1 // Copyright 2018 The ChromiumOS Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 //! Virtual machine architecture support code.
6
7 pub mod android;
8 pub mod fdt;
9 pub mod pstore;
10 pub mod serial;
11
12 pub mod sys;
13
14 use std::collections::BTreeMap;
15 use std::error::Error as StdError;
16 use std::fs::File;
17 use std::io;
18 use std::ops::Deref;
19 use std::path::PathBuf;
20 use std::str::FromStr;
21 use std::sync::mpsc;
22 use std::sync::mpsc::SendError;
23 use std::sync::Arc;
24
25 use acpi_tables::sdt::SDT;
26 use base::syslog;
27 use base::AsRawDescriptor;
28 use base::AsRawDescriptors;
29 use base::Event;
30 use base::FileGetLen;
31 use base::FileReadWriteAtVolatile;
32 use base::SendTube;
33 use base::Tube;
34 use devices::virtio::VirtioDevice;
35 use devices::BarRange;
36 use devices::Bus;
37 use devices::BusDevice;
38 use devices::BusDeviceObj;
39 use devices::BusError;
40 use devices::BusResumeDevice;
41 use devices::FwCfgParameters;
42 use devices::GpeScope;
43 use devices::HotPlugBus;
44 use devices::IrqChip;
45 use devices::IrqEventSource;
46 use devices::PciAddress;
47 use devices::PciBus;
48 use devices::PciDevice;
49 use devices::PciDeviceError;
50 use devices::PciInterruptPin;
51 use devices::PciRoot;
52 use devices::PciRootCommand;
53 use devices::PreferredIrq;
54 #[cfg(any(target_os = "android", target_os = "linux"))]
55 use devices::ProxyDevice;
56 use devices::SerialHardware;
57 use devices::SerialParameters;
58 use devices::VirtioMmioDevice;
59 pub use fdt::apply_device_tree_overlays;
60 pub use fdt::DtbOverlay;
61 #[cfg(feature = "gdb")]
62 use gdbstub::arch::Arch;
63 use hypervisor::IoEventAddress;
64 use hypervisor::MemCacheType;
65 use hypervisor::Vm;
66 #[cfg(windows)]
67 use jail::FakeMinijailStub as Minijail;
68 #[cfg(any(target_os = "android", target_os = "linux"))]
69 use minijail::Minijail;
70 use remain::sorted;
71 #[cfg(target_arch = "x86_64")]
72 use resources::AddressRange;
73 use resources::SystemAllocator;
74 use resources::SystemAllocatorConfig;
75 use serde::de::Visitor;
76 use serde::Deserialize;
77 use serde::Serialize;
78 use serde_keyvalue::FromKeyValues;
79 pub use serial::add_serial_devices;
80 pub use serial::get_serial_cmdline;
81 pub use serial::set_default_serial_parameters;
82 pub use serial::GetSerialCmdlineError;
83 pub use serial::SERIAL_ADDR;
84 #[cfg(any(target_os = "android", target_os = "linux"))]
85 use sync::Condvar;
86 use sync::Mutex;
87 #[cfg(any(target_os = "android", target_os = "linux"))]
88 pub use sys::linux::PlatformBusResources;
89 use thiserror::Error;
90 use uuid::Uuid;
91 use vm_control::BatControl;
92 use vm_control::BatteryType;
93 use vm_control::PmResource;
94 use vm_memory::GuestAddress;
95 use vm_memory::GuestMemory;
96 use vm_memory::GuestMemoryError;
97 use vm_memory::MemoryRegionOptions;
98
99 cfg_if::cfg_if! {
100 if #[cfg(any(target_arch = "arm", target_arch = "aarch64"))] {
101 pub use devices::IrqChipAArch64 as IrqChipArch;
102 #[cfg(feature = "gdb")]
103 pub use gdbstub_arch::aarch64::AArch64 as GdbArch;
104 pub use hypervisor::CpuConfigAArch64 as CpuConfigArch;
105 pub use hypervisor::Hypervisor as HypervisorArch;
106 pub use hypervisor::VcpuAArch64 as VcpuArch;
107 pub use hypervisor::VcpuInitAArch64 as VcpuInitArch;
108 pub use hypervisor::VmAArch64 as VmArch;
109 } else if #[cfg(target_arch = "riscv64")] {
110 pub use devices::IrqChipRiscv64 as IrqChipArch;
111 #[cfg(feature = "gdb")]
112 pub use gdbstub_arch::riscv::Riscv64 as GdbArch;
113 pub use hypervisor::CpuConfigRiscv64 as CpuConfigArch;
114 pub use hypervisor::Hypervisor as HypervisorArch;
115 pub use hypervisor::VcpuInitRiscv64 as VcpuInitArch;
116 pub use hypervisor::VcpuRiscv64 as VcpuArch;
117 pub use hypervisor::VmRiscv64 as VmArch;
118 } else if #[cfg(target_arch = "x86_64")] {
119 pub use devices::IrqChipX86_64 as IrqChipArch;
120 #[cfg(feature = "gdb")]
121 pub use gdbstub_arch::x86::X86_64_SSE as GdbArch;
122 pub use hypervisor::CpuConfigX86_64 as CpuConfigArch;
123 pub use hypervisor::HypervisorX86_64 as HypervisorArch;
124 pub use hypervisor::VcpuInitX86_64 as VcpuInitArch;
125 pub use hypervisor::VcpuX86_64 as VcpuArch;
126 pub use hypervisor::VmX86_64 as VmArch;
127 }
128 }
129
130 pub enum VmImage {
131 Kernel(File),
132 Bios(File),
133 }
134
135 #[derive(Clone, Debug, Deserialize, Serialize, FromKeyValues, PartialEq, Eq)]
136 #[serde(deny_unknown_fields, rename_all = "kebab-case")]
137 pub struct Pstore {
138 pub path: PathBuf,
139 pub size: u32,
140 }
141
142 /// Set of CPU cores.
143 #[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord)]
144 pub struct CpuSet(Vec<usize>);
145
146 impl CpuSet {
new<I: IntoIterator<Item = usize>>(cpus: I) -> Self147 pub fn new<I: IntoIterator<Item = usize>>(cpus: I) -> Self {
148 CpuSet(cpus.into_iter().collect())
149 }
150
iter(&self) -> std::slice::Iter<'_, usize>151 pub fn iter(&self) -> std::slice::Iter<'_, usize> {
152 self.0.iter()
153 }
154 }
155
156 impl FromIterator<usize> for CpuSet {
from_iter<T>(iter: T) -> Self where T: IntoIterator<Item = usize>,157 fn from_iter<T>(iter: T) -> Self
158 where
159 T: IntoIterator<Item = usize>,
160 {
161 CpuSet::new(iter)
162 }
163 }
164
parse_cpu_range(s: &str, cpuset: &mut Vec<usize>) -> Result<(), String>165 fn parse_cpu_range(s: &str, cpuset: &mut Vec<usize>) -> Result<(), String> {
166 fn parse_cpu(s: &str) -> Result<usize, String> {
167 s.parse().map_err(|_| {
168 format!(
169 "invalid CPU index {} - index must be a non-negative integer",
170 s
171 )
172 })
173 }
174
175 let (first_cpu, last_cpu) = match s.split_once('-') {
176 Some((first_cpu, last_cpu)) => {
177 let first_cpu = parse_cpu(first_cpu)?;
178 let last_cpu = parse_cpu(last_cpu)?;
179
180 if last_cpu < first_cpu {
181 return Err(format!(
182 "invalid CPU range {} - ranges must be from low to high",
183 s
184 ));
185 }
186 (first_cpu, last_cpu)
187 }
188 None => {
189 let cpu = parse_cpu(s)?;
190 (cpu, cpu)
191 }
192 };
193
194 cpuset.extend(first_cpu..=last_cpu);
195
196 Ok(())
197 }
198
199 impl FromStr for CpuSet {
200 type Err = String;
201
from_str(s: &str) -> Result<Self, Self::Err>202 fn from_str(s: &str) -> Result<Self, Self::Err> {
203 let mut cpuset = Vec::new();
204 for part in s.split(',') {
205 parse_cpu_range(part, &mut cpuset)?;
206 }
207 Ok(CpuSet::new(cpuset))
208 }
209 }
210
211 impl Deref for CpuSet {
212 type Target = Vec<usize>;
213
deref(&self) -> &Self::Target214 fn deref(&self) -> &Self::Target {
215 &self.0
216 }
217 }
218
219 impl IntoIterator for CpuSet {
220 type Item = usize;
221 type IntoIter = std::vec::IntoIter<Self::Item>;
222
into_iter(self) -> Self::IntoIter223 fn into_iter(self) -> Self::IntoIter {
224 self.0.into_iter()
225 }
226 }
227
228 /// Deserializes a `CpuSet` from a sequence which elements can either be integers, or strings
229 /// representing CPU ranges (e.g. `5-8`).
