1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "linker_phdr.h"
30
31 #include <errno.h>
32 #include <string.h>
33 #include <sys/mman.h>
34 #include <sys/prctl.h>
35 #include <sys/types.h>
36 #include <sys/stat.h>
37 #include <unistd.h>
38
39 #include "linker.h"
40 #include "linker_dlwarning.h"
41 #include "linker_globals.h"
42 #include "linker_debug.h"
43 #include "linker_utils.h"
44
45 #include "private/bionic_asm_note.h"
46 #include "private/CFIShadow.h" // For kLibraryAlignment
47 #include "private/elf_note.h"
48
49 #include <android-base/file.h>
50
GetTargetElfMachine()51 static int GetTargetElfMachine() {
52 #if defined(__arm__)
53 return EM_ARM;
54 #elif defined(__aarch64__)
55 return EM_AARCH64;
56 #elif defined(__i386__)
57 return EM_386;
58 #elif defined(__riscv)
59 return EM_RISCV;
60 #elif defined(__x86_64__)
61 return EM_X86_64;
62 #endif
63 }
64
65 /**
66 TECHNICAL NOTE ON ELF LOADING.
67
68 An ELF file's program header table contains one or more PT_LOAD
69 segments, which corresponds to portions of the file that need to
70 be mapped into the process' address space.
71
72 Each loadable segment has the following important properties:
73
74 p_offset -> segment file offset
75 p_filesz -> segment file size
76 p_memsz -> segment memory size (always >= p_filesz)
77 p_vaddr -> segment's virtual address
78 p_flags -> segment flags (e.g. readable, writable, executable)
79 p_align -> segment's in-memory and in-file alignment
80
81 We will ignore the p_paddr field of ElfW(Phdr) for now.
82
83 The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
84 ranges of virtual addresses. A few rules apply:
85
86 - the virtual address ranges should not overlap.
87
88 - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
89 between them should always be initialized to 0.
90
91 - ranges do not necessarily start or end at page boundaries. Two distinct
92 segments can have their start and end on the same page. In this case, the
93 page inherits the mapping flags of the latter segment.
94
95 Finally, the real load addrs of each segment is not p_vaddr. Instead the
96 loader decides where to load the first segment, then will load all others
97 relative to the first one to respect the initial range layout.
98
99 For example, consider the following list:
100
101 [ offset:0, filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
102 [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
103
104 This corresponds to two segments that cover these virtual address ranges:
105
106 0x30000...0x34000
107 0x40000...0x48000
108
109 If the loader decides to load the first segment at address 0xa0000000
110 then the segments' load address ranges will be:
111
112 0xa0030000...0xa0034000
113 0xa0040000...0xa0048000
114
115 In other words, all segments must be loaded at an address that has the same
116 constant offset from their p_vaddr value. This offset is computed as the
117 difference between the first segment's load address, and its p_vaddr value.
118
119 However, in practice, segments do _not_ start at page boundaries. Since we
120 can only memory-map at page boundaries, this means that the bias is
121 computed as:
122
123 load_bias = phdr0_load_address - page_start(phdr0->p_vaddr)
124
125 (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
126 possible wrap around UINT32_MAX for possible large p_vaddr values).
127
128 And that the phdr0_load_address must start at a page boundary, with
129 the segment's real content starting at:
130
131 phdr0_load_address + page_offset(phdr0->p_vaddr)
132
133 Note that ELF requires the following condition to make the mmap()-ing work:
134
135 page_offset(phdr0->p_vaddr) == page_offset(phdr0->p_offset)
136
137 The load_bias must be added to any p_vaddr value read from the ELF file to
138 determine the corresponding memory address.
139
140 **/
141
142 #define MAYBE_MAP_FLAG(x, from, to) (((x) & (from)) ? (to) : 0)
143 #define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
144 MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
145 MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
146
147 static const size_t kPageSize = page_size();
148
149 /*
150 * Generic PMD size calculation:
151 * - Each page table (PT) is of size 1 page.
152 * - Each page table entry (PTE) is of size 64 bits.
153 * - Each PTE locates one physical page frame (PFN) of size 1 page.
