)1070 void Heap::ThreadFlipBegin(Thread* self) {
1071 // Supposed to be called by GC. Set thread_flip_running_ to be true. If disable_thread_flip_count_
1072 // > 0, block. Otherwise, go ahead.
1073 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcThreadFlip);
1074 MutexLock mu(self, *thread_flip_lock_);
1075 thread_flip_cond_->CheckSafeToWait(self);
1076 bool has_waited = false;
1077 uint64_t wait_start = NanoTime();
1078 CHECK(!thread_flip_running_);
1079 // Set this to true before waiting so that frequent JNI critical enter/exits won't starve
1080 // GC. This like a writer preference of a reader-writer lock.
1081 thread_flip_running_ = true;
1082 while (disable_thread_flip_count_ > 0) {
1083 has_waited = true;
1084 thread_flip_cond_->Wait(self);
1085 }
1086 if (has_waited) {
1087 uint64_t wait_time = NanoTime() - wait_start;
1088 total_wait_time_ += wait_time;
1089 if (wait_time > long_pause_log_threshold_) {
1090 LOG(INFO) << __FUNCTION__ << " blocked for " << PrettyDuration(wait_time);
1091 }
1092 }
1093 }
1094
ThreadFlipEnd(Thread * self)1095 void Heap::ThreadFlipEnd(Thread* self) {
1096 // Supposed to be called by GC. Set thread_flip_running_ to false and potentially wake up mutators
1097 // waiting before doing a JNI critical.
1098 MutexLock mu(self, *thread_flip_lock_);
1099 CHECK(thread_flip_running_);
1100 thread_flip_running_ = false;
1101 // Potentially notify mutator threads blocking to enter a JNI critical section.
1102 thread_flip_cond_->Broadcast(self);
1103 }
1104
GrowHeapOnJankPerceptibleSwitch()1105 void Heap::GrowHeapOnJankPerceptibleSwitch() {
1106 MutexLock mu(Thread::Current(), process_state_update_lock_);
1107 size_t orig_target_footprint = target_footprint_.load(std::memory_order_relaxed);
1108 if (orig_target_footprint < min_foreground_target_footprint_) {
1109 target_footprint_.compare_exchange_strong(orig_target_footprint,
1110 min_foreground_target_footprint_,
1111 std::memory_order_relaxed);
1112 }
1113 if (IsGcConcurrent() && concurrent_start_bytes_ < min_foreground_concurrent_start_bytes_) {
1114 concurrent_start_bytes_ = min_foreground_concurrent_start_bytes_;
1115 }
1116 }
1117
UpdateProcessState(ProcessState old_process_state,ProcessState new_process_state)1118 void Heap::UpdateProcessState(ProcessState old_process_state, ProcessState new_process_state) {
1119 if (old_process_state != new_process_state) {
1120 const bool jank_perceptible = new_process_state == kProcessStateJankPerceptible;
1121 if (jank_perceptible) {
1122 // Transition back to foreground right away to prevent jank.
1123 RequestCollectorTransition(foreground_collector_type_, 0);
1124 GrowHeapOnJankPerceptibleSwitch();
1125 } else {
1126 // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
1127 // special handling which does a homogenous space compaction once but then doesn't transition
1128 // the collector. Similarly, we invoke a full compaction for kCollectorTypeCC but don't
1129 // transition the collector.
1130 RequestCollectorTransition(background_collector_type_, 0);
1131 }
1132 }
1133 }
1134
CreateThreadPool(size_t num_threads)1135 void Heap::CreateThreadPool(size_t num_threads) {
1136 if (num_threads == 0) {
1137 num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
1138 }
1139 if (num_threads != 0) {
1140 thread_pool_.reset(ThreadPool::Create("Heap thread pool", num_threads));
1141 }
1142 }
1143
WaitForWorkersToBeCreated()1144 void Heap::WaitForWorkersToBeCreated() {
1145 DCHECK(!Runtime::Current()->IsShuttingDown(Thread::Current()))
1146 << "Cannot create new threads during runtime shutdown";
1147 if (thread_pool_ != nullptr) {
1148 thread_pool_->WaitForWorkersToBeCreated();
1149 }
1150 }
1151
MarkAllocStackAsLive(accounting::ObjectStack * stack)1152 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
1153 space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
1154 space::ContinuousSpace* space2 = non_moving_space_;
1155 // TODO: Generalize this to n bitmaps?
1156 CHECK(space1 != nullptr);
1157 CHECK(space2 != nullptr);
1158 MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
1159 (large_object_space_ != nullptr ? large_object_space_->GetLiveBitmap() : nullptr),
1160 stack);
1161 }
1162
DeleteThreadPool()1163 void Heap::DeleteThreadPool() {
1164 thread_pool_.reset(nullptr);
1165 }
1166
AddSpace(space::Space * space)1167 void Heap::AddSpace(space::Space* space) {
1168 CHECK(space != nullptr);
1169 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1170 if (space->IsContinuousSpace()) {
1171 DCHECK(!space->IsDiscontinuousSpace());
1172 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1173 // Continuous spaces don't necessarily have bitmaps.
1174 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1175 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1176 // The region space bitmap is not added since VisitObjects visits the region space objects with
1177 // special handling.
1178 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1179 CHECK(mark_bitmap != nullptr);
1180 live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
1181 mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
1182 }
1183 continuous_spaces_.push_back(continuous_space);
1184 // Ensure that spaces remain sorted in increasing order of start address.
1185 std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
1186 [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
1187 return a->Begin() < b->Begin();
1188 });
1189 } else {
1190 CHECK(space->IsDiscontinuousSpace());
1191 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1192 live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1193 mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1194 discontinuous_spaces_.push_back(discontinuous_space);
1195 }
1196 if (space->IsAllocSpace()) {
1197 alloc_spaces_.push_back(space->AsAllocSpace());
1198 }
1199 }
1200
SetSpaceAsDefault(space::ContinuousSpace * continuous_space)1201 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
1202 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1203 if (continuous_space->IsDlMallocSpace()) {
1204 dlmalloc_space_ = continuous_space->AsDlMallocSpace();
1205 } else if (continuous_space->IsRosAllocSpace()) {
1206 rosalloc_space_ = continuous_space->AsRosAllocSpace();
1207 }
1208 }
1209
RemoveSpace(space::Space * space)1210 void Heap::RemoveSpace(space::Space* space) {
1211 DCHECK(space != nullptr);
1212 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1213 if (space->IsContinuousSpace()) {
1214 DCHECK(!space->IsDiscontinuousSpace());
1215 space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
1216 // Continuous spaces don't necessarily have bitmaps.
1217 accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
1218 accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
1219 if (live_bitmap != nullptr && !space->IsRegionSpace()) {
1220 DCHECK(mark_bitmap != nullptr);
1221 live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
1222 mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
1223 }
1224 auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
1225 DCHECK(it != continuous_spaces_.end());
1226 continuous_spaces_.erase(it);
1227 } else {
1228 DCHECK(space->IsDiscontinuousSpace());
1229 space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
1230 live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
1231 mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
1232 auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
1233 discontinuous_space);
1234 DCHECK(it != discontinuous_spaces_.end());
1235 discontinuous_spaces_.erase(it);
1236 }
1237 if (space->IsAllocSpace()) {
1238 auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
1239 DCHECK(it != alloc_spaces_.end());
1240 alloc_spaces_.erase(it);
1241 }
1242 }
1243
CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,uint64_t current_process_cpu_time) const1244 double Heap::CalculateGcWeightedAllocatedBytes(uint64_t gc_last_process_cpu_time_ns,
1245 uint64_t current_process_cpu_time) const {
1246 uint64_t bytes_allocated = GetBytesAllocated();
1247 double weight = current_process_cpu_time - gc_last_process_cpu_time_ns;
1248 return weight * bytes_allocated;
1249 }
1250
CalculatePreGcWeightedAllocatedBytes()1251 void Heap::CalculatePreGcWeightedAllocatedBytes() {
1252 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1253 pre_gc_weighted_allocated_bytes_ +=
1254 CalculateGcWeightedAllocatedBytes(pre_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1255 pre_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1256 }
1257
CalculatePostGcWeightedAllocatedBytes()1258 void Heap::CalculatePostGcWeightedAllocatedBytes() {
1259 uint64_t current_process_cpu_time = ProcessCpuNanoTime();
1260 post_gc_weighted_allocated_bytes_ +=
1261 CalculateGcWeightedAllocatedBytes(post_gc_last_process_cpu_time_ns_, current_process_cpu_time);
1262 post_gc_last_process_cpu_time_ns_ = current_process_cpu_time;
1263 }
1264
GetTotalGcCpuTime()1265 uint64_t Heap::GetTotalGcCpuTime() {
1266 uint64_t sum = 0;
1267 for (auto* collector : garbage_collectors_) {
1268 sum += collector->GetTotalCpuTime();
1269 }
1270 return sum;
1271 }
1272
DumpGcPerformanceInfo(std::ostream & os)1273 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
1274 // Dump cumulative timings.
1275 os << "Dumping cumulative Gc timings\n";
1276 uint64_t total_duration = 0;
1277 // Dump cumulative loggers for each GC type.
1278 uint64_t total_paused_time = 0;
1279 for (auto* collector : garbage_collectors_) {
1280 total_duration += collector->GetCumulativeTimings().GetTotalNs();
1281 total_paused_time += collector->GetTotalPausedTimeNs();
1282 collector->DumpPerformanceInfo(os);
1283 }
1284 if (total_duration != 0) {
1285 const double total_seconds = total_duration / 1.0e9;
1286 const double total_cpu_seconds = GetTotalGcCpuTime() / 1.0e9;
1287 os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
1288 os << "Mean GC size throughput: "
1289 << PrettySize(GetBytesFreedEver() / total_seconds) << "/s"
1290 << " per cpu-time: "
1291 << PrettySize(GetBytesFreedEver() / total_cpu_seconds) << "/s\n";
1292 }
1293 os << "Total bytes allocated " << PrettySize(GetBytesAllocatedEver()) << "\n";
1294 os << "Total bytes freed " << PrettySize(GetBytesFreedEver()) << "\n";
1295 os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
1296 os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
1297 os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
1298 os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
1299 os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
1300 if (HasZygoteSpace()) {
1301 os << "Zygote space size " << PrettySize(zygote_space_->Size()) << "\n";
1302 }
1303 os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
1304 os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
1305 os << "Total GC count: " << GetGcCount() << "\n";
1306 os << "Total GC time: " << PrettyDuration(GetGcTime()) << "\n";
1307 os << "Total blocking GC count: " << GetBlockingGcCount() << "\n";
1308 os << "Total blocking GC time: " << PrettyDuration(GetBlockingGcTime()) << "\n";
1309 os << "Total pre-OOME GC count: " << GetPreOomeGcCount() << "\n";
1310 {
1311 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1312 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1313 os << "Histogram of GC count per " << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1314 gc_count_rate_histogram_.DumpBins(os);
1315 os << "\n";
1316 }
1317 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1318 os << "Histogram of blocking GC count per "
1319 << NsToMs(kGcCountRateHistogramWindowDuration) << " ms: ";
1320 blocking_gc_count_rate_histogram_.DumpBins(os);
1321 os << "\n";
1322 }
1323 }
1324
1325 if (kDumpRosAllocStatsOnSigQuit && rosalloc_space_ != nullptr) {
1326 rosalloc_space_->DumpStats(os);
1327 }
1328
1329 os << "Native bytes total: " << GetNativeBytes()
1330 << " registered: " << native_bytes_registered_.load(std::memory_order_relaxed) << "\n";
1331
1332 os << "Total native bytes at last GC: "
1333 << old_native_bytes_allocated_.load(std::memory_order_relaxed) << "\n";
1334
1335 BaseMutex::DumpAll(os);
1336 }
1337
ResetGcPerformanceInfo()1338 void Heap::ResetGcPerformanceInfo() {
1339 for (auto* collector : garbage_collectors_) {
1340 collector->ResetMeasurements();
1341 }
1342
1343 process_cpu_start_time_ns_ = ProcessCpuNanoTime();
1344
1345 pre_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1346 pre_gc_weighted_allocated_bytes_ = 0u;
1347
1348 post_gc_last_process_cpu_time_ns_ = process_cpu_start_time_ns_;
1349 post_gc_weighted_allocated_bytes_ = 0u;
1350
1351 total_bytes_freed_ever_.store(0);
1352 total_objects_freed_ever_.store(0);
1353 total_wait_time_ = 0;
1354 blocking_gc_count_ = 0;
1355 blocking_gc_time_ = 0;
1356 pre_oome_gc_count_.store(0, std::memory_order_relaxed);
1357 gc_count_last_window_ = 0;
1358 blocking_gc_count_last_window_ = 0;
1359 last_update_time_gc_count_rate_histograms_ = // Round down by the window duration.
1360 (NanoTime() / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
1361 {
1362 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1363 gc_count_rate_histogram_.Reset();
1364 blocking_gc_count_rate_histogram_.Reset();
1365 }
1366 }
1367
GetGcCount() const1368 uint64_t Heap::GetGcCount() const {
1369 uint64_t gc_count = 0U;
1370 for (auto* collector : garbage_collectors_) {
1371 gc_count += collector->GetCumulativeTimings().GetIterations();
1372 }
1373 return gc_count;
1374 }
1375
GetGcTime() const1376 uint64_t Heap::GetGcTime() const {
1377 uint64_t gc_time = 0U;
1378 for (auto* collector : garbage_collectors_) {
1379 gc_time += collector->GetCumulativeTimings().GetTotalNs();
1380 }
1381 return gc_time;
1382 }
1383
GetBlockingGcCount() const1384 uint64_t Heap::GetBlockingGcCount() const {
1385 return blocking_gc_count_;
1386 }
1387
GetBlockingGcTime() const1388 uint64_t Heap::GetBlockingGcTime() const {
1389 return blocking_gc_time_;
1390 }
1391
DumpGcCountRateHistogram(std::ostream & os) const1392 void Heap::DumpGcCountRateHistogram(std::ostream& os) const {
1393 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1394 if (gc_count_rate_histogram_.SampleSize() > 0U) {
1395 gc_count_rate_histogram_.DumpBins(os);
1396 }
1397 }
1398
DumpBlockingGcCountRateHistogram(std::ostream & os) const1399 void Heap::DumpBlockingGcCountRateHistogram(std::ostream& os) const {
1400 MutexLock mu(Thread::Current(), *gc_complete_lock_);
1401 if (blocking_gc_count_rate_histogram_.SampleSize() > 0U) {
1402 blocking_gc_count_rate_histogram_.DumpBins(os);
1403 }
1404 }
1405
GetPreOomeGcCount() const1406 uint64_t Heap::GetPreOomeGcCount() const {
1407 return pre_oome_gc_count_.load(std::memory_order_relaxed);
1408 }
1409
1410 ALWAYS_INLINE
GetAndOverwriteAllocationListener(Atomic<AllocationListener * > * storage,AllocationListener * new_value)1411 static inline AllocationListener* GetAndOverwriteAllocationListener(
1412 Atomic<AllocationListener*>* storage, AllocationListener* new_value) {
1413 return storage->exchange(new_value);
1414 }
1415
~Heap()1416 Heap::~Heap() {
1417 VLOG(heap) << "Starting ~Heap()";
1418 STLDeleteElements(&garbage_collectors_);
1419 // If we don't reset then the mark stack complains in its destructor.
1420 allocation_stack_->Reset();
1421 allocation_records_.reset();
1422 live_stack_->Reset();
1423 STLDeleteValues(&mod_union_tables_);
1424 STLDeleteValues(&remembered_sets_);
1425 STLDeleteElements(&continuous_spaces_);
1426 STLDeleteElements(&discontinuous_spaces_);
1427 delete gc_complete_lock_;
1428 delete thread_flip_lock_;
1429 delete pending_task_lock_;
1430 delete backtrace_lock_;
1431 uint64_t unique_count = unique_backtrace_count_.load();
1432 uint64_t seen_count = seen_backtrace_count_.load();
1433 if (unique_count != 0 || seen_count != 0) {
1434 LOG(INFO) << "gc stress unique=" << unique_count << " total=" << (unique_count + seen_count);
1435 }
1436 VLOG(heap) << "Finished ~Heap()";
1437 }
1438
1439
FindContinuousSpaceFromAddress(const mirror::Object * addr) const1440 space::ContinuousSpace* Heap::FindContinuousSpaceFromAddress(const mirror::Object* addr) const {
1441 for (const auto& space : continuous_spaces_) {
1442 if (space->Contains(addr)) {
1443 return space;
1444 }
1445 }
1446 return nullptr;
1447 }
1448
FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1449 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1450 bool fail_ok) const {
1451 space::ContinuousSpace* space = FindContinuousSpaceFromAddress(obj.Ptr());
1452 if (space != nullptr) {
1453 return space;
1454 }
1455 if (!fail_ok) {
1456 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1457 }
1458 return nullptr;
1459 }
1460
FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1461 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(ObjPtr<mirror::Object> obj,
1462 bool fail_ok) const {
1463 for (const auto& space : discontinuous_spaces_) {
1464 if (space->Contains(obj.Ptr())) {
1465 return space;
1466 }
1467 }
1468 if (!fail_ok) {
1469 LOG(FATAL) << "object " << obj << " not inside any spaces!";
1470 }
1471 return nullptr;
1472 }
1473
FindSpaceFromObject(ObjPtr<mirror::Object> obj,bool fail_ok) const1474 space::Space* Heap::FindSpaceFromObject(ObjPtr<mirror::Object> obj, bool fail_ok) const {
1475 space::Space* result = FindContinuousSpaceFromObject(obj, true);
1476 if (result != nullptr) {
1477 return result;
1478 }
1479 return FindDiscontinuousSpaceFromObject(obj, fail_ok);
1480 }
1481
FindSpaceFromAddress(const void * addr) const1482 space::Space* Heap::FindSpaceFromAddress(const void* addr) const {
1483 for (const auto& space : continuous_spaces_) {
1484 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1485 return space;
1486 }
1487 }
1488 for (const auto& space : discontinuous_spaces_) {
1489 if (space->Contains(reinterpret_cast<const mirror::Object*>(addr))) {
1490 return space;
1491 }
1492 }
1493 return nullptr;
1494 }
1495
DumpSpaceNameFromAddress(const void * addr) const1496 std::string Heap::DumpSpaceNameFromAddress(const void* addr) const {
1497 space::Space* space = FindSpaceFromAddress(addr);
1498 return (space != nullptr) ? space->GetName() : "no space";
1499 }
1500
ThrowOutOfMemoryError(Thread * self,size_t byte_count,AllocatorType allocator_type)1501 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
1502 // If we're in a stack overflow, do not create a new exception. It would require running the
1503 // constructor, which will of course still be in a stack overflow.
1504 if (self->IsHandlingStackOverflow()) {
1505 self->SetException(
1506 Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow());
1507 return;
1508 }
1509 // Allow plugins to intercept out of memory errors.
1510 Runtime::Current()->OutOfMemoryErrorHook();
1511
1512 std::ostringstream oss;
1513 size_t total_bytes_free = GetFreeMemory();
1514 oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
1515 << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM,"
1516 << " target footprint " << target_footprint_.load(std::memory_order_relaxed)
1517 << ", growth limit "
1518 << growth_limit_;
1519 // If the allocation failed due to fragmentation, print out the largest continuous allocation.
1520 if (total_bytes_free >= byte_count) {
1521 space::AllocSpace* space = nullptr;
1522 if (allocator_type == kAllocatorTypeNonMoving) {
1523 space = non_moving_space_;
1524 } else if (allocator_type == kAllocatorTypeRosAlloc ||
1525 allocator_type == kAllocatorTypeDlMalloc) {
1526 space = main_space_;
1527 } else if (allocator_type == kAllocatorTypeBumpPointer ||
1528 allocator_type == kAllocatorTypeTLAB) {
1529 space = bump_pointer_space_;
1530 } else if (allocator_type == kAllocatorTypeRegion ||
1531 allocator_type == kAllocatorTypeRegionTLAB) {
1532 space = region_space_;
1533 }
1534
1535 // There is no fragmentation info to log for large-object space.
1536 if (allocator_type != kAllocatorTypeLOS) {
1537 CHECK(space != nullptr) << "allocator_type:" << allocator_type
1538 << " byte_count:" << byte_count
1539 << " total_bytes_free:" << total_bytes_free;
1540 // LogFragmentationAllocFailure returns true if byte_count is greater than
1541 // the largest free contiguous chunk in the space. Return value false
1542 // means that we are throwing OOME because the amount of free heap after
1543 // GC is less than kMinFreeHeapAfterGcForAlloc in proportion of the heap-size.
1544 // Log an appropriate message in that case.
1545 if (!space->LogFragmentationAllocFailure(oss, byte_count)) {
1546 oss << "; giving up on allocation because <"
1547 << kMinFreeHeapAfterGcForAlloc * 100
1548 << "% of heap free after GC.";
1549 }
1550 }
1551 }
1552 self->ThrowOutOfMemoryError(oss.str().c_str());
1553 }
1554
DoPendingCollectorTransition()1555 void Heap::DoPendingCollectorTransition() {
1556 CollectorType desired_collector_type = desired_collector_type_;
1557
1558 if (collector_type_ == kCollectorTypeCC || collector_type_ == kCollectorTypeCMC) {
1559 // App's allocations (since last GC) more than the threshold then do TransitionGC
1560 // when the app was in background. If not then don't do TransitionGC.
1561 // num_bytes_allocated_since_gc should always be positive even if initially
1562 // num_bytes_alive_after_gc_ is coming from Zygote. This gives positive or zero value.
1563 size_t num_bytes_allocated_since_gc =
1564 UnsignedDifference(GetBytesAllocated(), num_bytes_alive_after_gc_);
1565 if (num_bytes_allocated_since_gc <
1566 (UnsignedDifference(target_footprint_.load(std::memory_order_relaxed),
1567 num_bytes_alive_after_gc_)/4)
1568 && !kStressCollectorTransition
1569 && !IsLowMemoryMode()) {
1570 return;
1571 }
1572 }
1573
1574 // Launch homogeneous space compaction if it is desired.