230 impl<'de> Deserialize<'de> for CpuSet {
deserialize<D>(deserializer: D) -> Result<Self, D::Error> where D: serde::Deserializer<'de>,231 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
232 where
233 D: serde::Deserializer<'de>,
234 {
235 struct CpuSetVisitor;
236 impl<'de> Visitor<'de> for CpuSetVisitor {
237 type Value = CpuSet;
238
239 fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
240 formatter.write_str("CpuSet")
241 }
242
243 fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
244 where
245 A: serde::de::SeqAccess<'de>,
246 {
247 #[derive(Deserialize)]
248 #[serde(untagged)]
249 enum CpuSetValue<'a> {
250 Single(usize),
251 Range(&'a str),
252 }
253
254 let mut cpus = Vec::new();
255 while let Some(cpuset) = seq.next_element::<CpuSetValue>()? {
256 match cpuset {
257 CpuSetValue::Single(cpu) => cpus.push(cpu),
258 CpuSetValue::Range(range) => {
259 parse_cpu_range(range, &mut cpus).map_err(serde::de::Error::custom)?;
260 }
261 }
262 }
263
264 Ok(CpuSet::new(cpus))
265 }
266 }
267
268 deserializer.deserialize_seq(CpuSetVisitor)
269 }
270 }
271
272 /// Serializes a `CpuSet` into a sequence of integers and strings representing CPU ranges.
273 impl Serialize for CpuSet {
serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer,274 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
275 where
276 S: serde::Serializer,
277 {
278 use serde::ser::SerializeSeq;
279
280 let mut seq = serializer.serialize_seq(None)?;
281
282 // Factorize ranges into "a-b" strings.
283 let mut serialize_range = |start: usize, end: usize| -> Result<(), S::Error> {
284 if start == end {
285 seq.serialize_element(&start)?;
286 } else {
287 seq.serialize_element(&format!("{}-{}", start, end))?;
288 }
289
290 Ok(())
291 };
292
293 // Current range.
294 let mut range = None;
295 for core in &self.0 {
296 range = match range {
297 None => Some((core, core)),
298 Some((start, end)) if *end == *core - 1 => Some((start, core)),
299 Some((start, end)) => {
300 serialize_range(*start, *end)?;
301 Some((core, core))
302 }
303 };
304 }
305
306 if let Some((start, end)) = range {
307 serialize_range(*start, *end)?;
308 }
309
310 seq.end()
311 }
312 }
313
314 /// Mapping of guest VCPU threads to host CPU cores.
315 #[derive(Clone, Debug, Deserialize, PartialEq, Eq, Serialize)]
316 pub enum VcpuAffinity {
317 /// All VCPU threads will be pinned to the same set of host CPU cores.
318 Global(CpuSet),
319 /// Each VCPU may be pinned to a set of host CPU cores.
320 /// The map key is a guest VCPU index, and the corresponding value is the set of
321 /// host CPU indices that the VCPU thread will be allowed to run on.
322 /// If a VCPU index is not present in the map, its affinity will not be set.
323 PerVcpu(BTreeMap<usize, CpuSet>),
324 }
325
326 /// Holds the pieces needed to build a VM. Passed to `build_vm` in the `LinuxArch` trait below to
327 /// create a `RunnableLinuxVm`.
328 #[sorted]
329 pub struct VmComponents {
330 #[cfg(all(target_arch = "x86_64", unix))]
331 pub ac_adapter: bool,
332 pub acpi_sdts: Vec<SDT>,
333 pub android_fstab: Option<File>,
334 pub boot_cpu: usize,
335 pub bootorder_fw_cfg_blob: Vec<u8>,
336 #[cfg(target_arch = "x86_64")]
337 pub break_linux_pci_config_io: bool,
338 pub cpu_capacity: BTreeMap<usize, u32>,
339 pub cpu_clusters: Vec<CpuSet>,
340 #[cfg(all(
341 any(target_arch = "arm", target_arch = "aarch64"),
342 any(target_os = "android", target_os = "linux")
343 ))]
344 pub cpu_frequencies: BTreeMap<usize, Vec<u32>>,
345 pub delay_rt: bool,
346 pub dynamic_power_coefficient: BTreeMap<usize, u32>,
347 pub extra_kernel_params: Vec<String>,
348 #[cfg(target_arch = "x86_64")]
349 pub force_s2idle: bool,
350 pub fw_cfg_enable: bool,
351 pub fw_cfg_parameters: Vec<FwCfgParameters>,
352 #[cfg(feature = "gdb")]
353 pub gdb: Option<(u32, Tube)>, // port and control tube.
354 pub host_cpu_topology: bool,
355 pub hugepages: bool,
356 pub hv_cfg: hypervisor::Config,
357 pub initrd_image: Option<File>,
358 pub itmt: bool,
359 pub memory_size: u64,
360 pub no_i8042: bool,
361 pub no_rtc: bool,
362 pub no_smt: bool,
363 #[cfg(target_arch = "x86_64")]
364 pub pci_low_start: Option<u64>,
365 #[cfg(target_arch = "x86_64")]
366 pub pcie_ecam: Option<AddressRange>,
367 pub pflash_block_size: u32,
368 pub pflash_image: Option<File>,
369 pub pstore: Option<Pstore>,
370 /// A file to load as pVM firmware. Must be `Some` iff
371 /// `hv_cfg.protection_type == ProtectionType::UnprotectedWithFirmware`.
372 pub pvm_fw: Option<File>,
373 pub rt_cpus: CpuSet,
374 #[cfg(target_arch = "x86_64")]
375 pub smbios: SmbiosOptions,
376 pub swiotlb: Option<u64>,
377 pub vcpu_affinity: Option<VcpuAffinity>,
378 pub vcpu_count: usize,
379 #[cfg(all(
380 any(target_arch = "arm", target_arch = "aarch64"),
381 any(target_os = "android", target_os = "linux")
382 ))]
383 pub virt_cpufreq_socket: Option<std::os::unix::net::UnixStream>,
384 pub vm_image: VmImage,
385 }
386
387 /// Holds the elements needed to run a Linux VM. Created by `build_vm`.
388 #[sorted]
389 pub struct RunnableLinuxVm<V: VmArch, Vcpu: VcpuArch> {
390 pub bat_control: Option<BatControl>,
391 pub delay_rt: bool,
392 pub devices_thread: Option<std::thread::JoinHandle<()>>,
393 #[cfg(feature = "gdb")]
394 pub gdb: Option<(u32, Tube)>,
395 pub hotplug_bus: BTreeMap<u8, Arc<Mutex<dyn HotPlugBus>>>,
396 pub io_bus: Arc<Bus>,
397 pub irq_chip: Box<dyn IrqChipArch>,
398 pub mmio_bus: Arc<Bus>,
399 pub no_smt: bool,
400 pub pid_debug_label_map: BTreeMap<u32, String>,
401 #[cfg(any(target_os = "android", target_os = "linux"))]
402 pub platform_devices: Vec<Arc<Mutex<dyn BusDevice>>>,
403 pub pm: Option<Arc<Mutex<dyn PmResource + Send>>>,
404 /// Devices to be notified before the system resumes from the S3 suspended state.
405 pub resume_notify_devices: Vec<Arc<Mutex<dyn BusResumeDevice>>>,
406 pub root_config: Arc<Mutex<PciRoot>>,
407 pub rt_cpus: CpuSet,
408 pub suspend_evt: Event,
409 pub vcpu_affinity: Option<VcpuAffinity>,
410 pub vcpu_count: usize,
411 pub vcpu_init: Vec<VcpuInitArch>,
412 /// If vcpus is None, then it's the responsibility of the vcpu thread to create vcpus.