154 * - A PMD entry locates 1 page table (PT)
155 *
156 * PMD size = Num entries in a PT * page_size
157 */
158 static const size_t kPmdSize = (kPageSize / sizeof(uint64_t)) * kPageSize;
159
ElfReader()160 ElfReader::ElfReader()
161 : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0),
162 phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr),
163 strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr),
164 mapped_by_caller_(false) {
165 }
166
Read(const char * name,int fd,off64_t file_offset,off64_t file_size)167 bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) {
168 if (did_read_) {
169 return true;
170 }
171 name_ = name;
172 fd_ = fd;
173 file_offset_ = file_offset;
174 file_size_ = file_size;
175
176 if (ReadElfHeader() &&
177 VerifyElfHeader() &&
178 ReadProgramHeaders() &&
179 ReadSectionHeaders() &&
180 ReadDynamicSection() &&
181 ReadPadSegmentNote()) {
182 did_read_ = true;
183 }
184
185 return did_read_;
186 }
187
Load(address_space_params * address_space)188 bool ElfReader::Load(address_space_params* address_space) {
189 CHECK(did_read_);
190 if (did_load_) {
191 return true;
192 }
193 bool reserveSuccess = ReserveAddressSpace(address_space);
194 if (reserveSuccess && LoadSegments() && FindPhdr() &&
195 FindGnuPropertySection()) {
196 did_load_ = true;
197 #if defined(__aarch64__)
198 // For Armv8.5-A loaded executable segments may require PROT_BTI.
199 if (note_gnu_property_.IsBTICompatible()) {
200 did_load_ = (phdr_table_protect_segments(phdr_table_, phdr_num_, load_bias_,
201 should_pad_segments_, ¬e_gnu_property_) == 0);
202 }
203 #endif
204 }
205 if (reserveSuccess && !did_load_) {
206 if (load_start_ != nullptr && load_size_ != 0) {
207 if (!mapped_by_caller_) {
208 munmap(load_start_, load_size_);
209 }
210 }
211 }
212
213 return did_load_;
214 }
215
get_string(ElfW (Word)index) const216 const char* ElfReader::get_string(ElfW(Word) index) const {
217 CHECK(strtab_ != nullptr);
218 CHECK(index < strtab_size_);
219
220 return strtab_ + index;
221 }
222
ReadElfHeader()223 bool ElfReader::ReadElfHeader() {
224 ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_));
225 if (rc < 0) {
226 DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno));
227 return false;
228 }
229
230 if (rc != sizeof(header_)) {
231 DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(),
232 static_cast<size_t>(rc));
233 return false;
234 }
235 return true;
236 }
237
EM_to_string(int em)238 static const char* EM_to_string(int em) {
239 if (em == EM_386) return "EM_386";
240 if (em == EM_AARCH64) return "EM_AARCH64";
241 if (em == EM_ARM) return "EM_ARM";
242 if (em == EM_RISCV) return "EM_RISCV";
243 if (em == EM_X86_64) return "EM_X86_64";
244 return "EM_???";
245 }
246
VerifyElfHeader()247 bool ElfReader::VerifyElfHeader() {
248 if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
249 DL_ERR("\"%s\" has bad ELF magic: %02x%02x%02x%02x", name_.c_str(),
250 header_.e_ident[0], header_.e_ident[1], header_.e_ident[2], header_.e_ident[3]);
251 return false;
252 }
253
254 // Try to give a clear diagnostic for ELF class mismatches, since they're
255 // an easy mistake to make during the 32-bit/64-bit transition period.