1575 if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
1576 if (!CareAboutPauseTimes()) {
1577 PerformHomogeneousSpaceCompact();
1578 } else {
1579 VLOG(gc) << "Homogeneous compaction ignored due to jank perceptible process state";
1580 }
1581 } else if (desired_collector_type == kCollectorTypeCCBackground ||
1582 desired_collector_type == kCollectorTypeCMCBackground) {
1583 if (!CareAboutPauseTimes()) {
1584 // Invoke full compaction.
1585 CollectGarbageInternal(collector::kGcTypeFull,
1586 kGcCauseCollectorTransition,
1587 /*clear_soft_references=*/false, GetCurrentGcNum() + 1);
1588 } else {
1589 VLOG(gc) << "background compaction ignored due to jank perceptible process state";
1590 }
1591 } else {
1592 CHECK_EQ(desired_collector_type, collector_type_) << "Unsupported collector transition";
1593 }
1594 }
1595
Trim(Thread * self)1596 void Heap::Trim(Thread* self) {
1597 Runtime* const runtime = Runtime::Current();
1598 if (!CareAboutPauseTimes()) {
1599 // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
1600 // about pauses.
1601 ScopedTrace trace("Deflating monitors");
1602 // Avoid race conditions on the lock word for CC.
1603 ScopedGCCriticalSection gcs(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1604 ScopedSuspendAll ssa(__FUNCTION__);
1605 uint64_t start_time = NanoTime();
1606 size_t count = runtime->GetMonitorList()->DeflateMonitors();
1607 VLOG(heap) << "Deflating " << count << " monitors took "
1608 << PrettyDuration(NanoTime() - start_time);
1609 }
1610 TrimIndirectReferenceTables(self);
1611 TrimSpaces(self);
1612 // Trim arenas that may have been used by JIT or verifier.
1613 runtime->GetArenaPool()->TrimMaps();
1614 }
1615
1616 class TrimIndirectReferenceTableClosure : public Closure {
1617 public:
TrimIndirectReferenceTableClosure(Barrier * barrier)1618 explicit TrimIndirectReferenceTableClosure(Barrier* barrier) : barrier_(barrier) {
1619 }
Run(Thread * thread)1620 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
1621 thread->GetJniEnv()->TrimLocals();
1622 // If thread is a running mutator, then act on behalf of the trim thread.
1623 // See the code in ThreadList::RunCheckpoint.
1624 barrier_->Pass(Thread::Current());
1625 }
1626
1627 private:
1628 Barrier* const barrier_;
1629 };
1630
TrimIndirectReferenceTables(Thread * self)1631 void Heap::TrimIndirectReferenceTables(Thread* self) {
1632 ScopedObjectAccess soa(self);
1633 ScopedTrace trace(__PRETTY_FUNCTION__);
1634 JavaVMExt* vm = soa.Vm();
1635 // Trim globals indirect reference table.
1636 vm->TrimGlobals();
1637 // Trim locals indirect reference tables.
1638 // TODO: May also want to look for entirely empty pages maintained by SmallIrtAllocator.
1639 Barrier barrier(0);
1640 TrimIndirectReferenceTableClosure closure(&barrier);
1641 size_t barrier_count = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
1642 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1643 if (barrier_count != 0) {
1644 barrier.Increment(self, barrier_count);
1645 }
1646 }
1647
StartGC(Thread * self,GcCause cause,CollectorType collector_type)1648 void Heap::StartGC(Thread* self, GcCause cause, CollectorType collector_type) {
1649 // This can be called in either kRunnable or suspended states.
1650 // TODO: Consider fixing that?
1651 ThreadState old_thread_state = self->GetState();
1652 if (old_thread_state == ThreadState::kRunnable) {
1653 Locks::mutator_lock_->AssertSharedHeld(self);
1654 // Manually inlining the following call breaks thread-safety analysis.
1655 StartGCRunnable(self, cause, collector_type);
1656 return;
1657 }
1658 Locks::mutator_lock_->AssertNotHeld(self);
1659 self->SetState(ThreadState::kWaitingForGcToComplete);
1660 MutexLock mu(self, *gc_complete_lock_);
1661 WaitForGcToCompleteLocked(cause, self);
1662 collector_type_running_ = collector_type;
1663 last_gc_cause_ = cause;
1664 thread_running_gc_ = self;
1665 self->SetState(old_thread_state);
1666 }
1667
StartGCRunnable(Thread * self,GcCause cause,CollectorType collector_type)1668 void Heap::StartGCRunnable(Thread* self, GcCause cause, CollectorType collector_type) {
1669 Locks::mutator_lock_->AssertSharedHeld(self);
1670 while (true) {
1671 self->TransitionFromRunnableToSuspended(ThreadState::kWaitingForGcToComplete);
1672 {
1673 MutexLock mu(self, *gc_complete_lock_);
1674 // Ensure there is only one GC at a time.
1675 WaitForGcToCompleteLocked(cause, self);
1676 collector_type_running_ = collector_type;
1677 last_gc_cause_ = cause;
1678 thread_running_gc_ = self;
1679 }
1680 // We have to be careful returning to runnable state, since that could cause us to block.
1681 // That would be bad, since collector_type_running_ is set, and hence no GC is possible in this
1682 // state, allowing deadlock.
1683 if (LIKELY(self->TryTransitionFromSuspendedToRunnable())) {
1684 return;
1685 }
1686 {
1687 MutexLock mu(self, *gc_complete_lock_);
1688 collector_type_running_ = kCollectorTypeNone;
1689 thread_running_gc_ = nullptr;
1690 }
1691 self->TransitionFromSuspendedToRunnable(); // Will handle suspension request and block.
1692 }
1693 }
1694
TrimSpaces(Thread * self)1695 void Heap::TrimSpaces(Thread* self) {
1696 // Pretend we are doing a GC to prevent background compaction from deleting the space we are
1697 // trimming.
1698 StartGC(self, kGcCauseTrim, kCollectorTypeHeapTrim);
1699 ScopedTrace trace(__PRETTY_FUNCTION__);
1700 const uint64_t start_ns = NanoTime();
1701 // Trim the managed spaces.
1702 uint64_t total_alloc_space_allocated = 0;
1703 uint64_t total_alloc_space_size = 0;
1704 uint64_t managed_reclaimed = 0;
1705 {
1706 ScopedObjectAccess soa(self);
1707 for (const auto& space : continuous_spaces_) {
1708 if (space->IsMallocSpace()) {
1709 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
1710 if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
1711 // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
1712 // for a long period of time.
1713 managed_reclaimed += malloc_space->Trim();
1714 }
1715 total_alloc_space_size += malloc_space->Size();
1716 }
1717 }
1718 }
1719 total_alloc_space_allocated = GetBytesAllocated();
1720 if (large_object_space_ != nullptr) {
1721 total_alloc_space_allocated -= large_object_space_->GetBytesAllocated();
1722 }
1723 if (bump_pointer_space_ != nullptr) {
1724 total_alloc_space_allocated -= bump_pointer_space_->Size();
1725 }
1726 if (region_space_ != nullptr) {
1727 total_alloc_space_allocated -= region_space_->GetBytesAllocated();
1728 }
1729 const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
1730 static_cast<float>(total_alloc_space_size);
1731 uint64_t gc_heap_end_ns = NanoTime();
1732 // We never move things in the native heap, so we can finish the GC at this point.
1733 FinishGC(self, collector::kGcTypeNone);
1734
1735 VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
1736 << ", advised=" << PrettySize(managed_reclaimed) << ") heap. Managed heap utilization of "
1737 << static_cast<int>(100 * managed_utilization) << "%.";
1738 }
1739
IsValidObjectAddress(const void * addr) const1740 bool Heap::IsValidObjectAddress(const void* addr) const {
1741 if (addr == nullptr) {
1742 return true;
1743 }
1744 return IsAligned<kObjectAlignment>(addr) && FindSpaceFromAddress(addr) != nullptr;
1745 }
1746
IsNonDiscontinuousSpaceHeapAddress(const void * addr) const1747 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const void* addr) const {
1748 return FindContinuousSpaceFromAddress(reinterpret_cast<const mirror::Object*>(addr)) != nullptr;
1749 }
1750
IsLiveObjectLocked(ObjPtr<mirror::Object> obj,bool search_allocation_stack,bool search_live_stack,bool sorted)1751 bool Heap::IsLiveObjectLocked(ObjPtr<mirror::Object> obj,
1752 bool search_allocation_stack,
1753 bool search_live_stack,
1754 bool sorted) {
1755 if (UNLIKELY(!IsAligned<kObjectAlignment>(obj.Ptr()))) {
1756 return false;
1757 }
1758 if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj.Ptr())) {
1759 mirror::Class* klass = obj->GetClass<kVerifyNone>();
1760 if (obj == klass) {
1761 // This case happens for java.lang.Class.
1762 return true;
1763 }
1764 return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
1765 } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj.Ptr())) {
1766 // If we are in the allocated region of the temp space, then we are probably live (e.g. during
1767 // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
1768 return temp_space_->Contains(obj.Ptr());
1769 }
1770 if (region_space_ != nullptr && region_space_->HasAddress(obj.Ptr())) {
1771 return true;
1772 }
1773 space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
1774 space::DiscontinuousSpace* d_space = nullptr;
1775 if (c_space != nullptr) {
1776 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1777 return true;
1778 }
1779 } else {
1780 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1781 if (d_space != nullptr) {
1782 if (d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1783 return true;
1784 }
1785 }
1786 }
1787 // This is covering the allocation/live stack swapping that is done without mutators suspended.
1788 for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
1789 if (i > 0) {
1790 NanoSleep(MsToNs(10));
1791 }
1792 if (search_allocation_stack) {
1793 if (sorted) {
1794 if (allocation_stack_->ContainsSorted(obj.Ptr())) {
1795 return true;
1796 }
1797 } else if (allocation_stack_->Contains(obj.Ptr())) {
1798 return true;
1799 }
1800 }
1801
1802 if (search_live_stack) {
1803 if (sorted) {
1804 if (live_stack_->ContainsSorted(obj.Ptr())) {
1805 return true;
1806 }
1807 } else if (live_stack_->Contains(obj.Ptr())) {
1808 return true;
1809 }
1810 }
1811 }
1812 // We need to check the bitmaps again since there is a race where we mark something as live and
1813 // then clear the stack containing it.
1814 if (c_space != nullptr) {
1815 if (c_space->GetLiveBitmap()->Test(obj.Ptr())) {
1816 return true;
1817 }
1818 } else {
1819 d_space = FindDiscontinuousSpaceFromObject(obj, true);
1820 if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj.Ptr())) {
1821 return true;
1822 }
1823 }
1824 return false;
1825 }
1826
DumpSpaces() const1827 std::string Heap::DumpSpaces() const {
1828 std::ostringstream oss;
1829 DumpSpaces(oss);
1830 return oss.str();
1831 }
1832
DumpSpaces(std::ostream & stream) const1833 void Heap::DumpSpaces(std::ostream& stream) const {
1834 for (const auto& space : continuous_spaces_) {
1835 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1836 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
1837 stream << space << " " << *space << "\n";
1838 if (live_bitmap != nullptr) {
1839 stream << live_bitmap << " " << *live_bitmap << "\n";
1840 }
1841 if (mark_bitmap != nullptr) {
1842 stream << mark_bitmap << " " << *mark_bitmap << "\n";
1843 }
1844 }
1845 for (const auto& space : discontinuous_spaces_) {
1846 stream << space << " " << *space << "\n";
1847 }
1848 }
1849
VerifyObjectBody(ObjPtr<mirror::Object> obj)1850 void Heap::VerifyObjectBody(ObjPtr<mirror::Object> obj) {
1851 if (verify_object_mode_ == kVerifyObjectModeDisabled) {
1852 return;
1853 }
1854
1855 // Ignore early dawn of the universe verifications.
1856 if (UNLIKELY(num_bytes_allocated_.load(std::memory_order_relaxed) < 10 * KB)) {
1857 return;
1858 }
1859 CHECK_ALIGNED(obj.Ptr(), kObjectAlignment) << "Object isn't aligned";
1860 mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
1861 CHECK(c != nullptr) << "Null class in object " << obj;
1862 CHECK_ALIGNED(c, kObjectAlignment) << "Class " << c << " not aligned in object " << obj;
1863 CHECK(VerifyClassClass(c));
1864
1865 if (verify_object_mode_ > kVerifyObjectModeFast) {
1866 // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
1867 CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
1868 }
1869 }
1870
VerifyHeap()1871 void Heap::VerifyHeap() {
1872 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
1873 auto visitor = [&](mirror::Object* obj) NO_THREAD_SAFETY_ANALYSIS {
1874 VerifyObjectBody(obj);
1875 };
1876 // Technically we need the mutator lock here to call Visit. However, VerifyObjectBody is already
1877 // NO_THREAD_SAFETY_ANALYSIS.
1878 auto no_thread_safety_analysis = [&]() NO_THREAD_SAFETY_ANALYSIS {
1879 GetLiveBitmap()->Visit(visitor);
1880 };
1881 no_thread_safety_analysis();
1882 }
1883
RecordFree(uint64_t freed_objects,int64_t freed_bytes)1884 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
1885 // Use signed comparison since freed bytes can be negative when background compaction foreground
1886 // transitions occurs. This is typically due to objects moving from a bump pointer space to a
1887 // free list backed space, which may increase memory footprint due to padding and binning.
1888 RACING_DCHECK_LE(freed_bytes,
1889 static_cast<int64_t>(num_bytes_allocated_.load(std::memory_order_relaxed)));
1890 // Note: This relies on 2s complement for handling negative freed_bytes.
1891 num_bytes_allocated_.fetch_sub(static_cast<ssize_t>(freed_bytes), std::memory_order_relaxed);
1892 if (Runtime::Current()->HasStatsEnabled()) {
1893 RuntimeStats* thread_stats = Thread::Current()->GetStats();
1894 thread_stats->freed_objects += freed_objects;
1895 thread_stats->freed_bytes += freed_bytes;
1896 // TODO: Do this concurrently.
1897 RuntimeStats* global_stats = Runtime::Current()->GetStats();
1898 global_stats->freed_objects += freed_objects;
1899 global_stats->freed_bytes += freed_bytes;
1900 }
1901 }
1902
RecordFreeRevoke()1903 void Heap::RecordFreeRevoke() {
1904 // Subtract num_bytes_freed_revoke_ from num_bytes_allocated_ to cancel out the
1905 // ahead-of-time, bulk counting of bytes allocated in rosalloc thread-local buffers.
1906 // If there's a concurrent revoke, ok to not necessarily reset num_bytes_freed_revoke_
1907 // all the way to zero exactly as the remainder will be subtracted at the next GC.
1908 size_t bytes_freed = num_bytes_freed_revoke_.load(std::memory_order_relaxed);
1909 CHECK_GE(num_bytes_freed_revoke_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1910 bytes_freed) << "num_bytes_freed_revoke_ underflow";
1911 CHECK_GE(num_bytes_allocated_.fetch_sub(bytes_freed, std::memory_order_relaxed),
1912 bytes_freed) << "num_bytes_allocated_ underflow";
1913 GetCurrentGcIteration()->SetFreedRevoke(bytes_freed);
1914 }
1915
GetRosAllocSpace(gc::allocator::RosAlloc * rosalloc) const1916 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
1917 if (rosalloc_space_ != nullptr && rosalloc_space_->GetRosAlloc() == rosalloc) {
1918 return rosalloc_space_;
1919 }
1920 for (const auto& space : continuous_spaces_) {
1921 if (space->AsContinuousSpace()->IsRosAllocSpace()) {
1922 if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
1923 return space->AsContinuousSpace()->AsRosAllocSpace();
1924 }
1925 }
1926 }
1927 return nullptr;
1928 }
1929
EntrypointsInstrumented()1930 static inline bool EntrypointsInstrumented() REQUIRES_SHARED(Locks::mutator_lock_) {
1931 instrumentation::Instrumentation* const instrumentation =
1932 Runtime::Current()->GetInstrumentation();
1933 return instrumentation != nullptr && instrumentation->AllocEntrypointsInstrumented();
1934 }
1935
AllocateInternalWithGc(Thread * self,AllocatorType allocator,bool instrumented,size_t alloc_size,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated,ObjPtr<mirror::Class> * klass)1936 mirror::Object* Heap::AllocateInternalWithGc(Thread* self,
1937 AllocatorType allocator,
1938 bool instrumented,
1939 size_t alloc_size,
1940 size_t* bytes_allocated,
1941 size_t* usable_size,
1942 size_t* bytes_tl_bulk_allocated,
1943 ObjPtr<mirror::Class>* klass) {
1944 bool was_default_allocator = allocator == GetCurrentAllocator();
1945 // Make sure there is no pending exception since we may need to throw an OOME.
1946 self->AssertNoPendingException();
1947 DCHECK(klass != nullptr);
1948
1949 StackHandleScope<1> hs(self);
1950 HandleWrapperObjPtr<mirror::Class> h_klass(hs.NewHandleWrapper(klass));
1951
1952 auto send_object_pre_alloc =
1953 [&]() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_) {
1954 if (UNLIKELY(instrumented)) {
1955 AllocationListener* l = alloc_listener_.load(std::memory_order_seq_cst);
1956 if (UNLIKELY(l != nullptr) && UNLIKELY(l->HasPreAlloc())) {
1957 l->PreObjectAllocated(self, h_klass, &alloc_size);
1958 }
1959 }
1960 };
1961 #define PERFORM_SUSPENDING_OPERATION(op) \
1962 [&]() REQUIRES(Roles::uninterruptible_) REQUIRES_SHARED(Locks::mutator_lock_) { \
1963 ScopedAllowThreadSuspension ats; \
1964 auto res = (op); \
1965 send_object_pre_alloc(); \
1966 return res; \
1967 }()
1968
1969 // The allocation failed. If the GC is running, block until it completes, and then retry the
1970 // allocation.
1971 collector::GcType last_gc =
1972 PERFORM_SUSPENDING_OPERATION(WaitForGcToComplete(kGcCauseForAlloc, self));
1973 // If we were the default allocator but the allocator changed while we were suspended,
1974 // abort the allocation.
1975 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
1976 (!instrumented && EntrypointsInstrumented())) {
1977 return nullptr;
1978 }
1979 uint32_t starting_gc_num = GetCurrentGcNum();
1980 if (last_gc != collector::kGcTypeNone) {
1981 // A GC was in progress and we blocked, retry allocation now that memory has been freed.
1982 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
1983 usable_size, bytes_tl_bulk_allocated);
1984 if (ptr != nullptr) {
1985 return ptr;
1986 }
1987 }
1988 if (IsGCDisabledForShutdown()) {
1989 // We're just shutting down and GCs don't work anymore. Try a different allocator.
1990 mirror::Object* ptr = TryToAllocate<true, false>(self,
1991 kAllocatorTypeNonMoving,
1992 alloc_size,
1993 bytes_allocated,
1994 usable_size,
1995 bytes_tl_bulk_allocated);
1996 if (ptr != nullptr) {
1997 return ptr;
1998 }
1999 }
2000
2001 int64_t bytes_freed_before = GetBytesFreedEver();
2002 auto have_reclaimed_enough = [&]() {
2003 size_t curr_bytes_allocated = GetBytesAllocated();
2004 size_t free_heap = UnsignedDifference(growth_limit_, curr_bytes_allocated);
2005 int64_t newly_freed = GetBytesFreedEver() - bytes_freed_before;
2006 double free_heap_ratio = static_cast<double>(free_heap) / growth_limit_;
2007 double newly_freed_ratio = static_cast<double>(newly_freed) / growth_limit_;
2008 return free_heap_ratio >= kMinFreeHeapAfterGcForAlloc ||
2009 newly_freed_ratio >= kMinFreedHeapAfterGcForAlloc;
2010 };
2011 // We perform one GC as per the next_gc_type_ (chosen in GrowForUtilization),
2012 // if it's not already tried. If that doesn't succeed then go for the most
2013 // exhaustive option. Perform a full-heap collection including clearing
2014 // SoftReferences. In case of ConcurrentCopying, it will also ensure that
2015 // all regions are evacuated. If allocation doesn't succeed even after that
2016 // then there is no hope, so we throw OOME.
2017 collector::GcType tried_type = next_gc_type_;
2018 if (last_gc < tried_type) {
2019 const bool gc_ran = PERFORM_SUSPENDING_OPERATION(
2020 CollectGarbageInternal(tried_type, kGcCauseForAlloc, false, starting_gc_num + 1)
2021 != collector::kGcTypeNone);
2022
2023 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
2024 (!instrumented && EntrypointsInstrumented())) {
2025 return nullptr;
2026 }
2027 if (gc_ran && have_reclaimed_enough()) {
2028 mirror::Object* ptr = TryToAllocate<true, false>(self, allocator,
2029 alloc_size, bytes_allocated,
2030 usable_size, bytes_tl_bulk_allocated);
2031 if (ptr != nullptr) {
2032 return ptr;
2033 }
2034 }
2035 }
2036 // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
2037 // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
2038 // VM spec requires that all SoftReferences have been collected and cleared before throwing
2039 // OOME.
2040 VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
2041 << " allocation";
2042 // TODO: Run finalization, but this may cause more allocations to occur.
2043 // We don't need a WaitForGcToComplete here either.
2044 // TODO: Should check whether another thread already just ran a GC with soft
2045 // references.
2046
2047 DCHECK(!gc_plan_.empty());
2048
2049 int64_t min_freed_to_continue =
2050 static_cast<int64_t>(kMinFreedHeapAfterGcForAlloc * growth_limit_ + alloc_size);
2051 // Repeatedly collect the entire heap until either
2052 // (a) this was insufficiently productive at reclaiming memory and we should give upt to avoid
2053 // "GC thrashing", or
2054 // (b) GC was sufficiently productive (reclaimed min_freed_to_continue bytes) AND allowed us to
2055 // satisfy the allocation request.