413 /// If it's Some, then `build_vm` already created the vcpus.
414 pub vcpus: Option<Vec<Vcpu>>,
415 pub vm: V,
416 pub vm_request_tube: Option<Tube>,
417 }
418
419 /// The device and optional jail.
420 pub struct VirtioDeviceStub {
421 pub dev: Box<dyn VirtioDevice>,
422 pub jail: Option<Minijail>,
423 }
424
425 /// Trait which is implemented for each Linux Architecture in order to
426 /// set up the memory, cpus, and system devices and to boot the kernel.
427 pub trait LinuxArch {
428 type Error: StdError;
429
430 /// Returns a Vec of the valid memory addresses as pairs of address and length. These should be
431 /// used to configure the `GuestMemory` structure for the platform.
432 ///
433 /// # Arguments
434 ///
435 /// * `components` - Parts used to determine the memory layout.
guest_memory_layout( components: &VmComponents, hypervisor: &impl hypervisor::Hypervisor, ) -> std::result::Result<Vec<(GuestAddress, u64, MemoryRegionOptions)>, Self::Error>436 fn guest_memory_layout(
437 components: &VmComponents,
438 hypervisor: &impl hypervisor::Hypervisor,
439 ) -> std::result::Result<Vec<(GuestAddress, u64, MemoryRegionOptions)>, Self::Error>;
440
441 /// Gets the configuration for a new `SystemAllocator` that fits the given `Vm`'s memory layout.
442 ///
443 /// This is the per-architecture template for constructing the `SystemAllocator`. Platform
444 /// agnostic modifications may be made to this configuration, but the final `SystemAllocator`
445 /// will be at least as strict as this configuration.
446 ///
447 /// # Arguments
448 ///
449 /// * `vm` - The virtual machine to be used as a template for the `SystemAllocator`.
get_system_allocator_config<V: Vm>(vm: &V) -> SystemAllocatorConfig450 fn get_system_allocator_config<V: Vm>(vm: &V) -> SystemAllocatorConfig;
451
452 /// Takes `VmComponents` and generates a `RunnableLinuxVm`.
453 ///
454 /// # Arguments
455 ///
456 /// * `components` - Parts to use to build the VM.
457 /// * `vm_evt_wrtube` - Tube used by sub-devices to request that crosvm exit because guest wants
458 /// to stop/shut down or requested reset.
459 /// * `system_allocator` - Allocator created by this trait's implementation of
460 /// `get_system_allocator_config`.
461 /// * `serial_parameters` - Definitions for how the serial devices should be configured.
462 /// * `serial_jail` - Jail used for serial devices created here.
463 /// * `battery` - Defines what battery device will be created.
464 /// * `vm` - A VM implementation to build upon.
465 /// * `ramoops_region` - Region allocated for ramoops.
466 /// * `devices` - The devices to be built into the VM.
467 /// * `irq_chip` - The IRQ chip implemention for the VM.
468 /// * `debugcon_jail` - Jail used for debugcon devices created here.
469 /// * `pflash_jail` - Jail used for pflash device created here.
470 /// * `fw_cfg_jail` - Jail used for fw_cfg device created here.
471 /// * `device_tree_overlays` - Device tree overlay binaries
build_vm<V, Vcpu>( components: VmComponents, vm_evt_wrtube: &SendTube, system_allocator: &mut SystemAllocator, serial_parameters: &BTreeMap<(SerialHardware, u8), SerialParameters>, serial_jail: Option<Minijail>, battery: (Option<BatteryType>, Option<Minijail>), vm: V, ramoops_region: Option<pstore::RamoopsRegion>, devices: Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)>, irq_chip: &mut dyn IrqChipArch, vcpu_ids: &mut Vec<usize>, dump_device_tree_blob: Option<PathBuf>, debugcon_jail: Option<Minijail>, #[cfg(target_arch = "x86_64")] pflash_jail: Option<Minijail>, #[cfg(target_arch = "x86_64")] fw_cfg_jail: Option<Minijail>, #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>, #[cfg(any(target_os = "android", target_os = "linux"))] guest_suspended_cvar: Option< Arc<(Mutex<bool>, Condvar)>, >, device_tree_overlays: Vec<DtbOverlay>, ) -> std::result::Result<RunnableLinuxVm<V, Vcpu>, Self::Error> where V: VmArch, Vcpu: VcpuArch472 fn build_vm<V, Vcpu>(
473 components: VmComponents,
474 vm_evt_wrtube: &SendTube,
475 system_allocator: &mut SystemAllocator,
476 serial_parameters: &BTreeMap<(SerialHardware, u8), SerialParameters>,
477 serial_jail: Option<Minijail>,
478 battery: (Option<BatteryType>, Option<Minijail>),
479 vm: V,
480 ramoops_region: Option<pstore::RamoopsRegion>,
481 devices: Vec<(Box<dyn BusDeviceObj>, Option<Minijail>)>,
482 irq_chip: &mut dyn IrqChipArch,
483 vcpu_ids: &mut Vec<usize>,
484 dump_device_tree_blob: Option<PathBuf>,
485 debugcon_jail: Option<Minijail>,
486 #[cfg(target_arch = "x86_64")] pflash_jail: Option<Minijail>,
487 #[cfg(target_arch = "x86_64")] fw_cfg_jail: Option<Minijail>,
488 #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>,
489 #[cfg(any(target_os = "android", target_os = "linux"))] guest_suspended_cvar: Option<
490 Arc<(Mutex<bool>, Condvar)>,
491 >,
492 device_tree_overlays: Vec<DtbOverlay>,
493 ) -> std::result::Result<RunnableLinuxVm<V, Vcpu>, Self::Error>
494 where
495 V: VmArch,
496 Vcpu: VcpuArch;
497
498 /// Configures the vcpu and should be called once per vcpu from the vcpu's thread.
499 ///
500 /// # Arguments
501 ///
502 /// * `vm` - The virtual machine object.
503 /// * `hypervisor` - The `Hypervisor` that created the vcpu.
504 /// * `irq_chip` - The `IrqChip` associated with this vm.
505 /// * `vcpu` - The VCPU object to configure.
506 /// * `vcpu_init` - The data required to initialize VCPU registers and other state.
507 /// * `vcpu_id` - The id of the given `vcpu`.
508 /// * `num_cpus` - Number of virtual CPUs the guest will have.
509 /// * `cpu_config` - CPU feature configurations.
configure_vcpu<V: Vm>( vm: &V, hypervisor: &dyn HypervisorArch, irq_chip: &mut dyn IrqChipArch, vcpu: &mut dyn VcpuArch, vcpu_init: VcpuInitArch, vcpu_id: usize, num_cpus: usize, cpu_config: Option<CpuConfigArch>, ) -> Result<(), Self::Error>510 fn configure_vcpu<V: Vm>(
511 vm: &V,
512 hypervisor: &dyn HypervisorArch,
513 irq_chip: &mut dyn IrqChipArch,
514 vcpu: &mut dyn VcpuArch,
515 vcpu_init: VcpuInitArch,
516 vcpu_id: usize,
517 num_cpus: usize,
518 cpu_config: Option<CpuConfigArch>,
519 ) -> Result<(), Self::Error>;
520
521 /// Configures and add a pci device into vm
register_pci_device<V: VmArch, Vcpu: VcpuArch>( linux: &mut RunnableLinuxVm<V, Vcpu>, device: Box<dyn PciDevice>, #[cfg(any(target_os = "android", target_os = "linux"))] minijail: Option<Minijail>, resources: &mut SystemAllocator, hp_control_tube: &mpsc::Sender<PciRootCommand>, #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>, ) -> Result<PciAddress, Self::Error>522 fn register_pci_device<V: VmArch, Vcpu: VcpuArch>(
523 linux: &mut RunnableLinuxVm<V, Vcpu>,
524 device: Box<dyn PciDevice>,
525 #[cfg(any(target_os = "android", target_os = "linux"))] minijail: Option<Minijail>,
526 resources: &mut SystemAllocator,
527 hp_control_tube: &mpsc::Sender<PciRootCommand>,
528 #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>,
529 ) -> Result<PciAddress, Self::Error>;
530
531 /// Returns frequency map for each of the host's logical cores.