256 int elf_class = header_.e_ident[EI_CLASS];
257 #if defined(__LP64__)
258 if (elf_class != ELFCLASS64) {
259 if (elf_class == ELFCLASS32) {
260 DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str());
261 } else {
262 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
263 }
264 return false;
265 }
266 #else
267 if (elf_class != ELFCLASS32) {
268 if (elf_class == ELFCLASS64) {
269 DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str());
270 } else {
271 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
272 }
273 return false;
274 }
275 #endif
276
277 if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
278 DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]);
279 return false;
280 }
281
282 if (header_.e_type != ET_DYN) {
283 DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type);
284 return false;
285 }
286
287 if (header_.e_version != EV_CURRENT) {
288 DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version);
289 return false;
290 }
291
292 if (header_.e_machine != GetTargetElfMachine()) {
293 DL_ERR("\"%s\" is for %s (%d) instead of %s (%d)",
294 name_.c_str(),
295 EM_to_string(header_.e_machine), header_.e_machine,
296 EM_to_string(GetTargetElfMachine()), GetTargetElfMachine());
297 return false;
298 }
299
300 if (header_.e_shentsize != sizeof(ElfW(Shdr))) {
301 if (get_application_target_sdk_version() >= 26) {
302 DL_ERR_AND_LOG("\"%s\" has unsupported e_shentsize: 0x%x (expected 0x%zx)",
303 name_.c_str(), header_.e_shentsize, sizeof(ElfW(Shdr)));
304 return false;
305 }
306 DL_WARN_documented_change(26,
307 "invalid-elf-header_section-headers-enforced-for-api-level-26",
308 "\"%s\" has unsupported e_shentsize 0x%x (expected 0x%zx)",
309 name_.c_str(), header_.e_shentsize, sizeof(ElfW(Shdr)));
310 add_dlwarning(name_.c_str(), "has invalid ELF header");
311 }
312
313 if (header_.e_shstrndx == 0) {
314 if (get_application_target_sdk_version() >= 26) {
315 DL_ERR_AND_LOG("\"%s\" has invalid e_shstrndx", name_.c_str());
316 return false;
317 }
318 DL_WARN_documented_change(26,
319 "invalid-elf-header_section-headers-enforced-for-api-level-26",
320 "\"%s\" has invalid e_shstrndx", name_.c_str());
321 add_dlwarning(name_.c_str(), "has invalid ELF header");
322 }
323
324 return true;
325 }
326
CheckFileRange(ElfW (Addr)offset,size_t size,size_t alignment)327 bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size, size_t alignment) {
328 off64_t range_start;
329 off64_t range_end;
330
331 // Only header can be located at the 0 offset... This function called to
332 // check DYNSYM and DYNAMIC sections and phdr/shdr - none of them can be
333 // at offset 0.
334
335 return offset > 0 &&
336 safe_add(&range_start, file_offset_, offset) &&
337 safe_add(&range_end, range_start, size) &&
338 (range_start < file_size_) &&
339 (range_end <= file_size_) &&
340 ((offset % alignment) == 0);
341 }
342
343 // Loads the program header table from an ELF file into a read-only private
344 // anonymous mmap-ed block.
ReadProgramHeaders()345 bool ElfReader::ReadProgramHeaders() {
346 phdr_num_ = header_.e_phnum;
347
348 // Like the kernel, we only accept program header tables that
349 // are smaller than 64KiB.
350 if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
351 DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_);
352 return false;
353 }
354
355 // Boundary checks
356 size_t size = phdr_num_ * sizeof(ElfW(Phdr));
357 if (!CheckFileRange(header_.e_phoff, size, alignof(ElfW(Phdr)))) {
358 DL_ERR_AND_LOG("\"%s\" has invalid phdr offset/size: %zu/%zu",
359 name_.c_str(),
360 static_cast<size_t>(header_.e_phoff),
361 size);
362 return false;
363 }
364
365 if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) {
366 DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno));
367 return false;
368 }
369
370 phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data());
371 return true;
372 }
373
ReadSectionHeaders()374 bool ElfReader::ReadSectionHeaders() {
375 shdr_num_ = header_.e_shnum;
376
377 if (shdr_num_ == 0) {
378 DL_ERR_AND_LOG("\"%s\" has no section headers", name_.c_str());
379 return false;
380 }
381
382 size_t size = shdr_num_ * sizeof(ElfW(Shdr));
383 if (!CheckFileRange(header_.e_shoff, size, alignof(const ElfW(Shdr)))) {
384 DL_ERR_AND_LOG("\"%s\" has invalid shdr offset/size: %zu/%zu",
385 name_.c_str(),
386 static_cast<size_t>(header_.e_shoff),
387 size);
388 return false;
389 }
390