2056 do {
2057 bytes_freed_before = GetBytesFreedEver();
2058 pre_oome_gc_count_.fetch_add(1, std::memory_order_relaxed);
2059 PERFORM_SUSPENDING_OPERATION(
2060 CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true, GC_NUM_ANY));
2061 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
2062 (!instrumented && EntrypointsInstrumented())) {
2063 return nullptr;
2064 }
2065 bool ran_homogeneous_space_compaction = false;
2066 bool immediately_reclaimed_enough = have_reclaimed_enough();
2067 if (!immediately_reclaimed_enough) {
2068 const uint64_t current_time = NanoTime();
2069 if (allocator == kAllocatorTypeRosAlloc || allocator == kAllocatorTypeDlMalloc) {
2070 if (use_homogeneous_space_compaction_for_oom_ &&
2071 current_time - last_time_homogeneous_space_compaction_by_oom_ >
2072 min_interval_homogeneous_space_compaction_by_oom_) {
2073 last_time_homogeneous_space_compaction_by_oom_ = current_time;
2074 ran_homogeneous_space_compaction =
2075 (PERFORM_SUSPENDING_OPERATION(PerformHomogeneousSpaceCompact()) ==
2076 HomogeneousSpaceCompactResult::kSuccess);
2077 // Thread suspension could have occurred.
2078 if ((was_default_allocator && allocator != GetCurrentAllocator()) ||
2079 (!instrumented && EntrypointsInstrumented())) {
2080 return nullptr;
2081 }
2082 // Always print that we ran homogeneous space compation since this can cause jank.
2083 VLOG(heap) << "Ran heap homogeneous space compaction, "
2084 << " requested defragmentation "
2085 << count_requested_homogeneous_space_compaction_.load()
2086 << " performed defragmentation "
2087 << count_performed_homogeneous_space_compaction_.load()
2088 << " ignored homogeneous space compaction "
2089 << count_ignored_homogeneous_space_compaction_.load()
2090 << " delayed count = "
2091 << count_delayed_oom_.load();
2092 }
2093 }
2094 }
2095 if (immediately_reclaimed_enough ||
2096 (ran_homogeneous_space_compaction && have_reclaimed_enough())) {
2097 mirror::Object* ptr = TryToAllocate<true, true>(
2098 self, allocator, alloc_size, bytes_allocated, usable_size, bytes_tl_bulk_allocated);
2099 if (ptr != nullptr) {
2100 if (ran_homogeneous_space_compaction) {
2101 count_delayed_oom_++;
2102 }
2103 return ptr;
2104 }
2105 }
2106 // This loops only if we reclaimed plenty of memory, but presumably some other thread beat us
2107 // to allocating it. In the very unlikely case that we're running into a serious fragmentation
2108 // issue, and there is no other thread allocating, GCs will quickly become unsuccessful, and we
2109 // will stop then. If another thread is allocating aggressively, this may go on for a while,
2110 // but we are still making progress somewhere.
2111 } while (GetBytesFreedEver() - bytes_freed_before > min_freed_to_continue);
2112 #undef PERFORM_SUSPENDING_OPERATION
2113 // Throw an OOM error.
2114 {
2115 ScopedAllowThreadSuspension ats;
2116 ThrowOutOfMemoryError(self, alloc_size, allocator);
2117 }
2118 return nullptr;
2119 }
2120
SetTargetHeapUtilization(float target)2121 void Heap::SetTargetHeapUtilization(float target) {
2122 DCHECK_GT(target, 0.1f); // asserted in Java code
2123 DCHECK_LT(target, 1.0f);
2124 target_utilization_ = target;
2125 }
2126
GetObjectsAllocated() const2127 size_t Heap::GetObjectsAllocated() const {
2128 Thread* const self = Thread::Current();
2129 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGetObjectsAllocated);
2130 // Prevent GC running during GetObjectsAllocated since we may get a checkpoint request that tells
2131 // us to suspend while we are doing SuspendAll. b/35232978
2132 gc::ScopedGCCriticalSection gcs(Thread::Current(),
2133 gc::kGcCauseGetObjectsAllocated,
2134 gc::kCollectorTypeGetObjectsAllocated);
2135 // Need SuspendAll here to prevent lock violation if RosAlloc does it during InspectAll.
2136 ScopedSuspendAll ssa(__FUNCTION__);
2137 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2138 size_t total = 0;
2139 for (space::AllocSpace* space : alloc_spaces_) {
2140 total += space->GetObjectsAllocated();
2141 }
2142 return total;
2143 }
2144
GetBytesAllocatedEver() const2145 uint64_t Heap::GetBytesAllocatedEver() const {
2146 // Force the returned value to be monotonically increasing, in the sense that if this is called
2147 // at A and B, such that A happens-before B, then the call at B returns a value no smaller than
2148 // that at A. This is not otherwise guaranteed, since num_bytes_allocated_ is decremented first,
2149 // and total_bytes_freed_ever_ is incremented later.
2150 static std::atomic<uint64_t> max_bytes_so_far(0);
2151 uint64_t so_far = max_bytes_so_far.load(std::memory_order_relaxed);
2152 uint64_t current_bytes = GetBytesFreedEver(std::memory_order_acquire) + GetBytesAllocated();
2153 DCHECK(current_bytes < (static_cast<uint64_t>(1) << 63)); // result is "positive".
2154 do {
2155 if (current_bytes <= so_far) {
2156 return so_far;
2157 }
2158 } while (!max_bytes_so_far.compare_exchange_weak(so_far /* updated */,
2159 current_bytes, std::memory_order_relaxed));
2160 return current_bytes;
2161 }
2162
2163 // Check whether the given object is an instance of the given class.
MatchesClass(mirror::Object * obj,Handle<mirror::Class> h_class,bool use_is_assignable_from)2164 static bool MatchesClass(mirror::Object* obj,
2165 Handle<mirror::Class> h_class,
2166 bool use_is_assignable_from) REQUIRES_SHARED(Locks::mutator_lock_) {
2167 mirror::Class* instance_class = obj->GetClass();
2168 CHECK(instance_class != nullptr);
2169 ObjPtr<mirror::Class> klass = h_class.Get();
2170 if (use_is_assignable_from) {
2171 return klass != nullptr && klass->IsAssignableFrom(instance_class);
2172 }
2173 return instance_class == klass;
2174 }
2175
CountInstances(const std::vector<Handle<mirror::Class>> & classes,bool use_is_assignable_from,uint64_t * counts)2176 void Heap::CountInstances(const std::vector<Handle<mirror::Class>>& classes,
2177 bool use_is_assignable_from,
2178 uint64_t* counts) {
2179 auto instance_counter = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2180 for (size_t i = 0; i < classes.size(); ++i) {
2181 if (MatchesClass(obj, classes[i], use_is_assignable_from)) {
2182 ++counts[i];
2183 }
2184 }
2185 };
2186 VisitObjects(instance_counter);
2187 }
2188
CollectGarbage(bool clear_soft_references,GcCause cause)2189 void Heap::CollectGarbage(bool clear_soft_references, GcCause cause) {
2190 // Even if we waited for a GC we still need to do another GC since weaks allocated during the
2191 // last GC will not have necessarily been cleared.
2192 CollectGarbageInternal(gc_plan_.back(), cause, clear_soft_references, GC_NUM_ANY);
2193 }
2194
SupportHomogeneousSpaceCompactAndCollectorTransitions() const2195 bool Heap::SupportHomogeneousSpaceCompactAndCollectorTransitions() const {
2196 return main_space_backup_.get() != nullptr && main_space_ != nullptr &&
2197 foreground_collector_type_ == kCollectorTypeCMS;
2198 }
2199
PerformHomogeneousSpaceCompact()2200 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
2201 Thread* self = Thread::Current();
2202 // Inc requested homogeneous space compaction.
2203 count_requested_homogeneous_space_compaction_++;
2204 // Store performed homogeneous space compaction at a new request arrival.
2205 ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc);
2206 Locks::mutator_lock_->AssertNotHeld(self);
2207 {
2208 ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete);
2209 MutexLock mu(self, *gc_complete_lock_);
2210 // Ensure there is only one GC at a time.
2211 WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
2212 // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable
2213 // count is non zero.
2214 // If the collector type changed to something which doesn't benefit from homogeneous space
2215 // compaction, exit.
2216 if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
2217 !main_space_->CanMoveObjects()) {
2218 return kErrorReject;
2219 }
2220 if (!SupportHomogeneousSpaceCompactAndCollectorTransitions()) {
2221 return kErrorUnsupported;
2222 }
2223 collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
2224 }
2225 if (Runtime::Current()->IsShuttingDown(self)) {
2226 // Don't allow heap transitions to happen if the runtime is shutting down since these can
2227 // cause objects to get finalized.
2228 FinishGC(self, collector::kGcTypeNone);
2229 return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
2230 }
2231 collector::GarbageCollector* collector;
2232 {
2233 ScopedSuspendAll ssa(__FUNCTION__);
2234 uint64_t start_time = NanoTime();
2235 // Launch compaction.
2236 space::MallocSpace* to_space = main_space_backup_.release();
2237 space::MallocSpace* from_space = main_space_;
2238 to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2239 const uint64_t space_size_before_compaction = from_space->Size();
2240 AddSpace(to_space);
2241 // Make sure that we will have enough room to copy.
2242 CHECK_GE(to_space->GetFootprintLimit(), from_space->GetFootprintLimit());
2243 collector = Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
2244 const uint64_t space_size_after_compaction = to_space->Size();
2245 main_space_ = to_space;
2246 main_space_backup_.reset(from_space);
2247 RemoveSpace(from_space);
2248 SetSpaceAsDefault(main_space_); // Set as default to reset the proper dlmalloc space.
2249 // Update performed homogeneous space compaction count.
2250 count_performed_homogeneous_space_compaction_++;
2251 // Print statics log and resume all threads.
2252 uint64_t duration = NanoTime() - start_time;
2253 VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
2254 << PrettySize(space_size_before_compaction) << " -> "
2255 << PrettySize(space_size_after_compaction) << " compact-ratio: "
2256 << std::fixed << static_cast<double>(space_size_after_compaction) /
2257 static_cast<double>(space_size_before_compaction);
2258 }
2259 // Finish GC.
2260 // Get the references we need to enqueue.
2261 SelfDeletingTask* clear = reference_processor_->CollectClearedReferences(self);
2262 GrowForUtilization(semi_space_collector_);
2263 LogGC(kGcCauseHomogeneousSpaceCompact, collector);
2264 FinishGC(self, collector::kGcTypeFull);
2265 // Enqueue any references after losing the GC locks.
2266 clear->Run(self);
2267 clear->Finalize();
2268 {
2269 ScopedObjectAccess soa(self);
2270 soa.Vm()->UnloadNativeLibraries();
2271 }
2272 return HomogeneousSpaceCompactResult::kSuccess;
2273 }
2274
SetDefaultConcurrentStartBytes()2275 void Heap::SetDefaultConcurrentStartBytes() {
2276 MutexLock mu(Thread::Current(), *gc_complete_lock_);
2277 if (collector_type_running_ != kCollectorTypeNone) {
2278 // If a collector is already running, just let it set concurrent_start_bytes_ .
2279 return;
2280 }
2281 SetDefaultConcurrentStartBytesLocked();
2282 }
2283
SetDefaultConcurrentStartBytesLocked()2284 void Heap::SetDefaultConcurrentStartBytesLocked() {
2285 if (IsGcConcurrent()) {
2286 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
2287 size_t reserve_bytes = target_footprint / 4;
2288 reserve_bytes = std::min(reserve_bytes, kMaxConcurrentRemainingBytes);
2289 reserve_bytes = std::max(reserve_bytes, kMinConcurrentRemainingBytes);
2290 concurrent_start_bytes_ = UnsignedDifference(target_footprint, reserve_bytes);
2291 } else {
2292 concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
2293 }
2294 }
2295
ChangeCollector(CollectorType collector_type)2296 void Heap::ChangeCollector(CollectorType collector_type) {
2297 // TODO: Only do this with all mutators suspended to avoid races.
2298 if (collector_type != collector_type_) {
2299 collector_type_ = collector_type;
2300 gc_plan_.clear();
2301 switch (collector_type_) {
2302 case kCollectorTypeCC: {
2303 if (use_generational_cc_) {
2304 gc_plan_.push_back(collector::kGcTypeSticky);
2305 }
2306 gc_plan_.push_back(collector::kGcTypeFull);
2307 if (use_tlab_) {
2308 ChangeAllocator(kAllocatorTypeRegionTLAB);
2309 } else {
2310 ChangeAllocator(kAllocatorTypeRegion);
2311 }
2312 break;
2313 }
2314 case kCollectorTypeCMC: {
2315 gc_plan_.push_back(collector::kGcTypeFull);
2316 if (use_tlab_) {
2317 ChangeAllocator(kAllocatorTypeTLAB);
2318 } else {
2319 ChangeAllocator(kAllocatorTypeBumpPointer);
2320 }
2321 break;
2322 }
2323 case kCollectorTypeSS: {
2324 gc_plan_.push_back(collector::kGcTypeFull);
2325 if (use_tlab_) {
2326 ChangeAllocator(kAllocatorTypeTLAB);
2327 } else {
2328 ChangeAllocator(kAllocatorTypeBumpPointer);
2329 }
2330 break;
2331 }
2332 case kCollectorTypeMS: {
2333 gc_plan_.push_back(collector::kGcTypeSticky);
2334 gc_plan_.push_back(collector::kGcTypePartial);
2335 gc_plan_.push_back(collector::kGcTypeFull);
2336 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2337 break;
2338 }
2339 case kCollectorTypeCMS: {
2340 gc_plan_.push_back(collector::kGcTypeSticky);
2341 gc_plan_.push_back(collector::kGcTypePartial);
2342 gc_plan_.push_back(collector::kGcTypeFull);
2343 ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
2344 break;
2345 }
2346 default: {
2347 UNIMPLEMENTED(FATAL);
2348 UNREACHABLE();
2349 }
2350 }
2351 SetDefaultConcurrentStartBytesLocked();
2352 }
2353 }
2354
2355 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
2356 class ZygoteCompactingCollector final : public collector::SemiSpace {
2357 public:
ZygoteCompactingCollector(gc::Heap * heap,bool is_running_on_memory_tool)2358 ZygoteCompactingCollector(gc::Heap* heap, bool is_running_on_memory_tool)
2359 : SemiSpace(heap, "zygote collector"),
2360 bin_live_bitmap_(nullptr),
2361 bin_mark_bitmap_(nullptr),
2362 is_running_on_memory_tool_(is_running_on_memory_tool) {}
2363
BuildBins(space::ContinuousSpace * space)2364 void BuildBins(space::ContinuousSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
2365 bin_live_bitmap_ = space->GetLiveBitmap();
2366 bin_mark_bitmap_ = space->GetMarkBitmap();
2367 uintptr_t prev = reinterpret_cast<uintptr_t>(space->Begin());
2368 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2369 // Note: This requires traversing the space in increasing order of object addresses.
2370 auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2371 uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
2372 size_t bin_size = object_addr - prev;
2373 // Add the bin consisting of the end of the previous object to the start of the current object.
2374 AddBin(bin_size, prev);
2375 prev = object_addr + RoundUp(obj->SizeOf<kDefaultVerifyFlags>(), kObjectAlignment);
2376 };
2377 bin_live_bitmap_->Walk(visitor);
2378 // Add the last bin which spans after the last object to the end of the space.
2379 AddBin(reinterpret_cast<uintptr_t>(space->End()) - prev, prev);
2380 }
2381
2382 private:
2383 // Maps from bin sizes to locations.
2384 std::multimap<size_t, uintptr_t> bins_;
2385 // Live bitmap of the space which contains the bins.
2386 accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
2387 // Mark bitmap of the space which contains the bins.
2388 accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
2389 const bool is_running_on_memory_tool_;
2390
AddBin(size_t size,uintptr_t position)2391 void AddBin(size_t size, uintptr_t position) {
2392 if (is_running_on_memory_tool_) {
2393 MEMORY_TOOL_MAKE_DEFINED(reinterpret_cast<void*>(position), size);
2394 }
2395 if (size != 0) {
2396 bins_.insert(std::make_pair(size, position));
2397 }
2398 }
2399
ShouldSweepSpace(space::ContinuousSpace * space) const2400 bool ShouldSweepSpace([[maybe_unused]] space::ContinuousSpace* space) const override {
2401 // Don't sweep any spaces since we probably blasted the internal accounting of the free list
2402 // allocator.
2403 return false;
2404 }
2405
MarkNonForwardedObject(mirror::Object * obj)2406 mirror::Object* MarkNonForwardedObject(mirror::Object* obj) override
2407 REQUIRES(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
2408 size_t obj_size = obj->SizeOf<kDefaultVerifyFlags>();
2409 size_t alloc_size = RoundUp(obj_size, kObjectAlignment);
2410 mirror::Object* forward_address;
2411 // Find the smallest bin which we can move obj in.
2412 auto it = bins_.lower_bound(alloc_size);
2413 if (it == bins_.end()) {
2414 // No available space in the bins, place it in the target space instead (grows the zygote
2415 // space).
2416 size_t bytes_allocated, unused_bytes_tl_bulk_allocated;
2417 forward_address = to_space_->Alloc(
2418 self_, alloc_size, &bytes_allocated, nullptr, &unused_bytes_tl_bulk_allocated);
2419 if (to_space_live_bitmap_ != nullptr) {
2420 to_space_live_bitmap_->Set(forward_address);
2421 } else {
2422 GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
2423 GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
2424 }
2425 } else {
2426 size_t size = it->first;
2427 uintptr_t pos = it->second;
2428 bins_.erase(it); // Erase the old bin which we replace with the new smaller bin.
2429 forward_address = reinterpret_cast<mirror::Object*>(pos);
2430 // Set the live and mark bits so that sweeping system weaks works properly.
2431 bin_live_bitmap_->Set(forward_address);
2432 bin_mark_bitmap_->Set(forward_address);
2433 DCHECK_GE(size, alloc_size);
2434 // Add a new bin with the remaining space.
2435 AddBin(size - alloc_size, pos + alloc_size);
2436 }
2437 // Copy the object over to its new location.
2438 // Historical note: We did not use `alloc_size` to avoid a Valgrind error.
2439 memcpy(reinterpret_cast<void*>(forward_address), obj, obj_size);
2440 if (kUseBakerReadBarrier) {
2441 obj->AssertReadBarrierState();
2442 forward_address->AssertReadBarrierState();
2443 }
2444 return forward_address;
2445 }
2446 };
2447
UnBindBitmaps()2448 void Heap::UnBindBitmaps() {
2449 TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
2450 for (const auto& space : GetContinuousSpaces()) {
2451 if (space->IsContinuousMemMapAllocSpace()) {
2452 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2453 if (alloc_space->GetLiveBitmap() != nullptr && alloc_space->HasBoundBitmaps()) {
2454 alloc_space->UnBindBitmaps();
2455 }
2456 }
2457 }
2458 }
2459
IncrementFreedEver()2460 void Heap::IncrementFreedEver() {
2461 // Counters are updated only by us, but may be read concurrently.
2462 // The updates should become visible after the corresponding live object info.
2463 total_objects_freed_ever_.store(total_objects_freed_ever_.load(std::memory_order_relaxed)
2464 + GetCurrentGcIteration()->GetFreedObjects()
2465 + GetCurrentGcIteration()->GetFreedLargeObjects(),
2466 std::memory_order_release);
2467 total_bytes_freed_ever_.store(total_bytes_freed_ever_.load(std::memory_order_relaxed)
2468 + GetCurrentGcIteration()->GetFreedBytes()
2469 + GetCurrentGcIteration()->GetFreedLargeObjectBytes(),
2470 std::memory_order_release);
2471 }
2472
2473 #pragma clang diagnostic push
2474 #if !ART_USE_FUTEXES
2475 // Frame gets too large, perhaps due to Bionic pthread_mutex_lock size. We don't care.
2476 # pragma clang diagnostic ignored "-Wframe-larger-than="
2477 #endif
2478 // This has a large frame, but shouldn't be run anywhere near the stack limit.
2479 // FIXME: BUT it did exceed... http://b/197647048
2480 # pragma clang diagnostic ignored "-Wframe-larger-than="
PreZygoteFork()2481 void Heap::PreZygoteFork() {
2482 if (!HasZygoteSpace()) {
2483 // We still want to GC in case there is some unreachable non moving objects that could cause a
2484 // suboptimal bin packing when we compact the zygote space.
2485 CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false, GC_NUM_ANY);
2486 // Trim the pages at the end of the non moving space. Trim while not holding zygote lock since
2487 // the trim process may require locking the mutator lock.
2488 non_moving_space_->Trim();
2489 }
2490 // We need to close userfaultfd fd for app/webview zygotes to avoid getattr
2491 // (stat) on the fd during fork.
2492 Thread* self = Thread::Current();
2493 MutexLock mu(self, zygote_creation_lock_);
2494 // Try to see if we have any Zygote spaces.
2495 if (HasZygoteSpace()) {
2496 return;
2497 }
2498 Runtime* runtime = Runtime::Current();
2499 // Setup linear-alloc pool for post-zygote fork allocations before freezing
2500 // snapshots of intern-table and class-table.
2501 runtime->SetupLinearAllocForPostZygoteFork(self);
2502 runtime->GetInternTable()->AddNewTable();
2503 runtime->GetClassLinker()->MoveClassTableToPreZygote();
2504 VLOG(heap) << "Starting PreZygoteFork";
2505 // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
2506 // there.
2507 non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2508 const bool same_space = non_moving_space_ == main_space_;
2509 if (kCompactZygote) {
2510 // Temporarily disable rosalloc verification because the zygote
2511 // compaction will mess up the rosalloc internal metadata.
2512 ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
2513 ZygoteCompactingCollector zygote_collector(this, is_running_on_memory_tool_);
2514 zygote_collector.BuildBins(non_moving_space_);
2515 // Create a new bump pointer space which we will compact into.
2516 space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
2517 non_moving_space_->Limit());
2518 // Compact the bump pointer space to a new zygote bump pointer space.
2519 bool reset_main_space = false;
2520 if (IsMovingGc(collector_type_)) {
2521 if (collector_type_ == kCollectorTypeCC) {
2522 zygote_collector.SetFromSpace(region_space_);
2523 } else {
2524 zygote_collector.SetFromSpace(bump_pointer_space_);
2525 }
2526 } else {
2527 CHECK(main_space_ != nullptr);
2528 CHECK_NE(main_space_, non_moving_space_)
2529 << "Does not make sense to compact within the same space";
2530 // Copy from the main space.