get_host_cpu_frequencies_khz() -> Result<BTreeMap<usize, Vec<u32>>, Self::Error>532 fn get_host_cpu_frequencies_khz() -> Result<BTreeMap<usize, Vec<u32>>, Self::Error>;
533
534 /// Returns capacity map of the host's logical cores.
get_host_cpu_capacity() -> Result<BTreeMap<usize, u32>, Self::Error>535 fn get_host_cpu_capacity() -> Result<BTreeMap<usize, u32>, Self::Error>;
536
537 /// Returns cluster masks for each of the host's logical cores.
get_host_cpu_clusters() -> Result<Vec<CpuSet>, Self::Error>538 fn get_host_cpu_clusters() -> Result<Vec<CpuSet>, Self::Error>;
539 }
540
541 #[cfg(feature = "gdb")]
542 pub trait GdbOps<T: VcpuArch> {
543 type Error: StdError;
544
545 /// Reads vCPU's registers.
read_registers(vcpu: &T) -> Result<<GdbArch as Arch>::Registers, Self::Error>546 fn read_registers(vcpu: &T) -> Result<<GdbArch as Arch>::Registers, Self::Error>;
547
548 /// Writes vCPU's registers.
write_registers(vcpu: &T, regs: &<GdbArch as Arch>::Registers) -> Result<(), Self::Error>549 fn write_registers(vcpu: &T, regs: &<GdbArch as Arch>::Registers) -> Result<(), Self::Error>;
550
551 /// Reads bytes from the guest memory.
read_memory( vcpu: &T, guest_mem: &GuestMemory, vaddr: GuestAddress, len: usize, ) -> Result<Vec<u8>, Self::Error>552 fn read_memory(
553 vcpu: &T,
554 guest_mem: &GuestMemory,
555 vaddr: GuestAddress,
556 len: usize,
557 ) -> Result<Vec<u8>, Self::Error>;
558
559 /// Writes bytes to the specified guest memory.
write_memory( vcpu: &T, guest_mem: &GuestMemory, vaddr: GuestAddress, buf: &[u8], ) -> Result<(), Self::Error>560 fn write_memory(
561 vcpu: &T,
562 guest_mem: &GuestMemory,
563 vaddr: GuestAddress,
564 buf: &[u8],
565 ) -> Result<(), Self::Error>;
566
567 /// Reads bytes from the guest register.
read_register(vcpu: &T, reg_id: <GdbArch as Arch>::RegId) -> Result<Vec<u8>, Self::Error>568 fn read_register(vcpu: &T, reg_id: <GdbArch as Arch>::RegId) -> Result<Vec<u8>, Self::Error>;
569
570 /// Writes bytes to the specified guest register.
write_register( vcpu: &T, reg_id: <GdbArch as Arch>::RegId, data: &[u8], ) -> Result<(), Self::Error>571 fn write_register(
572 vcpu: &T,
573 reg_id: <GdbArch as Arch>::RegId,
574 data: &[u8],
575 ) -> Result<(), Self::Error>;
576
577 /// Make the next vCPU's run single-step.
enable_singlestep(vcpu: &T) -> Result<(), Self::Error>578 fn enable_singlestep(vcpu: &T) -> Result<(), Self::Error>;
579
580 /// Get maximum number of hardware breakpoints.
get_max_hw_breakpoints(vcpu: &T) -> Result<usize, Self::Error>581 fn get_max_hw_breakpoints(vcpu: &T) -> Result<usize, Self::Error>;
582
583 /// Set hardware breakpoints at the given addresses.
set_hw_breakpoints(vcpu: &T, breakpoints: &[GuestAddress]) -> Result<(), Self::Error>584 fn set_hw_breakpoints(vcpu: &T, breakpoints: &[GuestAddress]) -> Result<(), Self::Error>;
585 }
586
587 /// Errors for device manager.
588 #[sorted]
589 #[derive(Error, Debug)]
590 pub enum DeviceRegistrationError {
591 /// No more MMIO space available.
592 #[error("no more addresses are available")]
593 AddrsExhausted,
594 /// Could not allocate device address space for the device.
595 #[error("Allocating device addresses: {0}")]
596 AllocateDeviceAddrs(PciDeviceError),
597 /// Could not allocate IO space for the device.
598 #[error("Allocating IO addresses: {0}")]
599 AllocateIoAddrs(PciDeviceError),
600 /// Could not allocate MMIO or IO resource for the device.
601 #[error("Allocating IO resource: {0}")]
602 AllocateIoResource(resources::Error),
603 /// Could not allocate an IRQ number.
604 #[error("Allocating IRQ number")]
605 AllocateIrq,
606 /// Could not allocate IRQ resource for the device.
607 #[cfg(any(target_os = "android", target_os = "linux"))]
608 #[error("Allocating IRQ resource: {0}")]
609 AllocateIrqResource(devices::vfio::VfioError),
610 /// Broken pci topology
611 #[error("pci topology is broken")]
612 BrokenPciTopology,
613 /// Unable to clone a jail for the device.
614 #[cfg(any(target_os = "android", target_os = "linux"))]
615 #[error("failed to clone jail: {0}")]
616 CloneJail(minijail::Error),
617 /// Appending to kernel command line failed.
618 #[error("unable to add device to kernel command line: {0}")]
619 Cmdline(kernel_cmdline::Error),
620 /// Configure window size failed.
621 #[error("failed to configure window size: {0}")]
622 ConfigureWindowSize(PciDeviceError),
623 // Unable to create a pipe.
624 #[error("failed to create pipe: {0}")]
625 CreatePipe(base::Error),
626 // Unable to create a root.
627 #[error("failed to create pci root: {0}")]
628 CreateRoot(anyhow::Error),
629 // Unable to create serial device from serial parameters
630 #[error("failed to create serial device: {0}")]
631 CreateSerialDevice(devices::SerialError),
632 // Unable to create tube
633 #[error("failed to create tube: {0}")]
634 CreateTube(base::TubeError),
635 /// Could not clone an event.
636 #[error("failed to clone event: {0}")]
637 EventClone(base::Error),
638 /// Could not create an event.
639 #[error("failed to create event: {0}")]
640 EventCreate(base::Error),
641 /// Failed to generate ACPI content.
642 #[error("failed to generate ACPI content")]
643 GenerateAcpi,
644 /// No more IRQs are available.
645 #[error("no more IRQs are available")]
646 IrqsExhausted,
647 /// VFIO device is missing a DT symbol.
648 #[error("cannot match VFIO device to DT node due to a missing symbol")]
649 MissingDeviceTreeSymbol,
650 /// Missing a required serial device.
651 #[error("missing required serial device {0}")]
652 MissingRequiredSerialDevice(u8),
653 /// Could not add a device to the mmio bus.
654 #[error("failed to add to mmio bus: {0}")]
655 MmioInsert(BusError),
656 /// Failed to insert device into PCI root.
657 #[error("failed to insert device into PCI root: {0}")]
658 PciRootAddDevice(PciDeviceError),
659 #[cfg(any(target_os = "android", target_os = "linux"))]
660 /// Failed to initialize proxy device for jailed device.
661 #[error("failed to create proxy device: {0}")]
662 ProxyDeviceCreation(devices::ProxyError),
663 #[cfg(any(target_os = "android", target_os = "linux"))]
664 /// Failed to register battery device.
665 #[error("failed to register battery device to VM: {0}")]
666 RegisterBattery(devices::BatteryError),
667 /// Could not register PCI device to pci root bus
668 #[error("failed to register PCI device to pci root bus")]
669 RegisterDevice(SendError<PciRootCommand>),
670 /// Could not register PCI device capabilities.
671 #[error("could not register PCI device capabilities: {0}")]
672 RegisterDeviceCapabilities(PciDeviceError),
673 /// Failed to register ioevent with VM.
674 #[error("failed to register ioevent to VM: {0}")]
675 RegisterIoevent(base::Error),
676 /// Failed to register irq event with VM.