391 if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) {
392 DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno));
393 return false;
394 }
395
396 shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data());
397 return true;
398 }
399
ReadDynamicSection()400 bool ElfReader::ReadDynamicSection() {
401 // 1. Find .dynamic section (in section headers)
402 const ElfW(Shdr)* dynamic_shdr = nullptr;
403 for (size_t i = 0; i < shdr_num_; ++i) {
404 if (shdr_table_[i].sh_type == SHT_DYNAMIC) {
405 dynamic_shdr = &shdr_table_ [i];
406 break;
407 }
408 }
409
410 if (dynamic_shdr == nullptr) {
411 DL_ERR_AND_LOG("\"%s\" .dynamic section header was not found", name_.c_str());
412 return false;
413 }
414
415 // Make sure dynamic_shdr offset and size matches PT_DYNAMIC phdr
416 size_t pt_dynamic_offset = 0;
417 size_t pt_dynamic_filesz = 0;
418 for (size_t i = 0; i < phdr_num_; ++i) {
419 const ElfW(Phdr)* phdr = &phdr_table_[i];
420 if (phdr->p_type == PT_DYNAMIC) {
421 pt_dynamic_offset = phdr->p_offset;
422 pt_dynamic_filesz = phdr->p_filesz;
423 }
424 }
425
426 if (pt_dynamic_offset != dynamic_shdr->sh_offset) {
427 if (get_application_target_sdk_version() >= 26) {
428 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid offset: 0x%zx, "
429 "expected to match PT_DYNAMIC offset: 0x%zx",
430 name_.c_str(),
431 static_cast<size_t>(dynamic_shdr->sh_offset),
432 pt_dynamic_offset);
433 return false;
434 }
435 DL_WARN_documented_change(26,
436 "invalid-elf-header_section-headers-enforced-for-api-level-26",
437 "\"%s\" .dynamic section has invalid offset: 0x%zx "
438 "(expected to match PT_DYNAMIC offset 0x%zx)",
439 name_.c_str(),
440 static_cast<size_t>(dynamic_shdr->sh_offset),
441 pt_dynamic_offset);
442 add_dlwarning(name_.c_str(), "invalid .dynamic section");
443 }
444
445 if (pt_dynamic_filesz != dynamic_shdr->sh_size) {
446 if (get_application_target_sdk_version() >= 26) {
447 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid size: 0x%zx, "
448 "expected to match PT_DYNAMIC filesz: 0x%zx",
449 name_.c_str(),
450 static_cast<size_t>(dynamic_shdr->sh_size),
451 pt_dynamic_filesz);
452 return false;
453 }
454 DL_WARN_documented_change(26,
455 "invalid-elf-header_section-headers-enforced-for-api-level-26",
456 "\"%s\" .dynamic section has invalid size: 0x%zx "
457 "(expected to match PT_DYNAMIC filesz 0x%zx)",
458 name_.c_str(),
459 static_cast<size_t>(dynamic_shdr->sh_size),
460 pt_dynamic_filesz);
461 add_dlwarning(name_.c_str(), "invalid .dynamic section");
462 }
463
464 if (dynamic_shdr->sh_link >= shdr_num_) {
465 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid sh_link: %d",
466 name_.c_str(),
467 dynamic_shdr->sh_link);
468 return false;
469 }
470
471 const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link];
472
473 if (strtab_shdr->sh_type != SHT_STRTAB) {
474 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)",
475 name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type);
476 return false;
477 }
478
479 if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size, alignof(const ElfW(Dyn)))) {
480 DL_ERR_AND_LOG("\"%s\" has invalid offset/size of .dynamic section", name_.c_str());
481 return false;
482 }
483
484 if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) {
485 DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno));
486 return false;
487 }
488
489 dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data());
490
491 if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size, alignof(const char))) {
492 DL_ERR_AND_LOG("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section",
493 name_.c_str());
494 return false;
495 }
496
497 if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) {
498 DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno));
499 return false;
500 }
501
502 strtab_ = static_cast<const char*>(strtab_fragment_.data());
503 strtab_size_ = strtab_fragment_.size();
504 return true;
505 }
506
507 /* Returns the size of the extent of all the possibly non-contiguous
508 * loadable segments in an ELF program header table. This corresponds
509 * to the page-aligned size in bytes that needs to be reserved in the
510 * process' address space. If there are no loadable segments, 0 is
511 * returned.
512 *
513 * If out_min_vaddr or out_max_vaddr are not null, they will be
514 * set to the minimum and maximum addresses of pages to be reserved,
515 * or 0 if there is nothing to load.