2531 zygote_collector.SetFromSpace(main_space_);
2532 reset_main_space = true;
2533 }
2534 zygote_collector.SetToSpace(&target_space);
2535 zygote_collector.SetSwapSemiSpaces(false);
2536 zygote_collector.Run(kGcCauseCollectorTransition, false);
2537 if (reset_main_space) {
2538 main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2539 madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
2540 MemMap mem_map = main_space_->ReleaseMemMap();
2541 RemoveSpace(main_space_);
2542 space::Space* old_main_space = main_space_;
2543 CreateMainMallocSpace(std::move(mem_map),
2544 kDefaultInitialSize,
2545 std::min(mem_map.Size(), growth_limit_),
2546 mem_map.Size());
2547 delete old_main_space;
2548 AddSpace(main_space_);
2549 } else {
2550 if (collector_type_ == kCollectorTypeCC) {
2551 region_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2552 // Evacuated everything out of the region space, clear the mark bitmap.
2553 region_space_->GetMarkBitmap()->Clear();
2554 } else {
2555 bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2556 }
2557 }
2558 if (temp_space_ != nullptr) {
2559 CHECK(temp_space_->IsEmpty());
2560 }
2561 IncrementFreedEver();
2562 // Update the end and write out image.
2563 non_moving_space_->SetEnd(target_space.End());
2564 non_moving_space_->SetLimit(target_space.Limit());
2565 VLOG(heap) << "Create zygote space with size=" << non_moving_space_->Size() << " bytes";
2566 }
2567 // Change the collector to the post zygote one.
2568 ChangeCollector(foreground_collector_type_);
2569 // Save the old space so that we can remove it after we complete creating the zygote space.
2570 space::MallocSpace* old_alloc_space = non_moving_space_;
2571 // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
2572 // the remaining available space.
2573 // Remove the old space before creating the zygote space since creating the zygote space sets
2574 // the old alloc space's bitmaps to null.
2575 RemoveSpace(old_alloc_space);
2576 if (collector::SemiSpace::kUseRememberedSet) {
2577 // Consistency bound check.
2578 FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
2579 // Remove the remembered set for the now zygote space (the old
2580 // non-moving space). Note now that we have compacted objects into
2581 // the zygote space, the data in the remembered set is no longer
2582 // needed. The zygote space will instead have a mod-union table
2583 // from this point on.
2584 RemoveRememberedSet(old_alloc_space);
2585 }
2586 // Remaining space becomes the new non moving space.
2587 zygote_space_ = old_alloc_space->CreateZygoteSpace(kNonMovingSpaceName, low_memory_mode_,
2588 &non_moving_space_);
2589 CHECK(!non_moving_space_->CanMoveObjects());
2590 if (same_space) {
2591 main_space_ = non_moving_space_;
2592 SetSpaceAsDefault(main_space_);
2593 }
2594 delete old_alloc_space;
2595 CHECK(HasZygoteSpace()) << "Failed creating zygote space";
2596 AddSpace(zygote_space_);
2597 non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
2598 AddSpace(non_moving_space_);
2599 constexpr bool set_mark_bit = kUseBakerReadBarrier
2600 && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects;
2601 if (set_mark_bit) {
2602 // Treat all of the objects in the zygote as marked to avoid unnecessary dirty pages. This is
2603 // safe since we mark all of the objects that may reference non immune objects as gray.
2604 zygote_space_->SetMarkBitInLiveObjects();
2605 }
2606
2607 // Create the zygote space mod union table.
2608 accounting::ModUnionTable* mod_union_table =
2609 new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space_);
2610 CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
2611
2612 if (collector_type_ != kCollectorTypeCC && collector_type_ != kCollectorTypeCMC) {
2613 // Set all the cards in the mod-union table since we don't know which objects contain references
2614 // to large objects.
2615 mod_union_table->SetCards();
2616 } else {
2617 // Make sure to clear the zygote space cards so that we don't dirty pages in the next GC. There
2618 // may be dirty cards from the zygote compaction or reference processing. These cards are not
2619 // necessary to have marked since the zygote space may not refer to any objects not in the
2620 // zygote or image spaces at this point.
2621 mod_union_table->ProcessCards();
2622 mod_union_table->ClearTable();
2623
2624 // For CC and CMC we never collect zygote large objects. This means we do not need to set the
2625 // cards for the zygote mod-union table and we can also clear all of the existing image
2626 // mod-union tables. The existing mod-union tables are only for image spaces and may only
2627 // reference zygote and image objects.
2628 for (auto& pair : mod_union_tables_) {
2629 CHECK(pair.first->IsImageSpace());
2630 CHECK(!pair.first->AsImageSpace()->GetImageHeader().IsAppImage());
2631 accounting::ModUnionTable* table = pair.second;
2632 table->ClearTable();
2633 }
2634 }
2635 AddModUnionTable(mod_union_table);
2636 large_object_space_->SetAllLargeObjectsAsZygoteObjects(self, set_mark_bit);
2637 if (collector::SemiSpace::kUseRememberedSet) {
2638 // Add a new remembered set for the post-zygote non-moving space.
2639 accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
2640 new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
2641 non_moving_space_);
2642 CHECK(post_zygote_non_moving_space_rem_set != nullptr)
2643 << "Failed to create post-zygote non-moving space remembered set";
2644 AddRememberedSet(post_zygote_non_moving_space_rem_set);
2645 }
2646 }
2647 #pragma clang diagnostic pop
2648
FlushAllocStack()2649 void Heap::FlushAllocStack() {
2650 MarkAllocStackAsLive(allocation_stack_.get());
2651 allocation_stack_->Reset();
2652 }
2653
MarkAllocStack(accounting::ContinuousSpaceBitmap * bitmap1,accounting::ContinuousSpaceBitmap * bitmap2,accounting::LargeObjectBitmap * large_objects,accounting::ObjectStack * stack)2654 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
2655 accounting::ContinuousSpaceBitmap* bitmap2,
2656 accounting::LargeObjectBitmap* large_objects,
2657 accounting::ObjectStack* stack) {
2658 DCHECK(bitmap1 != nullptr);
2659 DCHECK(bitmap2 != nullptr);
2660 const auto* limit = stack->End();
2661 for (auto* it = stack->Begin(); it != limit; ++it) {
2662 const mirror::Object* obj = it->AsMirrorPtr();
2663 if (!kUseThreadLocalAllocationStack || obj != nullptr) {
2664 if (bitmap1->HasAddress(obj)) {
2665 bitmap1->Set(obj);
2666 } else if (bitmap2->HasAddress(obj)) {
2667 bitmap2->Set(obj);
2668 } else {
2669 DCHECK(large_objects != nullptr);
2670 large_objects->Set(obj);
2671 }
2672 }
2673 }
2674 }
2675
SwapSemiSpaces()2676 void Heap::SwapSemiSpaces() {
2677 CHECK(bump_pointer_space_ != nullptr);
2678 CHECK(temp_space_ != nullptr);
2679 std::swap(bump_pointer_space_, temp_space_);
2680 }
2681
Compact(space::ContinuousMemMapAllocSpace * target_space,space::ContinuousMemMapAllocSpace * source_space,GcCause gc_cause)2682 collector::GarbageCollector* Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
2683 space::ContinuousMemMapAllocSpace* source_space,
2684 GcCause gc_cause) {
2685 CHECK(kMovingCollector);
2686 if (target_space != source_space) {
2687 // Don't swap spaces since this isn't a typical semi space collection.
2688 semi_space_collector_->SetSwapSemiSpaces(false);
2689 semi_space_collector_->SetFromSpace(source_space);
2690 semi_space_collector_->SetToSpace(target_space);
2691 semi_space_collector_->Run(gc_cause, false);
2692 return semi_space_collector_;
2693 }
2694 LOG(FATAL) << "Unsupported";
2695 UNREACHABLE();
2696 }
2697
TraceHeapSize(size_t heap_size)2698 void Heap::TraceHeapSize(size_t heap_size) {
2699 ATraceIntegerValue("Heap size (KB)", heap_size / KB);
2700 }
2701
2702 #if defined(__GLIBC__)
2703 # define IF_GLIBC(x) x
2704 #else
2705 # define IF_GLIBC(x)
2706 #endif
2707
GetNativeBytes()2708 size_t Heap::GetNativeBytes() {
2709 size_t malloc_bytes;
2710 #if defined(__BIONIC__) || defined(__GLIBC__) || defined(ANDROID_HOST_MUSL)
2711 IF_GLIBC(size_t mmapped_bytes;)
2712 struct mallinfo mi = mallinfo();
2713 // In spite of the documentation, the jemalloc version of this call seems to do what we want,
2714 // and it is thread-safe.
2715 if (sizeof(size_t) > sizeof(mi.uordblks) && sizeof(size_t) > sizeof(mi.hblkhd)) {
2716 // Shouldn't happen, but glibc declares uordblks as int.
2717 // Avoiding sign extension gets us correct behavior for another 2 GB.
2718 malloc_bytes = (unsigned int)mi.uordblks;
2719 IF_GLIBC(mmapped_bytes = (unsigned int)mi.hblkhd;)
2720 } else {
2721 malloc_bytes = mi.uordblks;
2722 IF_GLIBC(mmapped_bytes = mi.hblkhd;)
2723 }
2724 // From the spec, it appeared mmapped_bytes <= malloc_bytes. Reality was sometimes
2725 // dramatically different. (b/119580449 was an early bug.) If so, we try to fudge it.
2726 // However, malloc implementations seem to interpret hblkhd differently, namely as
2727 // mapped blocks backing the entire heap (e.g. jemalloc) vs. large objects directly
2728 // allocated via mmap (e.g. glibc). Thus we now only do this for glibc, where it
2729 // previously helped, and which appears to use a reading of the spec compatible
2730 // with our adjustment.
2731 #if defined(__GLIBC__)
2732 if (mmapped_bytes > malloc_bytes) {
2733 malloc_bytes = mmapped_bytes;
2734 }
2735 #endif // GLIBC
2736 #else // Neither Bionic nor Glibc
2737 // We should hit this case only in contexts in which GC triggering is not critical. Effectively
2738 // disable GC triggering based on malloc().
2739 malloc_bytes = 1000;
2740 #endif
2741 return malloc_bytes + native_bytes_registered_.load(std::memory_order_relaxed);
2742 // An alternative would be to get RSS from /proc/self/statm. Empirically, that's no
2743 // more expensive, and it would allow us to count memory allocated by means other than malloc.
2744 // However it would change as pages are unmapped and remapped due to memory pressure, among
2745 // other things. It seems risky to trigger GCs as a result of such changes.
2746 }
2747
GCNumberLt(uint32_t gc_num1,uint32_t gc_num2)2748 static inline bool GCNumberLt(uint32_t gc_num1, uint32_t gc_num2) {
2749 // unsigned comparison, assuming a non-huge difference, but dealing correctly with wrapping.
2750 uint32_t difference = gc_num2 - gc_num1;
2751 bool completed_more_than_requested = difference > 0x80000000;
2752 return difference > 0 && !completed_more_than_requested;
2753 }
2754
2755
CollectGarbageInternal(collector::GcType gc_type,GcCause gc_cause,bool clear_soft_references,uint32_t requested_gc_num)2756 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type,
2757 GcCause gc_cause,
2758 bool clear_soft_references,
2759 uint32_t requested_gc_num) {
2760 Thread* self = Thread::Current();
2761 Runtime* runtime = Runtime::Current();
2762 // If the heap can't run the GC, silently fail and return that no GC was run.
2763 switch (gc_type) {
2764 case collector::kGcTypePartial: {
2765 if (!HasZygoteSpace()) {
2766 // Do not increment gcs_completed_ . We should retry with kGcTypeFull.
2767 return collector::kGcTypeNone;
2768 }
2769 break;
2770 }
2771 default: {
2772 // Other GC types don't have any special cases which makes them not runnable. The main case
2773 // here is full GC.
2774 }
2775 }
2776 ScopedThreadStateChange tsc(self, ThreadState::kWaitingPerformingGc);
2777 Locks::mutator_lock_->AssertNotHeld(self);
2778 SelfDeletingTask* clear; // Unconditionally set below.
2779 {
2780 // We should not ever become runnable and re-suspend while executing a GC.
2781 // This would likely cause a deadlock if we acted on a suspension request.
2782 // TODO: We really want to assert that we don't transition to kRunnable.
2783 ScopedAssertNoThreadSuspension scoped_assert("Performing GC");
2784 if (self->IsHandlingStackOverflow()) {
2785 // If we are throwing a stack overflow error we probably don't have enough remaining stack
2786 // space to run the GC.
2787 // Count this as a GC in case someone is waiting for it to complete.
2788 gcs_completed_.fetch_add(1, std::memory_order_release);
2789 return collector::kGcTypeNone;
2790 }
2791 bool compacting_gc;
2792 {
2793 gc_complete_lock_->AssertNotHeld(self);
2794 // Already not runnable; just switch suspended states. We remain in a suspended state until
2795 // FinishGC(). This avoids the complicated dance in StartGC().
2796 ScopedThreadStateChange tsc2(self, ThreadState::kWaitingForGcToComplete);
2797 MutexLock mu(self, *gc_complete_lock_);
2798 // Ensure there is only one GC at a time.
2799 WaitForGcToCompleteLocked(gc_cause, self);
2800 if (requested_gc_num != GC_NUM_ANY && !GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
2801 // The appropriate GC was already triggered elsewhere.
2802 return collector::kGcTypeNone;
2803 }
2804 compacting_gc = IsMovingGc(collector_type_);
2805 // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
2806 if (compacting_gc && disable_moving_gc_count_ != 0) {
2807 LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
2808 // Again count this as a GC.
2809 gcs_completed_.fetch_add(1, std::memory_order_release);
2810 return collector::kGcTypeNone;
2811 }
2812 if (gc_disabled_for_shutdown_) {
2813 gcs_completed_.fetch_add(1, std::memory_order_release);
2814 return collector::kGcTypeNone;
2815 }
2816 collector_type_running_ = collector_type_;
2817 last_gc_cause_ = gc_cause;
2818 }
2819 if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
2820 ++runtime->GetStats()->gc_for_alloc_count;
2821 ++self->GetStats()->gc_for_alloc_count;
2822 }
2823 const size_t bytes_allocated_before_gc = GetBytesAllocated();
2824
2825 DCHECK_LT(gc_type, collector::kGcTypeMax);
2826 DCHECK_NE(gc_type, collector::kGcTypeNone);
2827
2828 collector::GarbageCollector* collector = nullptr;
2829 // TODO: Clean this up.
2830 if (compacting_gc) {
2831 DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
2832 current_allocator_ == kAllocatorTypeTLAB ||
2833 current_allocator_ == kAllocatorTypeRegion ||
2834 current_allocator_ == kAllocatorTypeRegionTLAB);
2835 switch (collector_type_) {
2836 case kCollectorTypeSS:
2837 semi_space_collector_->SetFromSpace(bump_pointer_space_);
2838 semi_space_collector_->SetToSpace(temp_space_);
2839 semi_space_collector_->SetSwapSemiSpaces(true);
2840 collector = semi_space_collector_;
2841 break;
2842 case kCollectorTypeCMC:
2843 collector = mark_compact_;
2844 break;
2845 case kCollectorTypeCC:
2846 collector::ConcurrentCopying* active_cc_collector;
2847 if (use_generational_cc_) {
2848 // TODO: Other threads must do the flip checkpoint before they start poking at
2849 // active_concurrent_copying_collector_. So we should not concurrency here.
2850 active_cc_collector = (gc_type == collector::kGcTypeSticky) ?
2851 young_concurrent_copying_collector_ :
2852 concurrent_copying_collector_;
2853 active_concurrent_copying_collector_.store(active_cc_collector,
2854 std::memory_order_relaxed);
2855 DCHECK(active_cc_collector->RegionSpace() == region_space_);
2856 collector = active_cc_collector;
2857 } else {
2858 collector = active_concurrent_copying_collector_.load(std::memory_order_relaxed);
2859 }
2860 break;
2861 default:
2862 LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
2863 }
2864 // temp_space_ will be null for kCollectorTypeCMC.
2865 if (temp_space_ != nullptr &&
2866 collector != active_concurrent_copying_collector_.load(std::memory_order_relaxed)) {
2867 temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
2868 if (kIsDebugBuild) {
2869 // Try to read each page of the memory map in case mprotect didn't work properly
2870 // b/19894268.
2871 temp_space_->GetMemMap()->TryReadable();
2872 }
2873 CHECK(temp_space_->IsEmpty());
2874 }
2875 } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
2876 current_allocator_ == kAllocatorTypeDlMalloc) {
2877 collector = FindCollectorByGcType(gc_type);
2878 } else {
2879 LOG(FATAL) << "Invalid current allocator " << current_allocator_;
2880 }
2881
2882 CHECK(collector != nullptr) << "Could not find garbage collector with collector_type="
2883 << static_cast<size_t>(collector_type_)
2884 << " and gc_type=" << gc_type;
2885 collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
2886 IncrementFreedEver();
2887 RequestTrim(self);
2888 // Collect cleared references.
2889 clear = reference_processor_->CollectClearedReferences(self);
2890 // Grow the heap so that we know when to perform the next GC.
2891 GrowForUtilization(collector, bytes_allocated_before_gc);
2892 old_native_bytes_allocated_.store(GetNativeBytes());
2893 LogGC(gc_cause, collector);
2894 FinishGC(self, gc_type);
2895 // We're suspended up to this point.
2896 }
2897 // Actually enqueue all cleared references. Do this after the GC has officially finished since
2898 // otherwise we can deadlock.
2899 clear->Run(self);
2900 clear->Finalize();
2901 // Inform DDMS that a GC completed.
2902 Dbg::GcDidFinish();
2903
2904 // Unload native libraries for class unloading. We do this after calling FinishGC to prevent
2905 // deadlocks in case the JNI_OnUnload function does allocations.
2906 {
2907 ScopedObjectAccess soa(self);
2908 soa.Vm()->UnloadNativeLibraries();
2909 }
2910 return gc_type;
2911 }
2912
LogGC(GcCause gc_cause,collector::GarbageCollector * collector)2913 void Heap::LogGC(GcCause gc_cause, collector::GarbageCollector* collector) {
2914 const size_t duration = GetCurrentGcIteration()->GetDurationNs();
2915 const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
2916 // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
2917 // (mutator time blocked >= long_pause_log_threshold_).
2918 bool log_gc = kLogAllGCs || (gc_cause == kGcCauseExplicit && always_log_explicit_gcs_);
2919 if (!log_gc && CareAboutPauseTimes()) {
2920 // GC for alloc pauses the allocating thread, so consider it as a pause.
2921 log_gc = duration > long_gc_log_threshold_ ||
2922 (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
2923 for (uint64_t pause : pause_times) {
2924 log_gc = log_gc || pause >= long_pause_log_threshold_;
2925 }
2926 }
2927 bool is_sampled = false;
2928 if (UNLIKELY(gc_stress_mode_)) {
2929 static std::atomic_int64_t accumulated_duration_ns = 0;
2930 accumulated_duration_ns += duration;
2931 if (accumulated_duration_ns >= kGcStressModeGcLogSampleFrequencyNs) {
2932 accumulated_duration_ns -= kGcStressModeGcLogSampleFrequencyNs;
2933 log_gc = true;
2934 is_sampled = true;
2935 }
2936 }
2937 if (log_gc) {
2938 const size_t percent_free = GetPercentFree();
2939 const size_t current_heap_size = GetBytesAllocated();
2940 const size_t total_memory = GetTotalMemory();
2941 std::ostringstream pause_string;
2942 for (size_t i = 0; i < pause_times.size(); ++i) {
2943 pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
2944 << ((i != pause_times.size() - 1) ? "," : "");
2945 }
2946 LOG(INFO) << gc_cause << " " << collector->GetName()
2947 << (is_sampled ? " (sampled)" : "")
2948 << " GC freed "
2949 << PrettySize(current_gc_iteration_.GetFreedBytes()) << " AllocSpace bytes, "
2950 << current_gc_iteration_.GetFreedLargeObjects() << "("
2951 << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
2952 << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
2953 << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
2954 << " total " << PrettyDuration((duration / 1000) * 1000);
2955 VLOG(heap) << Dumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
2956 }
2957 }
2958
FinishGC(Thread * self,collector::GcType gc_type)2959 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
2960 MutexLock mu(self, *gc_complete_lock_);
2961 collector_type_running_ = kCollectorTypeNone;
2962 if (gc_type != collector::kGcTypeNone) {
2963 last_gc_type_ = gc_type;
2964
2965 // Update stats.
2966 ++gc_count_last_window_;
2967 if (running_collection_is_blocking_) {
2968 // If the currently running collection was a blocking one,
2969 // increment the counters and reset the flag.
2970 ++blocking_gc_count_;
2971 blocking_gc_time_ += GetCurrentGcIteration()->GetDurationNs();
2972 ++blocking_gc_count_last_window_;
2973 }
2974 // Update the gc count rate histograms if due.
2975 UpdateGcCountRateHistograms();
2976 }
2977 // Reset.
2978 running_collection_is_blocking_ = false;
2979 thread_running_gc_ = nullptr;
2980 if (gc_type != collector::kGcTypeNone) {
2981 gcs_completed_.fetch_add(1, std::memory_order_release);
2982 }
2983 // Wake anyone who may have been waiting for the GC to complete.
2984 gc_complete_cond_->Broadcast(self);
2985 }
2986
UpdateGcCountRateHistograms()2987 void Heap::UpdateGcCountRateHistograms() {
2988 // Invariant: if the time since the last update includes more than
2989 // one windows, all the GC runs (if > 0) must have happened in first
2990 // window because otherwise the update must have already taken place
2991 // at an earlier GC run. So, we report the non-first windows with
2992 // zero counts to the histograms.
2993 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
2994 uint64_t now = NanoTime();
2995 DCHECK_GE(now, last_update_time_gc_count_rate_histograms_);
2996 uint64_t time_since_last_update = now - last_update_time_gc_count_rate_histograms_;
2997 uint64_t num_of_windows = time_since_last_update / kGcCountRateHistogramWindowDuration;
2998
2999 // The computed number of windows can be incoherently high if NanoTime() is not monotonic.