677 #[error("failed to register irq event to VM: {0}")]
678 RegisterIrqfd(base::Error),
679 /// Could not setup VFIO platform IRQ for the device.
680 #[error("Setting up VFIO platform IRQ: {0}")]
681 SetupVfioPlatformIrq(anyhow::Error),
682 }
683
684 /// Config a PCI device for used by this vm.
configure_pci_device<V: VmArch, Vcpu: VcpuArch>( linux: &mut RunnableLinuxVm<V, Vcpu>, mut device: Box<dyn PciDevice>, #[cfg(any(target_os = "android", target_os = "linux"))] jail: Option<Minijail>, resources: &mut SystemAllocator, hp_control_tube: &mpsc::Sender<PciRootCommand>, #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>, ) -> Result<PciAddress, DeviceRegistrationError>685 pub fn configure_pci_device<V: VmArch, Vcpu: VcpuArch>(
686 linux: &mut RunnableLinuxVm<V, Vcpu>,
687 mut device: Box<dyn PciDevice>,
688 #[cfg(any(target_os = "android", target_os = "linux"))] jail: Option<Minijail>,
689 resources: &mut SystemAllocator,
690 hp_control_tube: &mpsc::Sender<PciRootCommand>,
691 #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>,
692 ) -> Result<PciAddress, DeviceRegistrationError> {
693 // Allocate PCI device address before allocating BARs.
694 let pci_address = device
695 .allocate_address(resources)
696 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
697
698 // Allocate ranges that may need to be in the low MMIO region (MmioType::Low).
699 let mmio_ranges = device
700 .allocate_io_bars(resources)
701 .map_err(DeviceRegistrationError::AllocateIoAddrs)?;
702
703 // Allocate device ranges that may be in low or high MMIO after low-only ranges.
704 let device_ranges = device
705 .allocate_device_bars(resources)
706 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
707
708 // If device is a pcie bridge, add its pci bus to pci root
709 if let Some(pci_bus) = device.get_new_pci_bus() {
710 hp_control_tube
711 .send(PciRootCommand::AddBridge(pci_bus))
712 .map_err(DeviceRegistrationError::RegisterDevice)?;
713 let bar_ranges = Vec::new();
714 device
715 .configure_bridge_window(resources, &bar_ranges)
716 .map_err(DeviceRegistrationError::ConfigureWindowSize)?;
717 }
718
719 // Do not suggest INTx for hot-plug devices.
720 let intx_event = devices::IrqLevelEvent::new().map_err(DeviceRegistrationError::EventCreate)?;
721
722 if let PreferredIrq::Fixed { pin, gsi } = device.preferred_irq() {
723 resources.reserve_irq(gsi);
724
725 device.assign_irq(
726 intx_event
727 .try_clone()
728 .map_err(DeviceRegistrationError::EventClone)?,
729 pin,
730 gsi,
731 );
732
733 linux
734 .irq_chip
735 .as_irq_chip_mut()
736 .register_level_irq_event(gsi, &intx_event, IrqEventSource::from_device(&device))
737 .map_err(DeviceRegistrationError::RegisterIrqfd)?;
738 }
739
740 let mut keep_rds = device.keep_rds();
741 syslog::push_descriptors(&mut keep_rds);
742 cros_tracing::push_descriptors!(&mut keep_rds);
743 metrics::push_descriptors(&mut keep_rds);
744
745 device
746 .register_device_capabilities()
747 .map_err(DeviceRegistrationError::RegisterDeviceCapabilities)?;
748
749 #[cfg(any(target_os = "android", target_os = "linux"))]
750 let arced_dev: Arc<Mutex<dyn BusDevice>> = if let Some(jail) = jail {
751 let proxy = ProxyDevice::new(
752 device,
753 jail,
754 keep_rds,
755 #[cfg(feature = "swap")]
756 swap_controller,
757 )
758 .map_err(DeviceRegistrationError::ProxyDeviceCreation)?;
759 linux
760 .pid_debug_label_map
761 .insert(proxy.pid() as u32, proxy.debug_label());
762 Arc::new(Mutex::new(proxy))
763 } else {
764 device.on_sandboxed();
765 Arc::new(Mutex::new(device))
766 };
767
768 #[cfg(windows)]
769 let arced_dev = {
770 device.on_sandboxed();
771 Arc::new(Mutex::new(device))
772 };
773
774 #[cfg(any(target_os = "android", target_os = "linux"))]
775 hp_control_tube
776 .send(PciRootCommand::Add(pci_address, arced_dev.clone()))
777 .map_err(DeviceRegistrationError::RegisterDevice)?;
778
779 for range in &mmio_ranges {
780 linux
781 .mmio_bus
782 .insert(arced_dev.clone(), range.addr, range.size)
783 .map_err(DeviceRegistrationError::MmioInsert)?;
784 }
785
786 for range in &device_ranges {
787 linux
788 .mmio_bus
789 .insert(arced_dev.clone(), range.addr, range.size)
790 .map_err(DeviceRegistrationError::MmioInsert)?;
791 }
792
793 Ok(pci_address)
794 }
795
796 /// Creates Virtio MMIO devices for use by this Vm.
generate_virtio_mmio_bus( devices: Vec<(VirtioMmioDevice, Option<Minijail>)>, irq_chip: &mut dyn IrqChip, mmio_bus: &Bus, resources: &mut SystemAllocator, vm: &mut impl Vm, sdts: Vec<SDT>, #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>, ) -> Result<(BTreeMap<u32, String>, Vec<SDT>), DeviceRegistrationError>797 pub fn generate_virtio_mmio_bus(
798 devices: Vec<(VirtioMmioDevice, Option<Minijail>)>,
799 irq_chip: &mut dyn IrqChip,
800 mmio_bus: &Bus,
801 resources: &mut SystemAllocator,
802 vm: &mut impl Vm,
803 sdts: Vec<SDT>,
804 #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>,
805 ) -> Result<(BTreeMap<u32, String>, Vec<SDT>), DeviceRegistrationError> {
806 #[cfg_attr(windows, allow(unused_mut))]
807 let mut pid_labels = BTreeMap::new();
808
809 // sdts can be updated only on x86 platforms.