516 */
phdr_table_get_load_size(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)* out_min_vaddr,ElfW (Addr)* out_max_vaddr)517 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
518 ElfW(Addr)* out_min_vaddr,
519 ElfW(Addr)* out_max_vaddr) {
520 ElfW(Addr) min_vaddr = UINTPTR_MAX;
521 ElfW(Addr) max_vaddr = 0;
522
523 bool found_pt_load = false;
524 for (size_t i = 0; i < phdr_count; ++i) {
525 const ElfW(Phdr)* phdr = &phdr_table[i];
526
527 if (phdr->p_type != PT_LOAD) {
528 continue;
529 }
530 found_pt_load = true;
531
532 if (phdr->p_vaddr < min_vaddr) {
533 min_vaddr = phdr->p_vaddr;
534 }
535
536 if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
537 max_vaddr = phdr->p_vaddr + phdr->p_memsz;
538 }
539 }
540 if (!found_pt_load) {
541 min_vaddr = 0;
542 }
543
544 min_vaddr = page_start(min_vaddr);
545 max_vaddr = page_end(max_vaddr);
546
547 if (out_min_vaddr != nullptr) {
548 *out_min_vaddr = min_vaddr;
549 }
550 if (out_max_vaddr != nullptr) {
551 *out_max_vaddr = max_vaddr;
552 }
553 return max_vaddr - min_vaddr;
554 }
555
556 // Returns the maximum p_align associated with a loadable segment in the ELF
557 // program header table. Used to determine whether the file should be loaded at
558 // a specific virtual address alignment for use with huge pages.
phdr_table_get_maximum_alignment(const ElfW (Phdr)* phdr_table,size_t phdr_count)559 size_t phdr_table_get_maximum_alignment(const ElfW(Phdr)* phdr_table, size_t phdr_count) {
560 size_t maximum_alignment = page_size();
561
562 for (size_t i = 0; i < phdr_count; ++i) {
563 const ElfW(Phdr)* phdr = &phdr_table[i];
564
565 // p_align must be 0, 1, or a positive, integral power of two.
566 if (phdr->p_type != PT_LOAD || ((phdr->p_align & (phdr->p_align - 1)) != 0)) {
567 continue;
568 }
569
570 if (phdr->p_align > maximum_alignment) {
571 maximum_alignment = phdr->p_align;
572 }
573 }
574
575 #if defined(__LP64__)
576 return maximum_alignment;
577 #else
578 return page_size();
579 #endif
580 }
581
582 // Reserve a virtual address range such that if it's limits were extended to the next 2**align
583 // boundary, it would not overlap with any existing mappings.
ReserveWithAlignmentPadding(size_t size,size_t mapping_align,size_t start_align,void ** out_gap_start,size_t * out_gap_size)584 static void* ReserveWithAlignmentPadding(size_t size, size_t mapping_align, size_t start_align,
585 void** out_gap_start, size_t* out_gap_size) {
586 int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
587 // Reserve enough space to properly align the library's start address.
588 mapping_align = std::max(mapping_align, start_align);
589 if (mapping_align == page_size()) {
590 void* mmap_ptr = mmap(nullptr, size, PROT_NONE, mmap_flags, -1, 0);
591 if (mmap_ptr == MAP_FAILED) {
592 return nullptr;
593 }
594 return mmap_ptr;
595 }
596
597 // Minimum alignment of shared library gap. For efficiency, this should match the second level
598 // page size of the platform.
599 #if defined(__LP64__)
600 constexpr size_t kGapAlignment = 1ul << 21; // 2MB
601 #else
602 constexpr size_t kGapAlignment = 0;
603 #endif
604 // Maximum gap size, in the units of kGapAlignment.
605 constexpr size_t kMaxGapUnits = 32;
606 // Allocate enough space so that the end of the desired region aligned up is still inside the
607 // mapping.
608 size_t mmap_size = align_up(size, mapping_align) + mapping_align - page_size();
609 uint8_t* mmap_ptr =
610 reinterpret_cast<uint8_t*>(mmap(nullptr, mmap_size, PROT_NONE, mmap_flags, -1, 0));
611 if (mmap_ptr == MAP_FAILED) {
612 return nullptr;
613 }
614 size_t gap_size = 0;
615 size_t first_byte = reinterpret_cast<size_t>(align_up(mmap_ptr, mapping_align));
616 size_t last_byte = reinterpret_cast<size_t>(align_down(mmap_ptr + mmap_size, mapping_align) - 1);
617 if (kGapAlignment && first_byte / kGapAlignment != last_byte / kGapAlignment) {
618 // This library crosses a 2MB boundary and will fragment a new huge page.
619 // Lets take advantage of that and insert a random number of inaccessible huge pages before that
620 // to improve address randomization and make it harder to locate this library code by probing.