3000 // Setting a limit on its maximum value reduces the impact on CPU time in such cases.
3001 if (num_of_windows > kGcCountRateHistogramMaxNumMissedWindows) {
3002 LOG(WARNING) << "Reducing the number of considered missed Gc histogram windows from "
3003 << num_of_windows << " to " << kGcCountRateHistogramMaxNumMissedWindows;
3004 num_of_windows = kGcCountRateHistogramMaxNumMissedWindows;
3005 }
3006
3007 if (time_since_last_update >= kGcCountRateHistogramWindowDuration) {
3008 // Record the first window.
3009 gc_count_rate_histogram_.AddValue(gc_count_last_window_ - 1); // Exclude the current run.
3010 blocking_gc_count_rate_histogram_.AddValue(running_collection_is_blocking_ ?
3011 blocking_gc_count_last_window_ - 1 : blocking_gc_count_last_window_);
3012 // Record the other windows (with zero counts).
3013 for (uint64_t i = 0; i < num_of_windows - 1; ++i) {
3014 gc_count_rate_histogram_.AddValue(0);
3015 blocking_gc_count_rate_histogram_.AddValue(0);
3016 }
3017 // Update the last update time and reset the counters.
3018 last_update_time_gc_count_rate_histograms_ =
3019 (now / kGcCountRateHistogramWindowDuration) * kGcCountRateHistogramWindowDuration;
3020 gc_count_last_window_ = 1; // Include the current run.
3021 blocking_gc_count_last_window_ = running_collection_is_blocking_ ? 1 : 0;
3022 }
3023 DCHECK_EQ(last_update_time_gc_count_rate_histograms_ % kGcCountRateHistogramWindowDuration, 0U);
3024 }
3025
3026 class RootMatchesObjectVisitor : public SingleRootVisitor {
3027 public:
RootMatchesObjectVisitor(const mirror::Object * obj)3028 explicit RootMatchesObjectVisitor(const mirror::Object* obj) : obj_(obj) { }
3029
VisitRoot(mirror::Object * root,const RootInfo & info)3030 void VisitRoot(mirror::Object* root, const RootInfo& info)
3031 override REQUIRES_SHARED(Locks::mutator_lock_) {
3032 if (root == obj_) {
3033 LOG(INFO) << "Object " << obj_ << " is a root " << info.ToString();
3034 }
3035 }
3036
3037 private:
3038 const mirror::Object* const obj_;
3039 };
3040
3041
3042 class ScanVisitor {
3043 public:
operator ()(const mirror::Object * obj) const3044 void operator()(const mirror::Object* obj) const {
3045 LOG(ERROR) << "Would have rescanned object " << obj;
3046 }
3047 };
3048
3049 // Verify a reference from an object.
3050 class VerifyReferenceVisitor : public SingleRootVisitor {
3051 public:
VerifyReferenceVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)3052 VerifyReferenceVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
3053 REQUIRES_SHARED(Locks::mutator_lock_)
3054 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
3055 CHECK_EQ(self_, Thread::Current());
3056 }
3057
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3058 void operator()([[maybe_unused]] ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3059 REQUIRES_SHARED(Locks::mutator_lock_) {
3060 if (verify_referent_) {
3061 VerifyReference(ref.Ptr(), ref->GetReferent(), mirror::Reference::ReferentOffset());
3062 }
3063 }
3064
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static) const3065 void operator()(ObjPtr<mirror::Object> obj,
3066 MemberOffset offset,
3067 [[maybe_unused]] bool is_static) const REQUIRES_SHARED(Locks::mutator_lock_) {
3068 VerifyReference(obj.Ptr(), obj->GetFieldObject<mirror::Object>(offset), offset);
3069 }
3070
IsLive(ObjPtr<mirror::Object> obj) const3071 bool IsLive(ObjPtr<mirror::Object> obj) const NO_THREAD_SAFETY_ANALYSIS {
3072 return heap_->IsLiveObjectLocked(obj, true, false, true);
3073 }
3074
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3075 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3076 REQUIRES_SHARED(Locks::mutator_lock_) {
3077 if (!root->IsNull()) {
3078 VisitRoot(root);
3079 }
3080 }
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3081 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3082 REQUIRES_SHARED(Locks::mutator_lock_) {
3083 const_cast<VerifyReferenceVisitor*>(this)->VisitRoot(
3084 root->AsMirrorPtr(), RootInfo(kRootVMInternal));
3085 }
3086
VisitRoot(mirror::Object * root,const RootInfo & root_info)3087 void VisitRoot(mirror::Object* root, const RootInfo& root_info) override
3088 REQUIRES_SHARED(Locks::mutator_lock_) {
3089 if (root == nullptr) {
3090 LOG(ERROR) << "Root is null with info " << root_info.GetType();
3091 } else if (!VerifyReference(nullptr, root, MemberOffset(0))) {
3092 LOG(ERROR) << "Root " << root << " is dead with type " << mirror::Object::PrettyTypeOf(root)
3093 << " thread_id= " << root_info.GetThreadId() << " root_type= " << root_info.GetType();
3094 }
3095 }
3096
3097 private:
3098 // TODO: Fix the no thread safety analysis.
3099 // Returns false on failure.
VerifyReference(mirror::Object * obj,mirror::Object * ref,MemberOffset offset) const3100 bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
3101 NO_THREAD_SAFETY_ANALYSIS {
3102 if (ref == nullptr || IsLive(ref)) {
3103 // Verify that the reference is live.
3104 return true;
3105 }
3106 CHECK_EQ(self_, Thread::Current()); // fail_count_ is private to the calling thread.
3107 *fail_count_ += 1;
3108 if (*fail_count_ == 1) {
3109 // Only print message for the first failure to prevent spam.
3110 LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
3111 }
3112 if (obj != nullptr) {
3113 // Only do this part for non roots.
3114 accounting::CardTable* card_table = heap_->GetCardTable();
3115 accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
3116 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3117 uint8_t* card_addr = card_table->CardFromAddr(obj);
3118 LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
3119 << offset << "\n card value = " << static_cast<int>(*card_addr);
3120 if (heap_->IsValidObjectAddress(obj->GetClass())) {
3121 LOG(ERROR) << "Obj type " << obj->PrettyTypeOf();
3122 } else {
3123 LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
3124 }
3125
3126 // Attempt to find the class inside of the recently freed objects.
3127 space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
3128 if (ref_space != nullptr && ref_space->IsMallocSpace()) {
3129 space::MallocSpace* space = ref_space->AsMallocSpace();
3130 mirror::Class* ref_class = space->FindRecentFreedObject(ref);
3131 if (ref_class != nullptr) {
3132 LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
3133 << ref_class->PrettyClass();
3134 } else {
3135 LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
3136 }
3137 }
3138
3139 if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
3140 ref->GetClass()->IsClass()) {
3141 LOG(ERROR) << "Ref type " << ref->PrettyTypeOf();
3142 } else {
3143 LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
3144 << ") is not a valid heap address";
3145 }
3146
3147 card_table->CheckAddrIsInCardTable(reinterpret_cast<const uint8_t*>(obj));
3148 void* cover_begin = card_table->AddrFromCard(card_addr);
3149 void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
3150 accounting::CardTable::kCardSize);
3151 LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
3152 << "-" << cover_end;
3153 accounting::ContinuousSpaceBitmap* bitmap =
3154 heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
3155
3156 if (bitmap == nullptr) {
3157 LOG(ERROR) << "Object " << obj << " has no bitmap";
3158 if (!VerifyClassClass(obj->GetClass())) {
3159 LOG(ERROR) << "Object " << obj << " failed class verification!";
3160 }
3161 } else {
3162 // Print out how the object is live.
3163 if (bitmap->Test(obj)) {
3164 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3165 }
3166 if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
3167 LOG(ERROR) << "Object " << obj << " found in allocation stack";
3168 }
3169 if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
3170 LOG(ERROR) << "Object " << obj << " found in live stack";
3171 }
3172 if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
3173 LOG(ERROR) << "Ref " << ref << " found in allocation stack";
3174 }
3175 if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
3176 LOG(ERROR) << "Ref " << ref << " found in live stack";
3177 }
3178 // Attempt to see if the card table missed the reference.
3179 ScanVisitor scan_visitor;
3180 uint8_t* byte_cover_begin = reinterpret_cast<uint8_t*>(card_table->AddrFromCard(card_addr));
3181 card_table->Scan<false>(bitmap, byte_cover_begin,
3182 byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
3183 }
3184
3185 // Search to see if any of the roots reference our object.
3186 RootMatchesObjectVisitor visitor1(obj);
3187 Runtime::Current()->VisitRoots(&visitor1);
3188 // Search to see if any of the roots reference our reference.
3189 RootMatchesObjectVisitor visitor2(ref);
3190 Runtime::Current()->VisitRoots(&visitor2);
3191 }
3192 return false;
3193 }
3194
3195 Thread* const self_;
3196 Heap* const heap_;
3197 size_t* const fail_count_;
3198 const bool verify_referent_;
3199 };
3200
3201 // Verify all references within an object, for use with HeapBitmap::Visit.
3202 class VerifyObjectVisitor {
3203 public:
VerifyObjectVisitor(Thread * self,Heap * heap,size_t * fail_count,bool verify_referent)3204 VerifyObjectVisitor(Thread* self, Heap* heap, size_t* fail_count, bool verify_referent)
3205 : self_(self), heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
3206
operator ()(mirror::Object * obj)3207 void operator()(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
3208 // Note: we are verifying the references in obj but not obj itself, this is because obj must
3209 // be live or else how did we find it in the live bitmap?
3210 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3211 // The class doesn't count as a reference but we should verify it anyways.
3212 obj->VisitReferences(visitor, visitor);
3213 }
3214
VerifyRoots()3215 void VerifyRoots() REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_) {
3216 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
3217 VerifyReferenceVisitor visitor(self_, heap_, fail_count_, verify_referent_);
3218 Runtime::Current()->VisitRoots(&visitor);
3219 }
3220
GetFailureCount() const3221 uint32_t GetFailureCount() const REQUIRES(Locks::mutator_lock_) {
3222 CHECK_EQ(self_, Thread::Current());
3223 return *fail_count_;
3224 }
3225
3226 private:
3227 Thread* const self_;
3228 Heap* const heap_;
3229 size_t* const fail_count_;
3230 const bool verify_referent_;
3231 };
3232
PushOnAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3233 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, ObjPtr<mirror::Object>* obj) {
3234 // Slow path, the allocation stack push back must have already failed.
3235 DCHECK(!allocation_stack_->AtomicPushBack(obj->Ptr()));
3236 do {
3237 // TODO: Add handle VerifyObject.
3238 StackHandleScope<1> hs(self);
3239 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3240 // Push our object into the reserve region of the allocation stack. This is only required due
3241 // to heap verification requiring that roots are live (either in the live bitmap or in the
3242 // allocation stack).
3243 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3244 CollectGarbageInternal(collector::kGcTypeSticky,
3245 kGcCauseForAlloc,
3246 false,
3247 GetCurrentGcNum() + 1);
3248 } while (!allocation_stack_->AtomicPushBack(obj->Ptr()));
3249 }
3250
PushOnThreadLocalAllocationStackWithInternalGC(Thread * self,ObjPtr<mirror::Object> * obj)3251 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self,
3252 ObjPtr<mirror::Object>* obj) {
3253 // Slow path, the allocation stack push back must have already failed.
3254 DCHECK(!self->PushOnThreadLocalAllocationStack(obj->Ptr()));
3255 StackReference<mirror::Object>* start_address;
3256 StackReference<mirror::Object>* end_address;
3257 while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
3258 &end_address)) {
3259 // TODO: Add handle VerifyObject.
3260 StackHandleScope<1> hs(self);
3261 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3262 // Push our object into the reserve region of the allocaiton stack. This is only required due
3263 // to heap verification requiring that roots are live (either in the live bitmap or in the
3264 // allocation stack).
3265 CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(obj->Ptr()));
3266 // Push into the reserve allocation stack.
3267 CollectGarbageInternal(collector::kGcTypeSticky,
3268 kGcCauseForAlloc,
3269 false,
3270 GetCurrentGcNum() + 1);
3271 }
3272 self->SetThreadLocalAllocationStack(start_address, end_address);
3273 // Retry on the new thread-local allocation stack.
3274 CHECK(self->PushOnThreadLocalAllocationStack(obj->Ptr())); // Must succeed.
3275 }
3276
3277 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
VerifyHeapReferences(bool verify_referents)3278 size_t Heap::VerifyHeapReferences(bool verify_referents) {
3279 Thread* self = Thread::Current();
3280 Locks::mutator_lock_->AssertExclusiveHeld(self);
3281 // Lets sort our allocation stacks so that we can efficiently binary search them.
3282 allocation_stack_->Sort();
3283 live_stack_->Sort();
3284 // Since we sorted the allocation stack content, need to revoke all
3285 // thread-local allocation stacks.
3286 RevokeAllThreadLocalAllocationStacks(self);
3287 size_t fail_count = 0;
3288 VerifyObjectVisitor visitor(self, this, &fail_count, verify_referents);
3289 // Verify objects in the allocation stack since these will be objects which were:
3290 // 1. Allocated prior to the GC (pre GC verification).
3291 // 2. Allocated during the GC (pre sweep GC verification).
3292 // We don't want to verify the objects in the live stack since they themselves may be
3293 // pointing to dead objects if they are not reachable.
3294 VisitObjectsPaused(visitor);
3295 // Verify the roots:
3296 visitor.VerifyRoots();
3297 if (visitor.GetFailureCount() > 0) {
3298 // Dump mod-union tables.
3299 for (const auto& table_pair : mod_union_tables_) {
3300 accounting::ModUnionTable* mod_union_table = table_pair.second;
3301 mod_union_table->Dump(LOG_STREAM(ERROR) << mod_union_table->GetName() << ": ");
3302 }
3303 // Dump remembered sets.
3304 for (const auto& table_pair : remembered_sets_) {
3305 accounting::RememberedSet* remembered_set = table_pair.second;
3306 remembered_set->Dump(LOG_STREAM(ERROR) << remembered_set->GetName() << ": ");
3307 }
3308 DumpSpaces(LOG_STREAM(ERROR));
3309 }
3310 return visitor.GetFailureCount();
3311 }
3312
3313 class VerifyReferenceCardVisitor {
3314 public:
VerifyReferenceCardVisitor(Heap * heap,bool * failed)3315 VerifyReferenceCardVisitor(Heap* heap, bool* failed)
3316 REQUIRES_SHARED(Locks::mutator_lock_,
3317 Locks::heap_bitmap_lock_)
3318 : heap_(heap), failed_(failed) {
3319 }
3320
3321 // There is no card marks for native roots on a class.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3322 void VisitRootIfNonNull(
3323 [[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3324 void VisitRoot([[maybe_unused]] mirror::CompressedReference<mirror::Object>* root) const {}
3325
3326 // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
3327 // annotalysis on visitors.
operator ()(mirror::Object * obj,MemberOffset offset,bool is_static) const3328 void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
3329 NO_THREAD_SAFETY_ANALYSIS {
3330 mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
3331 // Filter out class references since changing an object's class does not mark the card as dirty.
3332 // Also handles large objects, since the only reference they hold is a class reference.
3333 if (ref != nullptr && !ref->IsClass()) {
3334 accounting::CardTable* card_table = heap_->GetCardTable();
3335 // If the object is not dirty and it is referencing something in the live stack other than
3336 // class, then it must be on a dirty card.
3337 if (!card_table->AddrIsInCardTable(obj)) {
3338 LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
3339 *failed_ = true;
3340 } else if (!card_table->IsDirty(obj)) {
3341 // TODO: Check mod-union tables.
3342 // Card should be either kCardDirty if it got re-dirtied after we aged it, or
3343 // kCardDirty - 1 if it didnt get touched since we aged it.
3344 accounting::ObjectStack* live_stack = heap_->live_stack_.get();
3345 if (live_stack->ContainsSorted(ref)) {
3346 if (live_stack->ContainsSorted(obj)) {
3347 LOG(ERROR) << "Object " << obj << " found in live stack";
3348 }
3349 if (heap_->GetLiveBitmap()->Test(obj)) {
3350 LOG(ERROR) << "Object " << obj << " found in live bitmap";
3351 }
3352 LOG(ERROR) << "Object " << obj << " " << mirror::Object::PrettyTypeOf(obj)
3353 << " references " << ref << " " << mirror::Object::PrettyTypeOf(ref)
3354 << " in live stack";
3355
3356 // Print which field of the object is dead.
3357 if (!obj->IsObjectArray()) {
3358 ObjPtr<mirror::Class> klass = is_static ? obj->AsClass() : obj->GetClass();
3359 CHECK(klass != nullptr);
3360 for (ArtField& field : (is_static ? klass->GetSFields() : klass->GetIFields())) {
3361 if (field.GetOffset().Int32Value() == offset.Int32Value()) {
3362 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
3363 << field.PrettyField();
3364 break;
3365 }
3366 }
3367 } else {
3368 ObjPtr<mirror::ObjectArray<mirror::Object>> object_array =
3369 obj->AsObjectArray<mirror::Object>();
3370 for (int32_t i = 0; i < object_array->GetLength(); ++i) {
3371 if (object_array->Get(i) == ref) {
3372 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
3373 }
3374 }
3375 }
3376
3377 *failed_ = true;
3378 }
3379 }
3380 }
3381 }
3382
3383 private:
3384 Heap* const heap_;
3385 bool* const failed_;
3386 };
3387
3388 class VerifyLiveStackReferences {
3389 public:
VerifyLiveStackReferences(Heap * heap)3390 explicit VerifyLiveStackReferences(Heap* heap)
3391 : heap_(heap),
3392 failed_(false) {}
3393
operator ()(mirror::Object * obj) const3394 void operator()(mirror::Object* obj) const
3395 REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
3396 VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
3397 obj->VisitReferences(visitor, VoidFunctor());
3398 }
3399
Failed() const3400 bool Failed() const {
3401 return failed_;
3402 }
3403
3404 private:
3405 Heap* const heap_;
3406 bool failed_;
3407 };
3408
VerifyMissingCardMarks()3409 bool Heap::VerifyMissingCardMarks() {
3410 Thread* self = Thread::Current();
3411 Locks::mutator_lock_->AssertExclusiveHeld(self);
3412 // We need to sort the live stack since we binary search it.
3413 live_stack_->Sort();
3414 // Since we sorted the allocation stack content, need to revoke all
3415 // thread-local allocation stacks.
3416 RevokeAllThreadLocalAllocationStacks(self);
3417 VerifyLiveStackReferences visitor(this);
3418 GetLiveBitmap()->Visit(visitor);
3419 // We can verify objects in the live stack since none of these should reference dead objects.
3420 for (auto* it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
3421 if (!kUseThreadLocalAllocationStack || it->AsMirrorPtr() != nullptr) {
3422 visitor(it->AsMirrorPtr());
3423 }
3424 }
3425 return !visitor.Failed();
3426 }
3427
SwapStacks()3428 void Heap::SwapStacks() {
3429 if (kUseThreadLocalAllocationStack) {
3430 live_stack_->AssertAllZero();
3431 }
3432 allocation_stack_.swap(live_stack_);
3433 }
3434
RevokeAllThreadLocalAllocationStacks(Thread * self)3435 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
3436 // This must be called only during the pause.
3437 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
3438 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
3439 MutexLock mu2(self, *Locks::thread_list_lock_);
3440 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
3441 for (Thread* t : thread_list) {
3442 t->RevokeThreadLocalAllocationStack();
3443 }
3444 }
3445
AssertThreadLocalBuffersAreRevoked(Thread * thread)3446 void Heap::AssertThreadLocalBuffersAreRevoked(Thread* thread) {
3447 if (kIsDebugBuild) {
3448 if (rosalloc_space_ != nullptr) {
3449 rosalloc_space_->AssertThreadLocalBuffersAreRevoked(thread);
3450 }
3451 if (bump_pointer_space_ != nullptr) {
3452 bump_pointer_space_->AssertThreadLocalBuffersAreRevoked(thread);
3453 }
3454 }
3455 }
3456
AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked()3457 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
3458 if (kIsDebugBuild) {
3459 if (bump_pointer_space_ != nullptr) {
3460 bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
3461 }
3462 }
3463 }
3464
FindModUnionTableFromSpace(space::Space * space)3465 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
3466 auto it = mod_union_tables_.find(space);
3467 if (it == mod_union_tables_.end()) {
3468 return nullptr;
3469 }
3470 return it->second;
3471 }
3472
FindRememberedSetFromSpace(space::Space * space)3473 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
3474 auto it = remembered_sets_.find(space);
3475 if (it == remembered_sets_.end()) {
3476 return nullptr;
3477 }
3478 return it->second;
3479 }
3480
ProcessCards(TimingLogger * timings,bool use_rem_sets,bool process_alloc_space_cards,bool clear_alloc_space_cards)3481 void Heap::ProcessCards(TimingLogger* timings,
3482 bool use_rem_sets,
3483 bool process_alloc_space_cards,
3484 bool clear_alloc_space_cards) {
3485 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3486 // Clear cards and keep track of cards cleared in the mod-union table.
3487 for (const auto& space : continuous_spaces_) {
3488 accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
3489 accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
3490 if (table != nullptr) {
3491 const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
3492 "ImageModUnionClearCards";
3493 TimingLogger::ScopedTiming t2(name, timings);
3494 table->ProcessCards();
3495 } else if (use_rem_sets && rem_set != nullptr) {
3496 DCHECK(collector::SemiSpace::kUseRememberedSet) << static_cast<int>(collector_type_);
3497 TimingLogger::ScopedTiming t2("AllocSpaceRemSetClearCards", timings);
3498 rem_set->ClearCards();
3499 } else if (process_alloc_space_cards) {
3500 TimingLogger::ScopedTiming t2("AllocSpaceClearCards", timings);
3501 if (clear_alloc_space_cards) {
3502 uint8_t* end = space->End();
3503 if (space->IsImageSpace()) {
3504 // Image space end is the end of the mirror objects, it is not necessarily page or card
3505 // aligned. Align up so that the check in ClearCardRange does not fail.