810 #[cfg(target_arch = "x86_64")]
811 let mut sdts = sdts;
812 for dev_value in devices.into_iter() {
813 #[cfg(any(target_os = "android", target_os = "linux"))]
814 let (mut device, jail) = dev_value;
815 #[cfg(windows)]
816 let (mut device, _) = dev_value;
817
818 let ranges = device
819 .allocate_regions(resources)
820 .map_err(DeviceRegistrationError::AllocateIoResource)?;
821
822 let mut keep_rds = device.keep_rds();
823 syslog::push_descriptors(&mut keep_rds);
824 cros_tracing::push_descriptors!(&mut keep_rds);
825 metrics::push_descriptors(&mut keep_rds);
826
827 let irq_num = resources
828 .allocate_irq()
829 .ok_or(DeviceRegistrationError::AllocateIrq)?;
830 let irq_evt = devices::IrqEdgeEvent::new().map_err(DeviceRegistrationError::EventCreate)?;
831 irq_chip
832 .register_edge_irq_event(irq_num, &irq_evt, IrqEventSource::from_device(&device))
833 .map_err(DeviceRegistrationError::RegisterIrqfd)?;
834 device.assign_irq(&irq_evt, irq_num);
835 keep_rds.extend(irq_evt.as_raw_descriptors());
836
837 for (event, addr, datamatch) in device.ioevents() {
838 let io_addr = IoEventAddress::Mmio(addr);
839 vm.register_ioevent(event, io_addr, datamatch)
840 .map_err(DeviceRegistrationError::RegisterIoevent)?;
841 keep_rds.push(event.as_raw_descriptor());
842 }
843
844 #[cfg(target_arch = "x86_64")]
845 {
846 sdts = device
847 .generate_acpi(sdts)
848 .ok_or(DeviceRegistrationError::GenerateAcpi)?;
849 }
850
851 #[cfg(any(target_os = "android", target_os = "linux"))]
852 let arced_dev: Arc<Mutex<dyn BusDevice>> = if let Some(jail) = jail {
853 let proxy = ProxyDevice::new(
854 device,
855 jail,
856 keep_rds,
857 #[cfg(feature = "swap")]
858 swap_controller,
859 )
860 .map_err(DeviceRegistrationError::ProxyDeviceCreation)?;
861 pid_labels.insert(proxy.pid() as u32, proxy.debug_label());
862 Arc::new(Mutex::new(proxy))
863 } else {
864 device.on_sandboxed();
865 Arc::new(Mutex::new(device))
866 };
867
868 #[cfg(windows)]
869 let arced_dev = {
870 device.on_sandboxed();
871 Arc::new(Mutex::new(device))
872 };
873
874 for range in &ranges {
875 mmio_bus
876 .insert(arced_dev.clone(), range.0, range.1)
877 .map_err(DeviceRegistrationError::MmioInsert)?;
878 }
879 }
880 Ok((pid_labels, sdts))
881 }
882
883 // Generate pci topology starting from parent bus
generate_pci_topology( parent_bus: Arc<Mutex<PciBus>>, resources: &mut SystemAllocator, io_ranges: &mut BTreeMap<usize, Vec<BarRange>>, device_ranges: &mut BTreeMap<usize, Vec<BarRange>>, device_addrs: &[PciAddress], devices: &mut Vec<(Box<dyn PciDevice>, Option<Minijail>)>, ) -> Result<(Vec<BarRange>, u8), DeviceRegistrationError>884 pub fn generate_pci_topology(
885 parent_bus: Arc<Mutex<PciBus>>,
886 resources: &mut SystemAllocator,
887 io_ranges: &mut BTreeMap<usize, Vec<BarRange>>,
888 device_ranges: &mut BTreeMap<usize, Vec<BarRange>>,
889 device_addrs: &[PciAddress],
890 devices: &mut Vec<(Box<dyn PciDevice>, Option<Minijail>)>,
891 ) -> Result<(Vec<BarRange>, u8), DeviceRegistrationError> {
892 let mut bar_ranges = Vec::new();
893 let bus_num = parent_bus.lock().get_bus_num();
894 let mut subordinate_bus = bus_num;
895 for (dev_idx, addr) in device_addrs.iter().enumerate() {
896 // Only target for devices that located on this bus
897 if addr.bus == bus_num {
898 // If this device is a pci bridge (a.k.a., it has a pci bus structure),
899 // create its topology recursively
900 if let Some(child_bus) = devices[dev_idx].0.get_new_pci_bus() {
901 let (child_bar_ranges, child_sub_bus) = generate_pci_topology(
902 child_bus.clone(),
903 resources,
904 io_ranges,
905 device_ranges,
906 device_addrs,
907 devices,
908 )?;
909 let device = &mut devices[dev_idx].0;
910 parent_bus
911 .lock()
912 .add_child_bus(child_bus.clone())
913 .map_err(|_| DeviceRegistrationError::BrokenPciTopology)?;
914 let bridge_window = device
915 .configure_bridge_window(resources, &child_bar_ranges)
916 .map_err(DeviceRegistrationError::ConfigureWindowSize)?;
917 bar_ranges.extend(bridge_window);
918
919 let ranges = device
920 .allocate_io_bars(resources)
921 .map_err(DeviceRegistrationError::AllocateIoAddrs)?;
922 io_ranges.insert(dev_idx, ranges.clone());
923 bar_ranges.extend(ranges);
924
925 let ranges = device
926 .allocate_device_bars(resources)
927 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
928 device_ranges.insert(dev_idx, ranges.clone());
929 bar_ranges.extend(ranges);
930
931 device.set_subordinate_bus(child_sub_bus);
932
933 subordinate_bus = std::cmp::max(subordinate_bus, child_sub_bus);
934 }
935 }
936 }
937
938 for (dev_idx, addr) in device_addrs.iter().enumerate() {
939 if addr.bus == bus_num {
940 let device = &mut devices[dev_idx].0;
941 // Allocate MMIO for non-bridge devices
942 if device.get_new_pci_bus().is_none() {
943 let ranges = device
944 .allocate_io_bars(resources)
945 .map_err(DeviceRegistrationError::AllocateIoAddrs)?;
946 io_ranges.insert(dev_idx, ranges.clone());
947 bar_ranges.extend(ranges);
948
949 let ranges = device
950 .allocate_device_bars(resources)
951 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
952 device_ranges.insert(dev_idx, ranges.clone());
953 bar_ranges.extend(ranges);
954 }
955 }
956 }
957 Ok((bar_ranges, subordinate_bus))
958 }
959
960 /// Ensure all PCI devices have an assigned PCI address.
assign_pci_addresses( devices: &mut [(Box<dyn BusDeviceObj>, Option<Minijail>)], resources: &mut SystemAllocator, ) -> Result<(), DeviceRegistrationError>961 pub fn assign_pci_addresses(
962 devices: &mut [(Box<dyn BusDeviceObj>, Option<Minijail>)],
963 resources: &mut SystemAllocator,
964 ) -> Result<(), DeviceRegistrationError> {
965 // First allocate devices with a preferred address.
966 for pci_device in devices
967 .iter_mut()
968 .filter_map(|(device, _jail)| device.as_pci_device_mut())
969 .filter(|pci_device| pci_device.preferred_address().is_some())
970 {
971 let _ = pci_device
972 .allocate_address(resources)
973 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
974 }
975
976 // Then allocate addresses for the remaining devices.
977 for pci_device in devices
978 .iter_mut()
979 .filter_map(|(device, _jail)| device.as_pci_device_mut())
980 .filter(|pci_device| pci_device.preferred_address().is_none())
981 {
982 let _ = pci_device
983 .allocate_address(resources)
984 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
985 }
986
987 Ok(())
988 }
989
990 /// Creates a root PCI device for use by this Vm.
generate_pci_root( mut devices: Vec<(Box<dyn PciDevice>, Option<Minijail>)>, irq_chip: &mut dyn IrqChip, mmio_bus: Arc<Bus>, mmio_base: GuestAddress, mmio_register_bit_num: usize, io_bus: Arc<Bus>, resources: &mut SystemAllocator, vm: &mut impl Vm, max_irqs: usize, vcfg_base: Option<u64>, #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>, ) -> Result< ( PciRoot, Vec<(PciAddress, u32, PciInterruptPin)>, BTreeMap<u32, String>, BTreeMap<PciAddress, Vec<u8>>, BTreeMap<PciAddress, Vec<u8>>, ), DeviceRegistrationError, >991 pub fn generate_pci_root(
992 mut devices: Vec<(Box<dyn PciDevice>, Option<Minijail>)>,
993 irq_chip: &mut dyn IrqChip,
994 mmio_bus: Arc<Bus>,
995 mmio_base: GuestAddress,
996 mmio_register_bit_num: usize,
997 io_bus: Arc<Bus>,
998 resources: &mut SystemAllocator,
999 vm: &mut impl Vm,
1000 max_irqs: usize,
1001 vcfg_base: Option<u64>,
1002 #[cfg(feature = "swap")] swap_controller: &mut Option<swap::SwapController>,
1003 ) -> Result<
1004 (
1005 PciRoot,
1006 Vec<(PciAddress, u32, PciInterruptPin)>,
1007 BTreeMap<u32, String>,
1008 BTreeMap<PciAddress, Vec<u8>>,
1009 BTreeMap<PciAddress, Vec<u8>>,
1010 ),
1011 DeviceRegistrationError,
1012 > {
1013 let mut device_addrs = Vec::new();
1014
1015 for (device, _jail) in devices.iter_mut() {
1016 let address = device
1017 .allocate_address(resources)
1018 .map_err(DeviceRegistrationError::AllocateDeviceAddrs)?;
1019 device_addrs.push(address);
1020 }
1021
1022 let mut device_ranges = BTreeMap::new();
1023 let mut io_ranges = BTreeMap::new();
1024 let root_bus = Arc::new(Mutex::new(PciBus::new(0, 0, false)));
1025
1026 generate_pci_topology(
1027 root_bus.clone(),
1028 resources,
1029 &mut io_ranges,
1030 &mut device_ranges,
1031 &device_addrs,
1032 &mut devices,
1033 )?;
1034
1035 let mut root = PciRoot::new(
1036 vm,
1037 Arc::downgrade(&mmio_bus),
1038 mmio_base,
1039 mmio_register_bit_num,
1040 Arc::downgrade(&io_bus),
1041 root_bus,
1042 )
1043 .map_err(DeviceRegistrationError::CreateRoot)?;
1044 #[cfg_attr(windows, allow(unused_mut))]
1045 let mut pid_labels = BTreeMap::new();
1046
1047 // Allocate legacy INTx
1048 let mut pci_irqs = Vec::new();
1049 let mut irqs: Vec<u32> = Vec::new();
1050
1051 // Mapping of (bus, dev, pin) -> IRQ number.