621 munmap(mmap_ptr, mmap_size);
622 mapping_align = std::max(mapping_align, kGapAlignment);
623 gap_size =
624 kGapAlignment * (is_first_stage_init() ? 1 : arc4random_uniform(kMaxGapUnits - 1) + 1);
625 mmap_size = align_up(size + gap_size, mapping_align) + mapping_align - page_size();
626 mmap_ptr = reinterpret_cast<uint8_t*>(mmap(nullptr, mmap_size, PROT_NONE, mmap_flags, -1, 0));
627 if (mmap_ptr == MAP_FAILED) {
628 return nullptr;
629 }
630 }
631
632 uint8_t *gap_end, *gap_start;
633 if (gap_size) {
634 gap_end = align_down(mmap_ptr + mmap_size, kGapAlignment);
635 gap_start = gap_end - gap_size;
636 } else {
637 gap_start = gap_end = mmap_ptr + mmap_size;
638 }
639
640 uint8_t* first = align_up(mmap_ptr, mapping_align);
641 uint8_t* last = align_down(gap_start, mapping_align) - size;
642
643 // arc4random* is not available in first stage init because /dev/urandom hasn't yet been
644 // created. Don't randomize then.
645 size_t n = is_first_stage_init() ? 0 : arc4random_uniform((last - first) / start_align + 1);
646 uint8_t* start = first + n * start_align;
647 // Unmap the extra space around the allocation.
648 // Keep it mapped PROT_NONE on 64-bit targets where address space is plentiful to make it harder
649 // to defeat ASLR by probing for readable memory mappings.
650 munmap(mmap_ptr, start - mmap_ptr);
651 munmap(start + size, gap_start - (start + size));
652 if (gap_end != mmap_ptr + mmap_size) {
653 munmap(gap_end, mmap_ptr + mmap_size - gap_end);
654 }
655 *out_gap_start = gap_start;
656 *out_gap_size = gap_size;
657 return start;
658 }
659
660 // Reserve a virtual address range big enough to hold all loadable
661 // segments of a program header table. This is done by creating a
662 // private anonymous mmap() with PROT_NONE.
ReserveAddressSpace(address_space_params * address_space)663 bool ElfReader::ReserveAddressSpace(address_space_params* address_space) {
664 ElfW(Addr) min_vaddr;
665 load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
666 if (load_size_ == 0) {
667 DL_ERR("\"%s\" has no loadable segments", name_.c_str());
668 return false;
669 }
670
671 uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
672 void* start;
673
674 if (load_size_ > address_space->reserved_size) {
675 if (address_space->must_use_address) {
676 DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
677 load_size_ - address_space->reserved_size, load_size_, name_.c_str());
678 return false;
679 }
680 size_t start_alignment = page_size();
681 if (get_transparent_hugepages_supported() && get_application_target_sdk_version() >= 31) {
682 size_t maximum_alignment = phdr_table_get_maximum_alignment(phdr_table_, phdr_num_);
683 // Limit alignment to PMD size as other alignments reduce the number of
684 // bits available for ASLR for no benefit.
685 start_alignment = maximum_alignment == kPmdSize ? kPmdSize : page_size();
686 }
687 start = ReserveWithAlignmentPadding(load_size_, kLibraryAlignment, start_alignment, &gap_start_,
688 &gap_size_);
689 if (start == nullptr) {
690 DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str());
691 return false;
692 }
693 } else {
694 start = address_space->start_addr;
695 gap_start_ = nullptr;
696 gap_size_ = 0;
697 mapped_by_caller_ = true;
698
699 // Update the reserved address space to subtract the space used by this library.
700 address_space->start_addr = reinterpret_cast<uint8_t*>(address_space->start_addr) + load_size_;
701 address_space->reserved_size -= load_size_;
702 }
703
704 load_start_ = start;
705 load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
706 return true;
707 }
708
709 /*
710 * Returns true if the kernel supports page size migration, else false.
711 */
page_size_migration_supported()712 bool page_size_migration_supported() {
713 static bool pgsize_migration_enabled = []() {
714 std::string enabled;
715 if (!android::base::ReadFileToString("/sys/kernel/mm/pgsize_migration/enabled", &enabled)) {
716 return false;
717 }
718 return enabled.find("1") != std::string::npos;
719 }();
720 return pgsize_migration_enabled;
721 }
722
723 // Find the ELF note of type NT_ANDROID_TYPE_PAD_SEGMENT and check that the desc value is 1.