3506 end = AlignUp(end, accounting::CardTable::kCardSize);
3507 }
3508 card_table_->ClearCardRange(space->Begin(), end);
3509 } else {
3510 // No mod union table for the AllocSpace. Age the cards so that the GC knows that these
3511 // cards were dirty before the GC started.
3512 // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
3513 // -> clean(cleaning thread).
3514 // The races are we either end up with: Aged card, unaged card. Since we have the
3515 // checkpoint roots and then we scan / update mod union tables after. We will always
3516 // scan either card. If we end up with the non aged card, we scan it it in the pause.
3517 card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
3518 VoidFunctor());
3519 }
3520 }
3521 }
3522 }
3523
3524 struct IdentityMarkHeapReferenceVisitor : public MarkObjectVisitor {
MarkObjectart::gc::IdentityMarkHeapReferenceVisitor3525 mirror::Object* MarkObject(mirror::Object* obj) override {
3526 return obj;
3527 }
MarkHeapReferenceart::gc::IdentityMarkHeapReferenceVisitor3528 void MarkHeapReference(mirror::HeapReference<mirror::Object>*, bool) override {
3529 }
3530 };
3531
PreGcVerificationPaused(collector::GarbageCollector * gc)3532 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
3533 Thread* const self = Thread::Current();
3534 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3535 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3536 if (verify_pre_gc_heap_) {
3537 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyHeapReferences", timings);
3538 size_t failures = VerifyHeapReferences();
3539 if (failures > 0) {
3540 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3541 << " failures";
3542 }
3543 }
3544 // Check that all objects which reference things in the live stack are on dirty cards.
3545 if (verify_missing_card_marks_) {
3546 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyMissingCardMarks", timings);
3547 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
3548 SwapStacks();
3549 // Sort the live stack so that we can quickly binary search it later.
3550 CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
3551 << " missing card mark verification failed\n" << DumpSpaces();
3552 SwapStacks();
3553 }
3554 if (verify_mod_union_table_) {
3555 TimingLogger::ScopedTiming t2("(Paused)PreGcVerifyModUnionTables", timings);
3556 ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
3557 for (const auto& table_pair : mod_union_tables_) {
3558 accounting::ModUnionTable* mod_union_table = table_pair.second;
3559 IdentityMarkHeapReferenceVisitor visitor;
3560 mod_union_table->UpdateAndMarkReferences(&visitor);
3561 mod_union_table->Verify();
3562 }
3563 }
3564 }
3565
PreGcVerification(collector::GarbageCollector * gc)3566 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
3567 if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
3568 collector::GarbageCollector::ScopedPause pause(gc, false);
3569 PreGcVerificationPaused(gc);
3570 }
3571 }
3572
PrePauseRosAllocVerification(collector::GarbageCollector * gc)3573 void Heap::PrePauseRosAllocVerification([[maybe_unused]] collector::GarbageCollector* gc) {
3574 // TODO: Add a new runtime option for this?
3575 if (verify_pre_gc_rosalloc_) {
3576 RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
3577 }
3578 }
3579
PreSweepingGcVerification(collector::GarbageCollector * gc)3580 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
3581 Thread* const self = Thread::Current();
3582 TimingLogger* const timings = current_gc_iteration_.GetTimings();
3583 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3584 // Called before sweeping occurs since we want to make sure we are not going so reclaim any
3585 // reachable objects.
3586 if (verify_pre_sweeping_heap_) {
3587 TimingLogger::ScopedTiming t2("(Paused)PostSweepingVerifyHeapReferences", timings);
3588 CHECK_NE(self->GetState(), ThreadState::kRunnable);
3589 {
3590 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3591 // Swapping bound bitmaps does nothing.
3592 gc->SwapBitmaps();
3593 }
3594 // Pass in false since concurrent reference processing can mean that the reference referents
3595 // may point to dead objects at the point which PreSweepingGcVerification is called.
3596 size_t failures = VerifyHeapReferences(false);
3597 if (failures > 0) {
3598 LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
3599 << " failures";
3600 }
3601 {
3602 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3603 gc->SwapBitmaps();
3604 }
3605 }
3606 if (verify_pre_sweeping_rosalloc_) {
3607 RosAllocVerification(timings, "PreSweepingRosAllocVerification");
3608 }
3609 }
3610
PostGcVerificationPaused(collector::GarbageCollector * gc)3611 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
3612 // Only pause if we have to do some verification.
3613 Thread* const self = Thread::Current();
3614 TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
3615 TimingLogger::ScopedTiming t(__FUNCTION__, timings);
3616 if (verify_system_weaks_) {
3617 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3618 collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
3619 mark_sweep->VerifySystemWeaks();
3620 }
3621 if (verify_post_gc_rosalloc_) {
3622 RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
3623 }
3624 if (verify_post_gc_heap_) {
3625 TimingLogger::ScopedTiming t2("(Paused)PostGcVerifyHeapReferences", timings);
3626 size_t failures = VerifyHeapReferences();
3627 if (failures > 0) {
3628 LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
3629 << " failures";
3630 }
3631 }
3632 }
3633
PostGcVerification(collector::GarbageCollector * gc)3634 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
3635 if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
3636 collector::GarbageCollector::ScopedPause pause(gc, false);
3637 PostGcVerificationPaused(gc);
3638 }
3639 }
3640
RosAllocVerification(TimingLogger * timings,const char * name)3641 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
3642 TimingLogger::ScopedTiming t(name, timings);
3643 for (const auto& space : continuous_spaces_) {
3644 if (space->IsRosAllocSpace()) {
3645 VLOG(heap) << name << " : " << space->GetName();
3646 space->AsRosAllocSpace()->Verify();
3647 }
3648 }
3649 }
3650
WaitForGcToComplete(GcCause cause,Thread * self)3651 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
3652 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForGcToComplete);
3653 MutexLock mu(self, *gc_complete_lock_);
3654 return WaitForGcToCompleteLocked(cause, self);
3655 }
3656
WaitForGcToCompleteLocked(GcCause cause,Thread * self)3657 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
3658 gc_complete_cond_->CheckSafeToWait(self);
3659 collector::GcType last_gc_type = collector::kGcTypeNone;
3660 GcCause last_gc_cause = kGcCauseNone;
3661 uint64_t wait_start = NanoTime();
3662 while (collector_type_running_ != kCollectorTypeNone) {
3663 if (!task_processor_->IsRunningThread(self)) {
3664 // The current thread is about to wait for a currently running
3665 // collection to finish. If the waiting thread is not the heap
3666 // task daemon thread, the currently running collection is
3667 // considered as a blocking GC.
3668 running_collection_is_blocking_ = true;
3669 VLOG(gc) << "Waiting for a blocking GC " << cause;
3670 }
3671 SCOPED_TRACE << "GC: Wait For Completion " << cause;
3672 // We must wait, change thread state then sleep on gc_complete_cond_;
3673 gc_complete_cond_->Wait(self);
3674 last_gc_type = last_gc_type_;
3675 last_gc_cause = last_gc_cause_;
3676 }
3677 uint64_t wait_time = NanoTime() - wait_start;
3678 total_wait_time_ += wait_time;
3679 if (wait_time > long_pause_log_threshold_) {
3680 LOG(INFO) << "WaitForGcToComplete blocked " << cause << " on " << last_gc_cause << " for "
3681 << PrettyDuration(wait_time);
3682 }
3683 if (!task_processor_->IsRunningThread(self)) {
3684 // The current thread is about to run a collection. If the thread
3685 // is not the heap task daemon thread, it's considered as a
3686 // blocking GC (i.e., blocking itself).
3687 running_collection_is_blocking_ = true;
3688 // Don't log fake "GC" types that are only used for debugger or hidden APIs. If we log these,
3689 // it results in log spam. kGcCauseExplicit is already logged in LogGC, so avoid it here too.
3690 if (cause == kGcCauseForAlloc ||
3691 cause == kGcCauseDisableMovingGc) {
3692 VLOG(gc) << "Starting a blocking GC " << cause;
3693 }
3694 }
3695 return last_gc_type;
3696 }
3697
DumpForSigQuit(std::ostream & os)3698 void Heap::DumpForSigQuit(std::ostream& os) {
3699 os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
3700 << PrettySize(GetTotalMemory());
3701 {
3702 os << "Image spaces:\n";
3703 ScopedObjectAccess soa(Thread::Current());
3704 for (const auto& space : continuous_spaces_) {
3705 if (space->IsImageSpace()) {
3706 os << space->GetName() << "\n";
3707 }
3708 }
3709 }
3710 DumpGcPerformanceInfo(os);
3711 }
3712
GetPercentFree()3713 size_t Heap::GetPercentFree() {
3714 return static_cast<size_t>(100.0f * static_cast<float>(
3715 GetFreeMemory()) / target_footprint_.load(std::memory_order_relaxed));
3716 }
3717
SetIdealFootprint(size_t target_footprint)3718 void Heap::SetIdealFootprint(size_t target_footprint) {
3719 if (target_footprint > GetMaxMemory()) {
3720 VLOG(gc) << "Clamp target GC heap from " << PrettySize(target_footprint) << " to "
3721 << PrettySize(GetMaxMemory());
3722 target_footprint = GetMaxMemory();
3723 }
3724 target_footprint_.store(target_footprint, std::memory_order_relaxed);
3725 }
3726
IsMovableObject(ObjPtr<mirror::Object> obj) const3727 bool Heap::IsMovableObject(ObjPtr<mirror::Object> obj) const {
3728 if (kMovingCollector) {
3729 space::Space* space = FindContinuousSpaceFromObject(obj.Ptr(), true);
3730 if (space != nullptr) {
3731 // TODO: Check large object?
3732 return space->CanMoveObjects();
3733 }
3734 }
3735 return false;
3736 }
3737
FindCollectorByGcType(collector::GcType gc_type)3738 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
3739 for (auto* collector : garbage_collectors_) {
3740 if (collector->GetCollectorType() == collector_type_ &&
3741 collector->GetGcType() == gc_type) {
3742 return collector;
3743 }
3744 }
3745 return nullptr;
3746 }
3747
HeapGrowthMultiplier() const3748 double Heap::HeapGrowthMultiplier() const {
3749 // If we don't care about pause times we are background, so return 1.0.
3750 if (!CareAboutPauseTimes()) {
3751 return 1.0;
3752 }
3753 return foreground_heap_growth_multiplier_;
3754 }
3755
GrowForUtilization(collector::GarbageCollector * collector_ran,size_t bytes_allocated_before_gc)3756 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran,
3757 size_t bytes_allocated_before_gc) {
3758 // We're running in the thread that set collector_type_running_ to something other than none,
3759 // thus ensuring that there is only one of us running. Thus
3760 // collector_type_running_ != kCollectorTypeNone, but that's a little tricky to turn into a
3761 // DCHECK.
3762
3763 // We know what our utilization is at this moment.
3764 // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
3765 const size_t bytes_allocated = GetBytesAllocated();
3766 // Trace the new heap size after the GC is finished.
3767 TraceHeapSize(bytes_allocated);
3768 uint64_t target_size, grow_bytes;
3769 collector::GcType gc_type = collector_ran->GetGcType();
3770 MutexLock mu(Thread::Current(), process_state_update_lock_);
3771 // Use the multiplier to grow more for foreground.
3772 const double multiplier = HeapGrowthMultiplier();
3773 if (gc_type != collector::kGcTypeSticky) {
3774 // Grow the heap for non sticky GC.
3775 uint64_t delta = bytes_allocated * (1.0 / GetTargetHeapUtilization() - 1.0);
3776 DCHECK_LE(delta, std::numeric_limits<size_t>::max()) << "bytes_allocated=" << bytes_allocated
3777 << " target_utilization_=" << target_utilization_;
3778 grow_bytes = std::min(delta, static_cast<uint64_t>(max_free_));
3779 grow_bytes = std::max(grow_bytes, static_cast<uint64_t>(min_free_));
3780 target_size = bytes_allocated + static_cast<uint64_t>(grow_bytes * multiplier);
3781 next_gc_type_ = collector::kGcTypeSticky;
3782 } else {
3783 collector::GcType non_sticky_gc_type = NonStickyGcType();
3784 // Find what the next non sticky collector will be.
3785 collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
3786 if (use_generational_cc_) {
3787 if (non_sticky_collector == nullptr) {
3788 non_sticky_collector = FindCollectorByGcType(collector::kGcTypePartial);
3789 }
3790 CHECK(non_sticky_collector != nullptr);
3791 }
3792 double sticky_gc_throughput_adjustment = GetStickyGcThroughputAdjustment(use_generational_cc_);
3793
3794 // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
3795 // do another sticky collection next.
3796 // We also check that the bytes allocated aren't over the target_footprint, or
3797 // concurrent_start_bytes in case of concurrent GCs, in order to prevent a
3798 // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
3799 // if the sticky GC throughput always remained >= the full/partial throughput.
3800 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3801 if (current_gc_iteration_.GetEstimatedThroughput() * sticky_gc_throughput_adjustment >=
3802 non_sticky_collector->GetEstimatedMeanThroughput() &&
3803 non_sticky_collector->NumberOfIterations() > 0 &&
3804 bytes_allocated <= (IsGcConcurrent() ? concurrent_start_bytes_ : target_footprint)) {
3805 next_gc_type_ = collector::kGcTypeSticky;
3806 } else {
3807 next_gc_type_ = non_sticky_gc_type;
3808 }
3809 // If we have freed enough memory, shrink the heap back down.
3810 const size_t adjusted_max_free = static_cast<size_t>(max_free_ * multiplier);
3811 if (bytes_allocated + adjusted_max_free < target_footprint) {
3812 target_size = bytes_allocated + adjusted_max_free;
3813 grow_bytes = max_free_;
3814 } else {
3815 target_size = std::max(bytes_allocated, target_footprint);
3816 // The same whether jank perceptible or not; just avoid the adjustment.
3817 grow_bytes = 0;
3818 }
3819 }
3820 CHECK_LE(target_size, std::numeric_limits<size_t>::max())
3821 << " bytes_allocated:" << bytes_allocated
3822 << " bytes_freed:" << current_gc_iteration_.GetFreedBytes()
3823 << " large_obj_bytes_freed:" << current_gc_iteration_.GetFreedLargeObjectBytes();
3824 if (!ignore_target_footprint_) {
3825 SetIdealFootprint(target_size);
3826 // Store target size (computed with foreground heap growth multiplier) for updating
3827 // target_footprint_ when process state switches to foreground.
3828 // target_size = 0 ensures that target_footprint_ is not updated on
3829 // process-state switch.
3830 min_foreground_target_footprint_ =
3831 (multiplier <= 1.0 && grow_bytes > 0)
3832 ? std::min(
3833 bytes_allocated + static_cast<size_t>(grow_bytes * foreground_heap_growth_multiplier_),
3834 GetMaxMemory())
3835 : 0;
3836
3837 if (IsGcConcurrent()) {
3838 const uint64_t freed_bytes = current_gc_iteration_.GetFreedBytes() +
3839 current_gc_iteration_.GetFreedLargeObjectBytes() +
3840 current_gc_iteration_.GetFreedRevokeBytes();
3841 // Records the number of bytes allocated at the time of GC finish,excluding the number of
3842 // bytes allocated during GC.
3843 num_bytes_alive_after_gc_ = UnsignedDifference(bytes_allocated_before_gc, freed_bytes);
3844 // Bytes allocated will shrink by freed_bytes after the GC runs, so if we want to figure out
3845 // how many bytes were allocated during the GC we need to add freed_bytes back on.
3846 // Almost always bytes_allocated + freed_bytes >= bytes_allocated_before_gc.
3847 const size_t bytes_allocated_during_gc =
3848 UnsignedDifference(bytes_allocated + freed_bytes, bytes_allocated_before_gc);
3849 // Calculate when to perform the next ConcurrentGC.
3850 // Estimate how many remaining bytes we will have when we need to start the next GC.
3851 size_t remaining_bytes = bytes_allocated_during_gc;
3852 remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
3853 remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
3854 size_t target_footprint = target_footprint_.load(std::memory_order_relaxed);
3855 if (UNLIKELY(remaining_bytes > target_footprint)) {
3856 // A never going to happen situation that from the estimated allocation rate we will exceed
3857 // the applications entire footprint with the given estimated allocation rate. Schedule
3858 // another GC nearly straight away.
3859 remaining_bytes = std::min(kMinConcurrentRemainingBytes, target_footprint);
3860 }
3861 DCHECK_LE(target_footprint_.load(std::memory_order_relaxed), GetMaxMemory());
3862 // Start a concurrent GC when we get close to the estimated remaining bytes. When the
3863 // allocation rate is very high, remaining_bytes could tell us that we should start a GC
3864 // right away.
3865 concurrent_start_bytes_ = std::max(target_footprint - remaining_bytes, bytes_allocated);
3866 // Store concurrent_start_bytes_ (computed with foreground heap growth multiplier) for update
3867 // itself when process state switches to foreground.
3868 min_foreground_concurrent_start_bytes_ =
3869 min_foreground_target_footprint_ != 0
3870 ? std::max(min_foreground_target_footprint_ - remaining_bytes, bytes_allocated)
3871 : 0;
3872 }
3873 }
3874 }
3875
ClampGrowthLimit()3876 void Heap::ClampGrowthLimit() {
3877 // Use heap bitmap lock to guard against races with BindLiveToMarkBitmap.
3878 ScopedObjectAccess soa(Thread::Current());
3879 WriterMutexLock mu(soa.Self(), *Locks::heap_bitmap_lock_);
3880 capacity_ = growth_limit_;
3881 for (const auto& space : continuous_spaces_) {
3882 if (space->IsMallocSpace()) {
3883 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3884 malloc_space->ClampGrowthLimit();
3885 }
3886 }
3887 if (large_object_space_ != nullptr) {
3888 large_object_space_->ClampGrowthLimit(capacity_);
3889 }
3890 if (collector_type_ == kCollectorTypeCC) {
3891 DCHECK(region_space_ != nullptr);
3892 // Twice the capacity as CC needs extra space for evacuating objects.
3893 region_space_->ClampGrowthLimit(2 * capacity_);
3894 } else if (collector_type_ == kCollectorTypeCMC) {
3895 DCHECK(gUseUserfaultfd);
3896 DCHECK_NE(mark_compact_, nullptr);
3897 DCHECK_NE(bump_pointer_space_, nullptr);
3898 mark_compact_->ClampGrowthLimit(capacity_);
3899 }
3900 // This space isn't added for performance reasons.
3901 if (main_space_backup_.get() != nullptr) {
3902 main_space_backup_->ClampGrowthLimit();
3903 }
3904 }
3905
ClearGrowthLimit()3906 void Heap::ClearGrowthLimit() {
3907 if (target_footprint_.load(std::memory_order_relaxed) == growth_limit_
3908 && growth_limit_ < capacity_) {
3909 target_footprint_.store(capacity_, std::memory_order_relaxed);
3910 SetDefaultConcurrentStartBytes();
3911 }
3912 growth_limit_ = capacity_;
3913 ScopedObjectAccess soa(Thread::Current());
3914 for (const auto& space : continuous_spaces_) {
3915 if (space->IsMallocSpace()) {
3916 gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
3917 malloc_space->ClearGrowthLimit();
3918 malloc_space->SetFootprintLimit(malloc_space->Capacity());
3919 }
3920 }
3921 // This space isn't added for performance reasons.
3922 if (main_space_backup_.get() != nullptr) {
3923 main_space_backup_->ClearGrowthLimit();
3924 main_space_backup_->SetFootprintLimit(main_space_backup_->Capacity());
3925 }
3926 }
3927
AddFinalizerReference(Thread * self,ObjPtr<mirror::Object> * object)3928 void Heap::AddFinalizerReference(Thread* self, ObjPtr<mirror::Object>* object) {
3929 ScopedObjectAccess soa(self);
3930 StackHandleScope<1u> hs(self);
3931 // Use handle wrapper to update the `*object` if the object gets moved.
3932 HandleWrapperObjPtr<mirror::Object> h_object = hs.NewHandleWrapper(object);
3933 WellKnownClasses::java_lang_ref_FinalizerReference_add->InvokeStatic<'V', 'L'>(
3934 self, h_object.Get());
3935 }
3936
RequestConcurrentGCAndSaveObject(Thread * self,bool force_full,uint32_t observed_gc_num,ObjPtr<mirror::Object> * obj)3937 void Heap::RequestConcurrentGCAndSaveObject(Thread* self,
3938 bool force_full,
3939 uint32_t observed_gc_num,
3940 ObjPtr<mirror::Object>* obj) {
3941 StackHandleScope<1> hs(self);
3942 HandleWrapperObjPtr<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
3943 RequestConcurrentGC(self, kGcCauseBackground, force_full, observed_gc_num);
3944 }
3945
3946 class Heap::ConcurrentGCTask : public HeapTask {
3947 public:
ConcurrentGCTask(uint64_t target_time,GcCause cause,bool force_full,uint32_t gc_num)3948 ConcurrentGCTask(uint64_t target_time, GcCause cause, bool force_full, uint32_t gc_num)
3949 : HeapTask(target_time), cause_(cause), force_full_(force_full), my_gc_num_(gc_num) {}
Run(Thread * self)3950 void Run(Thread* self) override {
3951 Runtime* runtime = Runtime::Current();
3952 gc::Heap* heap = runtime->GetHeap();
3953 DCHECK(GCNumberLt(my_gc_num_, heap->GetCurrentGcNum() + 2)); // <= current_gc_num + 1
3954 heap->ConcurrentGC(self, cause_, force_full_, my_gc_num_);
3955 CHECK_IMPLIES(GCNumberLt(heap->GetCurrentGcNum(), my_gc_num_), runtime->IsShuttingDown(self));
3956 }
3957
3958 private:
3959 const GcCause cause_;
3960 const bool force_full_; // If true, force full (or partial) collection.
3961 const uint32_t my_gc_num_; // Sequence number of requested GC.