1052 let mut dev_pin_irq = BTreeMap::new();
1053
1054 for (dev_idx, (device, _jail)) in devices.iter_mut().enumerate() {
1055 let pci_address = device_addrs[dev_idx];
1056
1057 let irq = match device.preferred_irq() {
1058 PreferredIrq::Fixed { pin, gsi } => {
1059 // The device reported a preferred IRQ, so use that rather than allocating one.
1060 resources.reserve_irq(gsi);
1061 Some((pin, gsi))
1062 }
1063 PreferredIrq::Any => {
1064 // The device did not provide a preferred IRQ but requested one, so allocate one.
1065
1066 // Choose a pin based on the slot's function number. Function 0 must always use
1067 // INTA# for single-function devices per the PCI spec, and we choose to use INTA#
1068 // for function 0 on multifunction devices and distribute the remaining functions
1069 // evenly across the other pins.
1070 let pin = match pci_address.func % 4 {
1071 0 => PciInterruptPin::IntA,
1072 1 => PciInterruptPin::IntB,
1073 2 => PciInterruptPin::IntC,
1074 _ => PciInterruptPin::IntD,
1075 };
1076
1077 // If an IRQ number has already been assigned for a different function with this
1078 // (bus, device, pin) combination, use it. Otherwise allocate a new one and insert
1079 // it into the map.
1080 let pin_key = (pci_address.bus, pci_address.dev, pin);
1081 let irq_num = if let Some(irq_num) = dev_pin_irq.get(&pin_key) {
1082 *irq_num
1083 } else {
1084 // If we have allocated fewer than `max_irqs` total, add a new irq to the `irqs`
1085 // pool. Otherwise, share one of the existing `irqs`.
1086 let irq_num = if irqs.len() < max_irqs {
1087 let irq_num = resources
1088 .allocate_irq()
1089 .ok_or(DeviceRegistrationError::AllocateIrq)?;
1090 irqs.push(irq_num);
1091 irq_num
1092 } else {
1093 // Pick one of the existing IRQs to share, using `dev_idx` to distribute IRQ
1094 // sharing evenly across devices.
1095 irqs[dev_idx % max_irqs]
1096 };
1097
1098 dev_pin_irq.insert(pin_key, irq_num);
1099 irq_num
1100 };
1101 Some((pin, irq_num))
1102 }
1103 PreferredIrq::None => {
1104 // The device does not want an INTx# IRQ.
1105 None
1106 }
1107 };
1108
1109 if let Some((pin, gsi)) = irq {
1110 let intx_event =
1111 devices::IrqLevelEvent::new().map_err(DeviceRegistrationError::EventCreate)?;
1112
1113 device.assign_irq(
1114 intx_event
1115 .try_clone()
1116 .map_err(DeviceRegistrationError::EventClone)?,
1117 pin,
1118 gsi,
1119 );
1120
1121 irq_chip
1122 .register_level_irq_event(gsi, &intx_event, IrqEventSource::from_device(device))
1123 .map_err(DeviceRegistrationError::RegisterIrqfd)?;
1124
1125 pci_irqs.push((pci_address, gsi, pin));
1126 }
1127 }
1128
1129 // To prevent issues where device's on_sandbox may spawn thread before all
1130 // sandboxed devices are sandboxed we partition iterator to go over sandboxed
1131 // first. This is needed on linux platforms. On windows, this is a no-op since
1132 // jails are always None, even for sandboxed devices.
1133 let devices = {
1134 let (sandboxed, non_sandboxed): (Vec<_>, Vec<_>) = devices
1135 .into_iter()
1136 .enumerate()
1137 .partition(|(_, (_, jail))| jail.is_some());
1138 sandboxed.into_iter().chain(non_sandboxed)
1139 };
1140
1141 let mut amls = BTreeMap::new();
1142 let mut gpe_scope_amls = BTreeMap::new();
1143 for (dev_idx, dev_value) in devices {
1144 #[cfg(any(target_os = "android", target_os = "linux"))]
1145 let (mut device, jail) = dev_value;
1146 #[cfg(windows)]
1147 let (mut device, _) = dev_value;
1148 let address = device_addrs[dev_idx];
1149
1150 let mut keep_rds = device.keep_rds();
1151 syslog::push_descriptors(&mut keep_rds);
1152 cros_tracing::push_descriptors!(&mut keep_rds);
1153 metrics::push_descriptors(&mut keep_rds);
1154 keep_rds.append(&mut vm.get_memory().as_raw_descriptors());
1155
1156 let ranges = io_ranges.remove(&dev_idx).unwrap_or_default();
1157 let device_ranges = device_ranges.remove(&dev_idx).unwrap_or_default();
1158 device
1159 .register_device_capabilities()
1160 .map_err(DeviceRegistrationError::RegisterDeviceCapabilities)?;
1161
1162 if let Some(vcfg_base) = vcfg_base {
1163 let (methods, shm) = device.generate_acpi_methods();
1164 if !methods.is_empty() {
1165 amls.insert(address, methods);
1166 }
1167 if let Some((offset, mmap)) = shm {
1168 let _ = vm.add_memory_region(
1169 GuestAddress(vcfg_base + offset as u64),
1170 Box::new(mmap),
1171 false,
1172 false,
1173 MemCacheType::CacheCoherent,
1174 );
1175 }
1176 }
1177 let gpe_nr = device.set_gpe(resources);
1178
1179 #[cfg(any(target_os = "android", target_os = "linux"))]
1180 let arced_dev: Arc<Mutex<dyn BusDevice>> = if let Some(jail) = jail {
1181 let proxy = ProxyDevice::new(
1182 device,
1183 jail,
1184 keep_rds,
1185 #[cfg(feature = "swap")]
1186 swap_controller,
1187 )
1188 .map_err(DeviceRegistrationError::ProxyDeviceCreation)?;
1189 pid_labels.insert(proxy.pid() as u32, proxy.debug_label());
1190 Arc::new(Mutex::new(proxy))
1191 } else {
1192 device.on_sandboxed();
1193 Arc::new(Mutex::new(device))
1194 };
1195 #[cfg(windows)]
1196 let arced_dev = {
1197 device.on_sandboxed();
1198 Arc::new(Mutex::new(device))
1199 };
1200 root.add_device(address, arced_dev.clone(), vm)
1201 .map_err(DeviceRegistrationError::PciRootAddDevice)?;
1202 for range in &ranges {
1203 mmio_bus
1204 .insert(arced_dev.clone(), range.addr, range.size)
1205 .map_err(DeviceRegistrationError::MmioInsert)?;
1206 }
1207
1208 for range in &device_ranges {
1209 mmio_bus
1210 .insert(arced_dev.clone(), range.addr, range.size)
1211 .map_err(DeviceRegistrationError::MmioInsert)?;
1212 }
1213
1214 if let Some(gpe_nr) = gpe_nr {
1215 if let Some(acpi_path) = root.acpi_path(&address) {
1216 let mut gpe_aml = Vec::new();
1217
1218 GpeScope {}.cast_to_aml_bytes(
1219 &mut gpe_aml,
1220 gpe_nr,
1221 format!("\\{}", acpi_path).as_str(),
1222 );
1223 if !gpe_aml.is_empty() {
1224 gpe_scope_amls.insert(address, gpe_aml);
1225 }
1226 }
1227 }
1228 }
1229
1230 Ok((root, pci_irqs, pid_labels, amls, gpe_scope_amls))
1231 }
1232
1233 /// Errors for image loading.