3962 };
3963
CanAddHeapTask(Thread * self)3964 static bool CanAddHeapTask(Thread* self) REQUIRES(!Locks::runtime_shutdown_lock_) {
3965 Runtime* runtime = Runtime::Current();
3966 return runtime != nullptr && runtime->IsFinishedStarting() && !runtime->IsShuttingDown(self) &&
3967 !self->IsHandlingStackOverflow();
3968 }
3969
RequestConcurrentGC(Thread * self,GcCause cause,bool force_full,uint32_t observed_gc_num)3970 bool Heap::RequestConcurrentGC(Thread* self,
3971 GcCause cause,
3972 bool force_full,
3973 uint32_t observed_gc_num) {
3974 uint32_t max_gc_requested = max_gc_requested_.load(std::memory_order_relaxed);
3975 if (!GCNumberLt(observed_gc_num, max_gc_requested)) {
3976 // observed_gc_num >= max_gc_requested: Nobody beat us to requesting the next gc.
3977 if (CanAddHeapTask(self)) {
3978 // Since observed_gc_num >= max_gc_requested, this increases max_gc_requested_, if successful.
3979 if (max_gc_requested_.CompareAndSetStrongRelaxed(max_gc_requested, observed_gc_num + 1)) {
3980 task_processor_->AddTask(self, new ConcurrentGCTask(NanoTime(), // Start straight away.
3981 cause,
3982 force_full,
3983 observed_gc_num + 1));
3984 }
3985 DCHECK(GCNumberLt(observed_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
3986 // If we increased max_gc_requested_, then we added a task that will eventually cause
3987 // gcs_completed_ to be incremented (to at least observed_gc_num + 1).
3988 // If the CAS failed, somebody else did.
3989 return true;
3990 }
3991 return false;
3992 }
3993 return true; // Vacuously.
3994 }
3995
ConcurrentGC(Thread * self,GcCause cause,bool force_full,uint32_t requested_gc_num)3996 void Heap::ConcurrentGC(Thread* self, GcCause cause, bool force_full, uint32_t requested_gc_num) {
3997 if (!Runtime::Current()->IsShuttingDown(self)) {
3998 // Wait for any GCs currently running to finish. If this incremented GC number, we're done.
3999 WaitForGcToComplete(cause, self);
4000 if (GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
4001 collector::GcType next_gc_type = next_gc_type_;
4002 // If forcing full and next gc type is sticky, override with a non-sticky type.
4003 if (force_full && next_gc_type == collector::kGcTypeSticky) {
4004 next_gc_type = NonStickyGcType();
4005 }
4006 // If we can't run the GC type we wanted to run, find the next appropriate one and try
4007 // that instead. E.g. can't do partial, so do full instead.
4008 // We must ensure that we run something that ends up incrementing gcs_completed_.
4009 // In the kGcTypePartial case, the initial CollectGarbageInternal call may not have that
4010 // effect, but the subsequent KGcTypeFull call will.
4011 if (CollectGarbageInternal(next_gc_type, cause, false, requested_gc_num)
4012 == collector::kGcTypeNone) {
4013 for (collector::GcType gc_type : gc_plan_) {
4014 if (!GCNumberLt(GetCurrentGcNum(), requested_gc_num)) {
4015 // Somebody did it for us.
4016 break;
4017 }
4018 // Attempt to run the collector, if we succeed, we are done.
4019 if (gc_type > next_gc_type &&
4020 CollectGarbageInternal(gc_type, cause, false, requested_gc_num)
4021 != collector::kGcTypeNone) {
4022 break;
4023 }
4024 }
4025 }
4026 }
4027 }
4028 }
4029
4030 class Heap::CollectorTransitionTask : public HeapTask {
4031 public:
CollectorTransitionTask(uint64_t target_time)4032 explicit CollectorTransitionTask(uint64_t target_time) : HeapTask(target_time) {}
4033
Run(Thread * self)4034 void Run(Thread* self) override {
4035 gc::Heap* heap = Runtime::Current()->GetHeap();
4036 heap->DoPendingCollectorTransition();
4037 heap->ClearPendingCollectorTransition(self);
4038 }
4039 };
4040
ClearPendingCollectorTransition(Thread * self)4041 void Heap::ClearPendingCollectorTransition(Thread* self) {
4042 MutexLock mu(self, *pending_task_lock_);
4043 pending_collector_transition_ = nullptr;
4044 }
4045
RequestCollectorTransition(CollectorType desired_collector_type,uint64_t delta_time)4046 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
4047 Thread* self = Thread::Current();
4048 desired_collector_type_ = desired_collector_type;
4049 if (desired_collector_type_ == collector_type_ || !CanAddHeapTask(self)) {
4050 return;
4051 }
4052 if (collector_type_ == kCollectorTypeCC) {
4053 // For CC, we invoke a full compaction when going to the background, but the collector type
4054 // doesn't change.
4055 DCHECK_EQ(desired_collector_type_, kCollectorTypeCCBackground);
4056 }
4057 if (collector_type_ == kCollectorTypeCMC) {
4058 // For CMC collector type doesn't change.
4059 DCHECK_EQ(desired_collector_type_, kCollectorTypeCMCBackground);
4060 }
4061 DCHECK_NE(collector_type_, kCollectorTypeCCBackground);
4062 DCHECK_NE(collector_type_, kCollectorTypeCMCBackground);
4063 CollectorTransitionTask* added_task = nullptr;
4064 const uint64_t target_time = NanoTime() + delta_time;
4065 {
4066 MutexLock mu(self, *pending_task_lock_);
4067 // If we have an existing collector transition, update the target time to be the new target.
4068 if (pending_collector_transition_ != nullptr) {
4069 task_processor_->UpdateTargetRunTime(self, pending_collector_transition_, target_time);
4070 return;
4071 }
4072 added_task = new CollectorTransitionTask(target_time);
4073 pending_collector_transition_ = added_task;
4074 }
4075 task_processor_->AddTask(self, added_task);
4076 }
4077
4078 class Heap::HeapTrimTask : public HeapTask {
4079 public:
HeapTrimTask(uint64_t delta_time)4080 explicit HeapTrimTask(uint64_t delta_time) : HeapTask(NanoTime() + delta_time) { }
Run(Thread * self)4081 void Run(Thread* self) override {
4082 gc::Heap* heap = Runtime::Current()->GetHeap();
4083 heap->Trim(self);
4084 heap->ClearPendingTrim(self);
4085 }
4086 };
4087
ClearPendingTrim(Thread * self)4088 void Heap::ClearPendingTrim(Thread* self) {
4089 MutexLock mu(self, *pending_task_lock_);
4090 pending_heap_trim_ = nullptr;
4091 }
4092
RequestTrim(Thread * self)4093 void Heap::RequestTrim(Thread* self) {
4094 if (!CanAddHeapTask(self)) {
4095 return;
4096 }
4097 // GC completed and now we must decide whether to request a heap trim (advising pages back to the
4098 // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
4099 // a space it will hold its lock and can become a cause of jank.
4100 // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
4101 // forking.
4102
4103 // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
4104 // because that only marks object heads, so a large array looks like lots of empty space. We
4105 // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
4106 // to utilization (which is probably inversely proportional to how much benefit we can expect).
4107 // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
4108 // not how much use we're making of those pages.
4109 HeapTrimTask* added_task = nullptr;
4110 {
4111 MutexLock mu(self, *pending_task_lock_);
4112 if (pending_heap_trim_ != nullptr) {
4113 // Already have a heap trim request in task processor, ignore this request.
4114 return;
4115 }
4116 added_task = new HeapTrimTask(kHeapTrimWait);
4117 pending_heap_trim_ = added_task;
4118 }
4119 task_processor_->AddTask(self, added_task);
4120 }
4121
IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke)4122 void Heap::IncrementNumberOfBytesFreedRevoke(size_t freed_bytes_revoke) {
4123 size_t previous_num_bytes_freed_revoke =
4124 num_bytes_freed_revoke_.fetch_add(freed_bytes_revoke, std::memory_order_relaxed);
4125 // Check the updated value is less than the number of bytes allocated. There is a risk of
4126 // execution being suspended between the increment above and the CHECK below, leading to
4127 // the use of previous_num_bytes_freed_revoke in the comparison.
4128 CHECK_GE(num_bytes_allocated_.load(std::memory_order_relaxed),
4129 previous_num_bytes_freed_revoke + freed_bytes_revoke);
4130 }
4131
RevokeThreadLocalBuffers(Thread * thread)4132 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
4133 if (rosalloc_space_ != nullptr) {
4134 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
4135 if (freed_bytes_revoke > 0U) {
4136 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4137 }
4138 }
4139 if (bump_pointer_space_ != nullptr) {
4140 CHECK_EQ(bump_pointer_space_->RevokeThreadLocalBuffers(thread), 0U);
4141 }
4142 if (region_space_ != nullptr) {
4143 CHECK_EQ(region_space_->RevokeThreadLocalBuffers(thread), 0U);
4144 }
4145 }
4146
RevokeRosAllocThreadLocalBuffers(Thread * thread)4147 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
4148 if (rosalloc_space_ != nullptr) {
4149 size_t freed_bytes_revoke = rosalloc_space_->RevokeThreadLocalBuffers(thread);
4150 if (freed_bytes_revoke > 0U) {
4151 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4152 }
4153 }
4154 }
4155
RevokeAllThreadLocalBuffers()4156 void Heap::RevokeAllThreadLocalBuffers() {
4157 if (rosalloc_space_ != nullptr) {
4158 size_t freed_bytes_revoke = rosalloc_space_->RevokeAllThreadLocalBuffers();
4159 if (freed_bytes_revoke > 0U) {
4160 IncrementNumberOfBytesFreedRevoke(freed_bytes_revoke);
4161 }
4162 }
4163 if (bump_pointer_space_ != nullptr) {
4164 CHECK_EQ(bump_pointer_space_->RevokeAllThreadLocalBuffers(), 0U);
4165 }
4166 if (region_space_ != nullptr) {
4167 CHECK_EQ(region_space_->RevokeAllThreadLocalBuffers(), 0U);
4168 }
4169 }
4170
4171 // For GC triggering purposes, we count old (pre-last-GC) and new native allocations as
4172 // different fractions of Java allocations.
4173 // For now, we essentially do not count old native allocations at all, so that we can preserve the
4174 // existing behavior of not limiting native heap size. If we seriously considered it, we would
4175 // have to adjust collection thresholds when we encounter large amounts of old native memory,
4176 // and handle native out-of-memory situations.
4177
4178 static constexpr size_t kOldNativeDiscountFactor = 65536; // Approximately infinite for now.
4179 static constexpr size_t kNewNativeDiscountFactor = 2;
4180
4181 // If weighted java + native memory use exceeds our target by kStopForNativeFactor, and
4182 // newly allocated memory exceeds stop_for_native_allocs_, we wait for GC to complete to avoid
4183 // running out of memory.
4184 static constexpr float kStopForNativeFactor = 4.0;
4185
4186 // Return the ratio of the weighted native + java allocated bytes to its target value.
4187 // A return value > 1.0 means we should collect. Significantly larger values mean we're falling
4188 // behind.
NativeMemoryOverTarget(size_t current_native_bytes,bool is_gc_concurrent)4189 inline float Heap::NativeMemoryOverTarget(size_t current_native_bytes, bool is_gc_concurrent) {
4190 // Collection check for native allocation. Does not enforce Java heap bounds.
4191 // With adj_start_bytes defined below, effectively checks
4192 // <java bytes allocd> + c1*<old native allocd> + c2*<new native allocd) >= adj_start_bytes,
4193 // where c3 > 1, and currently c1 and c2 are 1 divided by the values defined above.
4194 size_t old_native_bytes = old_native_bytes_allocated_.load(std::memory_order_relaxed);
4195 if (old_native_bytes > current_native_bytes) {
4196 // Net decrease; skip the check, but update old value.
4197 // It's OK to lose an update if two stores race.
4198 old_native_bytes_allocated_.store(current_native_bytes, std::memory_order_relaxed);
4199 return 0.0;
4200 } else {
4201 size_t new_native_bytes = UnsignedDifference(current_native_bytes, old_native_bytes);
4202 size_t weighted_native_bytes = new_native_bytes / kNewNativeDiscountFactor
4203 + old_native_bytes / kOldNativeDiscountFactor;
4204 size_t add_bytes_allowed = static_cast<size_t>(
4205 NativeAllocationGcWatermark() * HeapGrowthMultiplier());
4206 size_t java_gc_start_bytes = is_gc_concurrent
4207 ? concurrent_start_bytes_
4208 : target_footprint_.load(std::memory_order_relaxed);
4209 size_t adj_start_bytes = UnsignedSum(java_gc_start_bytes,
4210 add_bytes_allowed / kNewNativeDiscountFactor);
4211 return static_cast<float>(GetBytesAllocated() + weighted_native_bytes)
4212 / static_cast<float>(adj_start_bytes);
4213 }
4214 }
4215
CheckGCForNative(Thread * self)4216 inline void Heap::CheckGCForNative(Thread* self) {
4217 bool is_gc_concurrent = IsGcConcurrent();
4218 uint32_t starting_gc_num = GetCurrentGcNum();
4219 size_t current_native_bytes = GetNativeBytes();
4220 float gc_urgency = NativeMemoryOverTarget(current_native_bytes, is_gc_concurrent);
4221 if (UNLIKELY(gc_urgency >= 1.0)) {
4222 if (is_gc_concurrent) {
4223 bool requested =
4224 RequestConcurrentGC(self, kGcCauseForNativeAlloc, /*force_full=*/true, starting_gc_num);
4225 if (requested && gc_urgency > kStopForNativeFactor
4226 && current_native_bytes > stop_for_native_allocs_) {
4227 // We're in danger of running out of memory due to rampant native allocation.
4228 if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
4229 LOG(INFO) << "Stopping for native allocation, urgency: " << gc_urgency;
4230 }
4231 // Count how many times we do this, so we can warn if this becomes excessive.
4232 // Stop after a while, out of excessive caution.
4233 static constexpr int kGcWaitIters = 20;
4234 for (int i = 1; i <= kGcWaitIters; ++i) {
4235 if (!GCNumberLt(GetCurrentGcNum(), max_gc_requested_.load(std::memory_order_relaxed))
4236 || WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
4237 break;
4238 }
4239 CHECK(GCNumberLt(starting_gc_num, max_gc_requested_.load(std::memory_order_relaxed)));
4240 if (i % 10 == 0) {
4241 LOG(WARNING) << "Slept " << i << " times in native allocation, waiting for GC";
4242 }
4243 static constexpr int kGcWaitSleepMicros = 2000;
4244 usleep(kGcWaitSleepMicros); // Encourage our requested GC to start.
4245 }
4246 }
4247 } else {
4248 CollectGarbageInternal(NonStickyGcType(), kGcCauseForNativeAlloc, false, starting_gc_num + 1);
4249 }
4250 }
4251 }
4252
4253 // About kNotifyNativeInterval allocations have occurred. Check whether we should garbage collect.
NotifyNativeAllocations(JNIEnv * env)4254 void Heap::NotifyNativeAllocations(JNIEnv* env) {
4255 native_objects_notified_.fetch_add(kNotifyNativeInterval, std::memory_order_relaxed);
4256 CheckGCForNative(Thread::ForEnv(env));
4257 }
4258
4259 // Register a native allocation with an explicit size.
4260 // This should only be done for large allocations of non-malloc memory, which we wouldn't
4261 // otherwise see.
RegisterNativeAllocation(JNIEnv * env,size_t bytes)4262 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
4263 // Cautiously check for a wrapped negative bytes argument.
4264 DCHECK(sizeof(size_t) < 8 || bytes < (std::numeric_limits<size_t>::max() / 2));
4265 native_bytes_registered_.fetch_add(bytes, std::memory_order_relaxed);
4266 uint32_t objects_notified =
4267 native_objects_notified_.fetch_add(1, std::memory_order_relaxed);
4268 if (objects_notified % kNotifyNativeInterval == kNotifyNativeInterval - 1
4269 || bytes > kCheckImmediatelyThreshold) {
4270 CheckGCForNative(Thread::ForEnv(env));
4271 }
4272 // Heap profiler treats this as a Java allocation with a null object.
4273 if (GetHeapSampler().IsEnabled()) {
4274 JHPCheckNonTlabSampleAllocation(Thread::Current(), nullptr, bytes);
4275 }
4276 }
4277
RegisterNativeFree(JNIEnv *,size_t bytes)4278 void Heap::RegisterNativeFree(JNIEnv*, size_t bytes) {
4279 size_t allocated;
4280 size_t new_freed_bytes;
4281 do {
4282 allocated = native_bytes_registered_.load(std::memory_order_relaxed);
4283 new_freed_bytes = std::min(allocated, bytes);
4284 // We should not be registering more free than allocated bytes.
4285 // But correctly keep going in non-debug builds.
4286 DCHECK_EQ(new_freed_bytes, bytes);
4287 } while (!native_bytes_registered_.CompareAndSetWeakRelaxed(allocated,
4288 allocated - new_freed_bytes));
4289 }
4290
GetTotalMemory() const4291 size_t Heap::GetTotalMemory() const {
4292 return std::max(target_footprint_.load(std::memory_order_relaxed), GetBytesAllocated());
4293 }
4294
AddModUnionTable(accounting::ModUnionTable * mod_union_table)4295 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
4296 DCHECK(mod_union_table != nullptr);
4297 mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
4298 }
4299
CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c,size_t byte_count)4300 void Heap::CheckPreconditionsForAllocObject(ObjPtr<mirror::Class> c, size_t byte_count) {
4301 // Compare rounded sizes since the allocation may have been retried after rounding the size.
4302 // See b/37885600
4303 CHECK(c == nullptr || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
4304 (c->IsVariableSize() ||
4305 RoundUp(c->GetObjectSize(), kObjectAlignment) ==
4306 RoundUp(byte_count, kObjectAlignment)))
4307 << "ClassFlags=" << c->GetClassFlags()
4308 << " IsClassClass=" << c->IsClassClass()
4309 << " byte_count=" << byte_count
4310 << " IsVariableSize=" << c->IsVariableSize()
4311 << " ObjectSize=" << c->GetObjectSize()
4312 << " sizeof(Class)=" << sizeof(mirror::Class)
4313 << " " << verification_->DumpObjectInfo(c.Ptr(), /*tag=*/ "klass");
4314 CHECK_GE(byte_count, sizeof(mirror::Object));
4315 }
4316
AddRememberedSet(accounting::RememberedSet * remembered_set)4317 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
4318 CHECK(remembered_set != nullptr);
4319 space::Space* space = remembered_set->GetSpace();
4320 CHECK(space != nullptr);
4321 CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
4322 remembered_sets_.Put(space, remembered_set);
4323 CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
4324 }
4325
RemoveRememberedSet(space::Space * space)4326 void Heap::RemoveRememberedSet(space::Space* space) {
4327 CHECK(space != nullptr);
4328 auto it = remembered_sets_.find(space);
4329 CHECK(it != remembered_sets_.end());
4330 delete it->second;
4331 remembered_sets_.erase(it);
4332 CHECK(remembered_sets_.find(space) == remembered_sets_.end());
4333 }
4334
ClearMarkedObjects(bool release_eagerly)4335 void Heap::ClearMarkedObjects(bool release_eagerly) {
4336 // Clear all of the spaces' mark bitmaps.
4337 for (const auto& space : GetContinuousSpaces()) {
4338 if (space->GetLiveBitmap() != nullptr && !space->HasBoundBitmaps()) {
4339 space->GetMarkBitmap()->Clear(release_eagerly);
4340 }
4341 }
4342 // Clear the marked objects in the discontinous space object sets.
4343 for (const auto& space : GetDiscontinuousSpaces()) {
4344 space->GetMarkBitmap()->Clear(release_eagerly);
4345 }
4346 }
4347
SetAllocationRecords(AllocRecordObjectMap * records)4348 void Heap::SetAllocationRecords(AllocRecordObjectMap* records) {
4349 allocation_records_.reset(records);
4350 }
4351
VisitAllocationRecords(RootVisitor * visitor) const4352 void Heap::VisitAllocationRecords(RootVisitor* visitor) const {
4353 if (IsAllocTrackingEnabled()) {
4354 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4355 if (IsAllocTrackingEnabled()) {
4356 GetAllocationRecords()->VisitRoots(visitor);
4357 }
4358 }
4359 }
4360
SweepAllocationRecords(IsMarkedVisitor * visitor) const4361 void Heap::SweepAllocationRecords(IsMarkedVisitor* visitor) const {
4362 if (IsAllocTrackingEnabled()) {
4363 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4364 if (IsAllocTrackingEnabled()) {
4365 GetAllocationRecords()->SweepAllocationRecords(visitor);
4366 }
4367 }
4368 }
4369
AllowNewAllocationRecords() const4370 void Heap::AllowNewAllocationRecords() const {
4371 CHECK(!gUseReadBarrier);
4372 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4373 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4374 if (allocation_records != nullptr) {
4375 allocation_records->AllowNewAllocationRecords();
4376 }
4377 }
4378
DisallowNewAllocationRecords() const4379 void Heap::DisallowNewAllocationRecords() const {
4380 CHECK(!gUseReadBarrier);
4381 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4382 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4383 if (allocation_records != nullptr) {
4384 allocation_records->DisallowNewAllocationRecords();
4385 }
4386 }
4387
BroadcastForNewAllocationRecords() const4388 void Heap::BroadcastForNewAllocationRecords() const {
4389 // Always broadcast without checking IsAllocTrackingEnabled() because IsAllocTrackingEnabled() may
4390 // be set to false while some threads are waiting for system weak access in
4391 // AllocRecordObjectMap::RecordAllocation() and we may fail to wake them up. b/27467554.
4392 MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_);
4393 AllocRecordObjectMap* allocation_records = GetAllocationRecords();
4394 if (allocation_records != nullptr) {
4395 allocation_records->BroadcastForNewAllocationRecords();
4396 }
4397 }
4398
4399 // Perfetto Java Heap Profiler Support.
4400
4401 // Perfetto initialization.
InitPerfettoJavaHeapProf()4402 void Heap::InitPerfettoJavaHeapProf() {
4403 // Initialize Perfetto Heap info and Heap id.
4404 uint32_t heap_id = 1; // Initialize to 1, to be overwritten by Perfetto heap id.
4405 #ifdef ART_TARGET_ANDROID
4406 // Register the heap and create the heapid.