1234 #[sorted]
1235 #[derive(Error, Debug)]
1236 pub enum LoadImageError {
1237 #[error("Alignment not a power of two: {0}")]
1238 BadAlignment(u64),
1239 #[error("Getting image size failed: {0}")]
1240 GetLen(io::Error),
1241 #[error("GuestMemory get slice failed: {0}")]
1242 GuestMemorySlice(GuestMemoryError),
1243 #[error("Image size too large: {0}")]
1244 ImageSizeTooLarge(u64),
1245 #[error("Reading image into memory failed: {0}")]
1246 ReadToMemory(io::Error),
1247 }
1248
1249 /// Load an image from a file into guest memory.
1250 ///
1251 /// # Arguments
1252 ///
1253 /// * `guest_mem` - The memory to be used by the guest.
1254 /// * `guest_addr` - The starting address to load the image in the guest memory.
1255 /// * `max_size` - The amount of space in bytes available in the guest memory for the image.
1256 /// * `image` - The file containing the image to be loaded.
1257 ///
1258 /// The size in bytes of the loaded image is returned.
load_image<F>( guest_mem: &GuestMemory, image: &mut F, guest_addr: GuestAddress, max_size: u64, ) -> Result<usize, LoadImageError> where F: FileReadWriteAtVolatile + FileGetLen,1259 pub fn load_image<F>(
1260 guest_mem: &GuestMemory,
1261 image: &mut F,
1262 guest_addr: GuestAddress,
1263 max_size: u64,
1264 ) -> Result<usize, LoadImageError>
1265 where
1266 F: FileReadWriteAtVolatile + FileGetLen,
1267 {
1268 let size = image.get_len().map_err(LoadImageError::GetLen)?;
1269
1270 if size > usize::max_value() as u64 || size > max_size {
1271 return Err(LoadImageError::ImageSizeTooLarge(size));
1272 }
1273
1274 // This is safe due to the bounds check above.
1275 let size = size as usize;
1276
1277 let guest_slice = guest_mem
1278 .get_slice_at_addr(guest_addr, size)
1279 .map_err(LoadImageError::GuestMemorySlice)?;
1280 image
1281 .read_exact_at_volatile(guest_slice, 0)
1282 .map_err(LoadImageError::ReadToMemory)?;
1283
1284 Ok(size)
1285 }
1286
1287 /// Load an image from a file into guest memory at the highest possible address.
1288 ///
1289 /// # Arguments
1290 ///
1291 /// * `guest_mem` - The memory to be used by the guest.
1292 /// * `image` - The file containing the image to be loaded.
1293 /// * `min_guest_addr` - The minimum address of the start of the image.
1294 /// * `max_guest_addr` - The address to load the last byte of the image.
1295 /// * `align` - The minimum alignment of the start address of the image in bytes (must be a power of
1296 /// two).
1297 ///
1298 /// The guest address and size in bytes of the loaded image are returned.
load_image_high<F>( guest_mem: &GuestMemory, image: &mut F, min_guest_addr: GuestAddress, max_guest_addr: GuestAddress, align: u64, ) -> Result<(GuestAddress, usize), LoadImageError> where F: FileReadWriteAtVolatile + FileGetLen,1299 pub fn load_image_high<F>(
1300 guest_mem: &GuestMemory,
1301 image: &mut F,
1302 min_guest_addr: GuestAddress,
1303 max_guest_addr: GuestAddress,
1304 align: u64,
1305 ) -> Result<(GuestAddress, usize), LoadImageError>
1306 where
1307 F: FileReadWriteAtVolatile + FileGetLen,
1308 {
1309 if !align.is_power_of_two() {
1310 return Err(LoadImageError::BadAlignment(align));
1311 }
1312
1313 let max_size = max_guest_addr.offset_from(min_guest_addr) & !(align - 1);
1314 let size = image.get_len().map_err(LoadImageError::GetLen)?;
1315
1316 if size > usize::max_value() as u64 || size > max_size {
1317 return Err(LoadImageError::ImageSizeTooLarge(size));
1318 }
1319
1320 // Load image at the maximum aligned address allowed.
1321 // The subtraction cannot underflow because of the size checks above.
1322 let guest_addr = GuestAddress((max_guest_addr.offset() - size) & !(align - 1));
1323
1324 // This is safe due to the bounds check above.
1325 let size = size as usize;
1326
1327 let guest_slice = guest_mem
1328 .get_slice_at_addr(guest_addr, size)
1329 .map_err(LoadImageError::GuestMemorySlice)?;
1330 image
1331 .read_exact_at_volatile(guest_slice, 0)
1332 .map_err(LoadImageError::ReadToMemory)?;
1333
1334 Ok((guest_addr, size))
1335 }
1336
1337 /// SMBIOS table configuration
1338 #[derive(Clone, Debug, Default, Serialize, Deserialize, FromKeyValues, PartialEq, Eq)]
1339 #[serde(deny_unknown_fields, rename_all = "kebab-case")]
1340 pub struct SmbiosOptions {
1341 /// BIOS vendor name.
1342 pub bios_vendor: Option<String>,
1343
1344 /// BIOS version number (free-form string).
1345 pub bios_version: Option<String>,
1346
1347 /// System manufacturer name.
1348 pub manufacturer: Option<String>,
1349
1350 /// System product name.
1351 pub product_name: Option<String>,
1352
1353 /// System serial number (free-form string).
1354 pub serial_number: Option<String>,
1355
1356 /// System UUID.
1357 pub uuid: Option<Uuid>,
1358
1359 /// Additional OEM strings to add to SMBIOS table.
1360 #[serde(default)]
1361 pub oem_strings: Vec<String>,
1362 }
1363
1364 #[cfg(test)]
1365 mod tests {
1366 use serde_keyvalue::from_key_values;
1367
1368 use super::*;
1369
1370 #[test]
parse_pstore()1371 fn parse_pstore() {
1372 let res: Pstore = from_key_values("path=/some/path,size=16384").unwrap();
1373 assert_eq!(
1374 res,
1375 Pstore {
1376 path: "/some/path".into(),
1377 size: 16384,
1378 }
1379 );
1380
1381 let res = from_key_values::<Pstore>("path=/some/path");
1382 assert!(res.is_err());
1383
1384 let res = from_key_values::<Pstore>("size=16384");
1385 assert!(res.is_err());
1386
1387 let res = from_key_values::<Pstore>("");
1388 assert!(res.is_err());
1389 }
1390
1391 #[test]
deserialize_cpuset_serde_kv()1392 fn deserialize_cpuset_serde_kv() {
1393 let res: CpuSet = from_key_values("[0,4,7]").unwrap();
1394 assert_eq!(res, CpuSet::new(vec![0, 4, 7]));
1395
1396 let res: CpuSet = from_key_values("[9-12]").unwrap();
1397 assert_eq!(res, CpuSet::new(vec![9, 10, 11, 12]));
1398
1399 let res: CpuSet = from_key_values("[0,4,7,9-12,15]").unwrap();
1400 assert_eq!(res, CpuSet::new(vec![0, 4, 7, 9, 10, 11, 12, 15]));
1401 }
1402
1403 #[test]
deserialize_serialize_cpuset_json()1404 fn deserialize_serialize_cpuset_json() {
1405 let json_str = "[0,4,7]";
1406 let cpuset = CpuSet::new(vec![0, 4, 7]);
1407 let res: CpuSet = serde_json::from_str(json_str).unwrap();
1408 assert_eq!(res, cpuset);
1409 assert_eq!(serde_json::to_string(&cpuset).unwrap(), json_str);
1410
1411 let json_str = r#"["9-12"]"#;
1412 let cpuset = CpuSet::new(vec![9, 10, 11, 12]);
1413 let res: CpuSet = serde_json::from_str(json_str).unwrap();
1414 assert_eq!(res, cpuset);
1415 assert_eq!(serde_json::to_string(&cpuset).unwrap(), json_str);
1416
1417 let json_str = r#"[0,4,7,"9-12",15]"#;
1418 let cpuset = CpuSet::new(vec![0, 4, 7, 9, 10, 11, 12, 15]);
1419 let res: CpuSet = serde_json::from_str(json_str).unwrap();
1420 assert_eq!(res, cpuset);
1421 assert_eq!(serde_json::to_string(&cpuset).unwrap(), json_str);
1422 }
1423 }
1424