4407 // Use a Perfetto heap name = "com.android.art" for the Java Heap Profiler.
4408 AHeapInfo* info = AHeapInfo_create("com.android.art");
4409 // Set the Enable Callback, there is no callback data ("nullptr").
4410 AHeapInfo_setEnabledCallback(info, &EnableHeapSamplerCallback, &heap_sampler_);
4411 // Set the Disable Callback.
4412 AHeapInfo_setDisabledCallback(info, &DisableHeapSamplerCallback, &heap_sampler_);
4413 heap_id = AHeapProfile_registerHeap(info);
4414 // Do not enable the Java Heap Profiler in this case, wait for Perfetto to enable it through
4415 // the callback function.
4416 #else
4417 // This is the host case, enable the Java Heap Profiler for host testing.
4418 // Perfetto API is currently not available on host.
4419 heap_sampler_.EnableHeapSampler();
4420 #endif
4421 heap_sampler_.SetHeapID(heap_id);
4422 VLOG(heap) << "Java Heap Profiler Initialized";
4423 }
4424
JHPCheckNonTlabSampleAllocation(Thread * self,mirror::Object * obj,size_t alloc_size)4425 void Heap::JHPCheckNonTlabSampleAllocation(Thread* self, mirror::Object* obj, size_t alloc_size) {
4426 bool take_sample = false;
4427 size_t bytes_until_sample = 0;
4428 HeapSampler& prof_heap_sampler = GetHeapSampler();
4429 // An allocation occurred, sample it, even if non-Tlab.
4430 // In case take_sample is already set from the previous GetSampleOffset
4431 // because we tried the Tlab allocation first, we will not use this value.
4432 // A new value is generated below. Also bytes_until_sample will be updated.
4433 // Note that we are not using the return value from the GetSampleOffset in
4434 // the NonTlab case here.
4435 prof_heap_sampler.GetSampleOffset(
4436 alloc_size, self->GetTlabPosOffset(), &take_sample, &bytes_until_sample);
4437 prof_heap_sampler.SetBytesUntilSample(bytes_until_sample);
4438 if (take_sample) {
4439 prof_heap_sampler.ReportSample(obj, alloc_size);
4440 }
4441 VLOG(heap) << "JHP:NonTlab Non-moving or Large Allocation or RegisterNativeAllocation";
4442 }
4443
JHPCalculateNextTlabSize(Thread * self,size_t jhp_def_tlab_size,size_t alloc_size,bool * take_sample,size_t * bytes_until_sample)4444 size_t Heap::JHPCalculateNextTlabSize(Thread* self,
4445 size_t jhp_def_tlab_size,
4446 size_t alloc_size,
4447 bool* take_sample,
4448 size_t* bytes_until_sample) {
4449 size_t next_sample_point = GetHeapSampler().GetSampleOffset(
4450 alloc_size, self->GetTlabPosOffset(), take_sample, bytes_until_sample);
4451 return std::min(next_sample_point, jhp_def_tlab_size);
4452 }
4453
AdjustSampleOffset(size_t adjustment)4454 void Heap::AdjustSampleOffset(size_t adjustment) {
4455 GetHeapSampler().AdjustSampleOffset(adjustment);
4456 }
4457
CheckGcStressMode(Thread * self,ObjPtr<mirror::Object> * obj)4458 void Heap::CheckGcStressMode(Thread* self, ObjPtr<mirror::Object>* obj) {
4459 DCHECK(gc_stress_mode_);
4460 auto* const runtime = Runtime::Current();
4461 if (runtime->GetClassLinker()->IsInitialized() && !runtime->IsActiveTransaction()) {
4462 // Check if we should GC.
4463 bool new_backtrace = false;
4464 {
4465 static constexpr size_t kMaxFrames = 16u;
4466 MutexLock mu(self, *backtrace_lock_);
4467 FixedSizeBacktrace<kMaxFrames> backtrace;
4468 backtrace.Collect(/* skip_count= */ 2);
4469 uint64_t hash = backtrace.Hash();
4470 new_backtrace = seen_backtraces_.find(hash) == seen_backtraces_.end();
4471 if (new_backtrace) {
4472 seen_backtraces_.insert(hash);
4473 }
4474 }
4475 if (new_backtrace) {
4476 StackHandleScope<1> hs(self);
4477 auto h = hs.NewHandleWrapper(obj);
4478 CollectGarbage(/* clear_soft_references= */ false);
4479 unique_backtrace_count_.fetch_add(1);
4480 } else {
4481 seen_backtrace_count_.fetch_add(1);
4482 }
4483 }
4484 }
4485
DisableGCForShutdown()4486 void Heap::DisableGCForShutdown() {
4487 MutexLock mu(Thread::Current(), *gc_complete_lock_);
4488 gc_disabled_for_shutdown_ = true;
4489 }
4490
IsGCDisabledForShutdown() const4491 bool Heap::IsGCDisabledForShutdown() const {
4492 MutexLock mu(Thread::Current(), *gc_complete_lock_);
4493 return gc_disabled_for_shutdown_;
4494 }
4495
ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const4496 bool Heap::ObjectIsInBootImageSpace(ObjPtr<mirror::Object> obj) const {
4497 DCHECK_EQ(IsBootImageAddress(obj.Ptr()),
4498 any_of(boot_image_spaces_.begin(),
4499 boot_image_spaces_.end(),
4500 [obj](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4501 return space->HasAddress(obj.Ptr());
4502 }));
4503 return IsBootImageAddress(obj.Ptr());
4504 }
4505
IsInBootImageOatFile(const void * p) const4506 bool Heap::IsInBootImageOatFile(const void* p) const {
4507 DCHECK_EQ(IsBootImageAddress(p),
4508 any_of(boot_image_spaces_.begin(),
4509 boot_image_spaces_.end(),
4510 [p](gc::space::ImageSpace* space) REQUIRES_SHARED(Locks::mutator_lock_) {
4511 return space->GetOatFile()->Contains(p);
4512 }));
4513 return IsBootImageAddress(p);
4514 }
4515
SetAllocationListener(AllocationListener * l)4516 void Heap::SetAllocationListener(AllocationListener* l) {
4517 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, l);
4518
4519 if (old == nullptr) {
4520 Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
4521 }
4522 }
4523
RemoveAllocationListener()4524 void Heap::RemoveAllocationListener() {
4525 AllocationListener* old = GetAndOverwriteAllocationListener(&alloc_listener_, nullptr);
4526
4527 if (old != nullptr) {
4528 Runtime::Current()->GetInstrumentation()->UninstrumentQuickAllocEntryPoints();
4529 }
4530 }
4531
SetGcPauseListener(GcPauseListener * l)4532 void Heap::SetGcPauseListener(GcPauseListener* l) {
4533 gc_pause_listener_.store(l, std::memory_order_relaxed);
4534 }
4535
RemoveGcPauseListener()4536 void Heap::RemoveGcPauseListener() {
4537 gc_pause_listener_.store(nullptr, std::memory_order_relaxed);
4538 }
4539
AllocWithNewTLAB(Thread * self,AllocatorType allocator_type,size_t alloc_size,bool grow,size_t * bytes_allocated,size_t * usable_size,size_t * bytes_tl_bulk_allocated)4540 mirror::Object* Heap::AllocWithNewTLAB(Thread* self,
4541 AllocatorType allocator_type,
4542 size_t alloc_size,
4543 bool grow,
4544 size_t* bytes_allocated,
4545 size_t* usable_size,
4546 size_t* bytes_tl_bulk_allocated) {
4547 mirror::Object* ret = nullptr;
4548 bool take_sample = false;
4549 size_t bytes_until_sample = 0;
4550 bool jhp_enabled = GetHeapSampler().IsEnabled();
4551
4552 if (kUsePartialTlabs && alloc_size <= self->TlabRemainingCapacity()) {
4553 DCHECK_GT(alloc_size, self->TlabSize());
4554 // There is enough space if we grow the TLAB. Lets do that. This increases the
4555 // TLAB bytes.
4556 const size_t min_expand_size = alloc_size - self->TlabSize();
4557 size_t next_tlab_size =
4558 jhp_enabled ? JHPCalculateNextTlabSize(
4559 self, kPartialTlabSize, alloc_size, &take_sample, &bytes_until_sample) :
4560 kPartialTlabSize;
4561 const size_t expand_bytes = std::max(
4562 min_expand_size,
4563 std::min(self->TlabRemainingCapacity() - self->TlabSize(), next_tlab_size));
4564 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, expand_bytes, grow))) {
4565 return nullptr;
4566 }
4567 *bytes_tl_bulk_allocated = expand_bytes;
4568 self->ExpandTlab(expand_bytes);
4569 DCHECK_LE(alloc_size, self->TlabSize());
4570 } else if (allocator_type == kAllocatorTypeTLAB) {
4571 DCHECK(bump_pointer_space_ != nullptr);
4572 // Try to allocate a page-aligned TLAB (not necessary though).
4573 // TODO: for large allocations, which are rare, maybe we should allocate
4574 // that object and return. There is no need to revoke the current TLAB,
4575 // particularly if it's mostly unutilized.
4576 size_t next_tlab_size = RoundDown(alloc_size + kDefaultTLABSize, gPageSize) - alloc_size;
4577 if (jhp_enabled) {
4578 next_tlab_size = JHPCalculateNextTlabSize(
4579 self, next_tlab_size, alloc_size, &take_sample, &bytes_until_sample);
4580 }
4581 const size_t new_tlab_size = alloc_size + next_tlab_size;
4582 if (UNLIKELY(IsOutOfMemoryOnAllocation(allocator_type, new_tlab_size, grow))) {
4583 return nullptr;
4584 }
4585 // Try allocating a new thread local buffer, if the allocation fails the space must be
4586 // full so return null.
4587 if (!bump_pointer_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
4588 return nullptr;
4589 }
4590 if (jhp_enabled) {
4591 VLOG(heap) << "JHP:kAllocatorTypeTLAB, New Tlab bytes allocated= " << new_tlab_size;
4592 }
4593 } else {
4594 DCHECK(allocator_type == kAllocatorTypeRegionTLAB);
4595 DCHECK(region_space_ != nullptr);
4596 if (space::RegionSpace::kRegionSize >= alloc_size) {
4597 // Non-large. Check OOME for a tlab.
4598 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type,
4599 space::RegionSpace::kRegionSize,
4600 grow))) {
4601 size_t next_pr_tlab_size =
4602 kUsePartialTlabs ? kPartialTlabSize : gc::space::RegionSpace::kRegionSize;
4603 if (jhp_enabled) {
4604 next_pr_tlab_size = JHPCalculateNextTlabSize(
4605 self, next_pr_tlab_size, alloc_size, &take_sample, &bytes_until_sample);
4606 }
4607 const size_t new_tlab_size = kUsePartialTlabs
4608 ? std::max(alloc_size, next_pr_tlab_size)
4609 : next_pr_tlab_size;
4610 // Try to allocate a tlab.
4611 if (!region_space_->AllocNewTlab(self, new_tlab_size, bytes_tl_bulk_allocated)) {
4612 // Failed to allocate a tlab. Try non-tlab.
4613 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4614 bytes_allocated,
4615 usable_size,
4616 bytes_tl_bulk_allocated);
4617 if (jhp_enabled) {
4618 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4619 }
4620 return ret;
4621 }
4622 // Fall-through to using the TLAB below.
4623 } else {
4624 // Check OOME for a non-tlab allocation.
4625 if (!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow)) {
4626 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4627 bytes_allocated,
4628 usable_size,
4629 bytes_tl_bulk_allocated);
4630 if (jhp_enabled) {
4631 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4632 }
4633 return ret;
4634 }
4635 // Neither tlab or non-tlab works. Give up.
4636 return nullptr;
4637 }
4638 } else {
4639 // Large. Check OOME.
4640 if (LIKELY(!IsOutOfMemoryOnAllocation(allocator_type, alloc_size, grow))) {
4641 ret = region_space_->AllocNonvirtual<false>(alloc_size,
4642 bytes_allocated,
4643 usable_size,
4644 bytes_tl_bulk_allocated);
4645 if (jhp_enabled) {
4646 JHPCheckNonTlabSampleAllocation(self, ret, alloc_size);
4647 }
4648 return ret;
4649 }
4650 return nullptr;
4651 }
4652 }
4653 // Refilled TLAB, return.
4654 ret = self->AllocTlab(alloc_size);
4655 DCHECK(ret != nullptr);
4656 *bytes_allocated = alloc_size;
4657 *usable_size = alloc_size;
4658
4659 // JavaHeapProfiler: Send the thread information about this allocation in case a sample is
4660 // requested.
4661 // This is the fallthrough from both the if and else if above cases => Cases that use TLAB.
4662 if (jhp_enabled) {
4663 if (take_sample) {
4664 GetHeapSampler().ReportSample(ret, alloc_size);
4665 // Update the bytes_until_sample now that the allocation is already done.
4666 GetHeapSampler().SetBytesUntilSample(bytes_until_sample);
4667 }
4668 VLOG(heap) << "JHP:Fallthrough Tlab allocation";
4669 }
4670
4671 return ret;
4672 }
4673
GetVerification() const4674 const Verification* Heap::GetVerification() const {
4675 return verification_.get();
4676 }
4677
VlogHeapGrowth(size_t old_footprint,size_t new_footprint,size_t alloc_size)4678 void Heap::VlogHeapGrowth(size_t old_footprint, size_t new_footprint, size_t alloc_size) {
4679 VLOG(heap) << "Growing heap from " << PrettySize(old_footprint) << " to "
4680 << PrettySize(new_footprint) << " for a " << PrettySize(alloc_size) << " allocation";
4681 }
4682
4683 // Run a gc if we haven't run one since initial_gc_num. This forces processes to
4684 // reclaim memory allocated during startup, even if they don't do much
4685 // allocation post startup. If the process is actively allocating and triggering
4686 // GCs, or has moved to the background and hence forced a GC, this does nothing.
4687 class Heap::TriggerPostForkCCGcTask : public HeapTask {
4688 public:
TriggerPostForkCCGcTask(uint64_t target_time,uint32_t initial_gc_num)4689 explicit TriggerPostForkCCGcTask(uint64_t target_time, uint32_t initial_gc_num) :
4690 HeapTask(target_time), initial_gc_num_(initial_gc_num) {}
Run(Thread * self)4691 void Run(Thread* self) override {
4692 gc::Heap* heap = Runtime::Current()->GetHeap();
4693 if (heap->GetCurrentGcNum() == initial_gc_num_) {
4694 if (kLogAllGCs) {
4695 LOG(INFO) << "Forcing GC for allocation-inactive process";
4696 }
4697 heap->RequestConcurrentGC(self, kGcCauseBackground, false, initial_gc_num_);
4698 }
4699 }
4700 private:
4701 uint32_t initial_gc_num_;
4702 };
4703
4704 // Reduce target footprint, if no GC has occurred since initial_gc_num.
4705 // If a GC already occurred, it will have done this for us.
4706 class Heap::ReduceTargetFootprintTask : public HeapTask {
4707 public:
ReduceTargetFootprintTask(uint64_t target_time,size_t new_target_sz,uint32_t initial_gc_num)4708 explicit ReduceTargetFootprintTask(uint64_t target_time, size_t new_target_sz,
4709 uint32_t initial_gc_num) :
4710 HeapTask(target_time), new_target_sz_(new_target_sz), initial_gc_num_(initial_gc_num) {}
Run(Thread * self)4711 void Run(Thread* self) override {
4712 gc::Heap* heap = Runtime::Current()->GetHeap();
4713 MutexLock mu(self, *(heap->gc_complete_lock_));
4714 if (heap->GetCurrentGcNum() == initial_gc_num_
4715 && heap->collector_type_running_ == kCollectorTypeNone) {
4716 size_t target_footprint = heap->target_footprint_.load(std::memory_order_relaxed);
4717 if (target_footprint > new_target_sz_) {
4718 if (heap->target_footprint_.CompareAndSetStrongRelaxed(target_footprint, new_target_sz_)) {
4719 heap->SetDefaultConcurrentStartBytesLocked();
4720 }
4721 }
4722 }
4723 }
4724 private:
4725 size_t new_target_sz_;
4726 uint32_t initial_gc_num_;
4727 };
4728
4729 // Return a pseudo-random integer between 0 and 19999, using the uid as a seed. We want this to
4730 // be deterministic for a given process, but to vary randomly across processes. Empirically, the
4731 // uids for processes for which this matters are distinct.
GetPseudoRandomFromUid()4732 static uint32_t GetPseudoRandomFromUid() {
4733 std::default_random_engine rng(getuid());
4734 std::uniform_int_distribution<int> dist(0, 19999);
4735 return dist(rng);
4736 }
4737
PostForkChildAction(Thread * self)4738 void Heap::PostForkChildAction(Thread* self) {
4739 uint32_t starting_gc_num = GetCurrentGcNum();
4740 uint64_t last_adj_time = NanoTime();
4741 next_gc_type_ = NonStickyGcType(); // Always start with a full gc.
4742
4743 LOG(INFO) << "Using " << foreground_collector_type_ << " GC.";
4744 if (gUseUserfaultfd) {
4745 DCHECK_NE(mark_compact_, nullptr);
4746 mark_compact_->CreateUserfaultfd(/*post_fork*/true);
4747 }
4748
4749 // Temporarily increase target_footprint_ and concurrent_start_bytes_ to
4750 // max values to avoid GC during app launch.
4751 // Set target_footprint_ to the largest allowed value.
4752 SetIdealFootprint(growth_limit_);
4753 SetDefaultConcurrentStartBytes();
4754
4755 // Shrink heap after kPostForkMaxHeapDurationMS, to force a memory hog process to GC.
4756 // This remains high enough that many processes will continue without a GC.
4757 if (initial_heap_size_ < growth_limit_) {
4758 size_t first_shrink_size = std::max(growth_limit_ / 4, initial_heap_size_);
4759 last_adj_time += MsToNs(kPostForkMaxHeapDurationMS);
4760 GetTaskProcessor()->AddTask(
4761 self, new ReduceTargetFootprintTask(last_adj_time, first_shrink_size, starting_gc_num));
4762 // Shrink to a small value after a substantial time period. This will typically force a
4763 // GC if none has occurred yet. Has no effect if there was a GC before this anyway, which
4764 // is commonly the case, e.g. because of a process transition.
4765 if (initial_heap_size_ < first_shrink_size) {
4766 last_adj_time += MsToNs(4 * kPostForkMaxHeapDurationMS);
4767 GetTaskProcessor()->AddTask(
4768 self,
4769 new ReduceTargetFootprintTask(last_adj_time, initial_heap_size_, starting_gc_num));
4770 }
4771 }
4772 // Schedule a GC after a substantial period of time. This will become a no-op if another GC is
4773 // scheduled in the interim. If not, we want to avoid holding onto start-up garbage.
4774 uint64_t post_fork_gc_time = last_adj_time
4775 + MsToNs(4 * kPostForkMaxHeapDurationMS + GetPseudoRandomFromUid());
4776 GetTaskProcessor()->AddTask(self,
4777 new TriggerPostForkCCGcTask(post_fork_gc_time, starting_gc_num));
4778 }
4779
VisitReflectiveTargets(ReflectiveValueVisitor * visit)4780 void Heap::VisitReflectiveTargets(ReflectiveValueVisitor *visit) {
4781 VisitObjectsPaused([&visit](mirror::Object* ref) NO_THREAD_SAFETY_ANALYSIS {
4782 art::ObjPtr<mirror::Class> klass(ref->GetClass());
4783 // All these classes are in the BootstrapClassLoader.
4784 if (!klass->IsBootStrapClassLoaded()) {
4785 return;
4786 }
4787 if (GetClassRoot<mirror::Method>()->IsAssignableFrom(klass) ||
4788 GetClassRoot<mirror::Constructor>()->IsAssignableFrom(klass)) {
4789 down_cast<mirror::Executable*>(ref)->VisitTarget(visit);
4790 } else if (art::GetClassRoot<art::mirror::Field>() == klass) {
4791 down_cast<mirror::Field*>(ref)->VisitTarget(visit);
4792 } else if (art::GetClassRoot<art::mirror::MethodHandle>()->IsAssignableFrom(klass)) {
4793 down_cast<mirror::MethodHandle*>(ref)->VisitTarget(visit);
4794 } else if (art::GetClassRoot<art::mirror::StaticFieldVarHandle>()->IsAssignableFrom(klass)) {
4795 down_cast<mirror::StaticFieldVarHandle*>(ref)->VisitTarget(visit);
4796 } else if (art::GetClassRoot<art::mirror::FieldVarHandle>()->IsAssignableFrom(klass)) {
4797 down_cast<mirror::FieldVarHandle*>(ref)->VisitTarget(visit);
4798 } else if (art::GetClassRoot<art::mirror::DexCache>()->IsAssignableFrom(klass)) {
4799 down_cast<mirror::DexCache*>(ref)->VisitReflectiveTargets(visit);
4800 }
4801 });
4802 }
4803
AddHeapTask(gc::HeapTask * task)4804 bool Heap::AddHeapTask(gc::HeapTask* task) {
4805 Thread* const self = Thread::Current();
4806 if (!CanAddHeapTask(self)) {
4807 return false;
4808 }
4809 GetTaskProcessor()->AddTask(self, task);
4810 return true;
4811 }
4812
GetForegroundCollectorName()4813 std::string Heap::GetForegroundCollectorName() {
4814 std::ostringstream oss;
4815 oss << foreground_collector_type_;
4816 return oss.str();
4817 }
4818
HasAppImageSpaceFor(const std::string & dex_location) const4819 bool Heap::HasAppImageSpaceFor(const std::string& dex_location) const {
4820 ScopedObjectAccess soa(Thread::Current());
4821 for (space::ContinuousSpace* space : continuous_spaces_) {
4822 // An image space is either a boot image space or an app image space.
4823 if (space->IsImageSpace() &&
4824 !IsBootImageAddress(space->Begin()) &&
4825 (space->AsImageSpace()->GetOatFile()->GetOatDexFiles()[0]->GetDexFileLocation() ==
4826 dex_location)) {
4827 return true;
4828 }
4829 }
4830 return false;
4831 }
4832
4833 } // namespace gc
4834 } // namespace art
4835