ReadPadSegmentNote()724 bool ElfReader::ReadPadSegmentNote() {
725 if (!page_size_migration_supported()) {
726 // Don't attempt to read the note, since segment extension isn't
727 // supported; but return true so that loading can continue normally.
728 return true;
729 }
730
731 // The ELF can have multiple PT_NOTE's, check them all
732 for (size_t i = 0; i < phdr_num_; ++i) {
733 const ElfW(Phdr)* phdr = &phdr_table_[i];
734
735 if (phdr->p_type != PT_NOTE) {
736 continue;
737 }
738
739 // Some obfuscated ELFs may contain "empty" PT_NOTE program headers that don't
740 // point to any part of the ELF (p_memsz == 0). Skip these since there is
741 // nothing to decode. See: b/324468126
742 if (phdr->p_memsz == 0) {
743 continue;
744 }
745
746 // If the PT_NOTE extends beyond the file. The ELF is doing something
747 // strange -- obfuscation, embedding hidden loaders, ...
748 //
749 // It doesn't contain the pad_segment note. Skip it to avoid SIGBUS
750 // by accesses beyond the file.
751 off64_t note_end_off = file_offset_ + phdr->p_offset + phdr->p_filesz;
752 if (note_end_off > file_size_) {
753 continue;
754 }
755
756 // note_fragment is scoped to within the loop so that there is
757 // at most 1 PT_NOTE mapped at anytime during this search.
758 MappedFileFragment note_fragment;
759 if (!note_fragment.Map(fd_, file_offset_, phdr->p_offset, phdr->p_memsz)) {
760 DL_ERR("\"%s\": PT_NOTE mmap(nullptr, %p, PROT_READ, MAP_PRIVATE, %d, %p) failed: %m",
761 name_.c_str(), reinterpret_cast<void*>(phdr->p_memsz), fd_,
762 reinterpret_cast<void*>(page_start(file_offset_ + phdr->p_offset)));
763 return false;
764 }
765
766 const ElfW(Nhdr)* note_hdr = nullptr;
767 const char* note_desc = nullptr;
768 if (!__get_elf_note(NT_ANDROID_TYPE_PAD_SEGMENT, "Android",
769 reinterpret_cast<ElfW(Addr)>(note_fragment.data()),
770 phdr, ¬e_hdr, ¬e_desc)) {
771 continue;
772 }
773
774 if (note_hdr->n_descsz != sizeof(ElfW(Word))) {
775 DL_ERR("\"%s\" NT_ANDROID_TYPE_PAD_SEGMENT note has unexpected n_descsz: %u",
776 name_.c_str(), reinterpret_cast<unsigned int>(note_hdr->n_descsz));
777 return false;
778 }
779
780 // 1 == enabled, 0 == disabled
781 should_pad_segments_ = *reinterpret_cast<const ElfW(Word)*>(note_desc) == 1;
782 return true;
783 }
784
785 return true;
786 }
787
_extend_load_segment_vma(const ElfW (Phdr)* phdr_table,size_t phdr_count,size_t phdr_idx,ElfW (Addr)* p_memsz,ElfW (Addr)* p_filesz,bool should_pad_segments)788 static inline void _extend_load_segment_vma(const ElfW(Phdr)* phdr_table, size_t phdr_count,
789 size_t phdr_idx, ElfW(Addr)* p_memsz,
790 ElfW(Addr)* p_filesz, bool should_pad_segments) {
791 const ElfW(Phdr)* phdr = &phdr_table[phdr_idx];
792 const ElfW(Phdr)* next = nullptr;
793 size_t next_idx = phdr_idx + 1;
794
795 // Don't do segment extension for p_align > 64KiB, such ELFs already existed in the
796 // field e.g. 2MiB p_align for THPs and are relatively small in number.
797 //
798 // The kernel can only represent padding for p_align up to 64KiB. This is because
799 // the kernel uses 4 available bits in the vm_area_struct to represent padding
800 // extent; and so cannot enable mitigations to avoid breaking app compatibility for
801 // p_aligns > 64KiB.
802 //
803 // Don't perform segment extension on these to avoid app compatibility issues.
804 if (phdr->p_align <= kPageSize || phdr->p_align > 64*1024 || !should_pad_segments) {
805 return;
806 }
807
808 if (next_idx < phdr_count && phdr_table[next_idx].p_type == PT_LOAD) {
809 next = &phdr_table[next_idx];
810 }
811
812 // If this is the last LOAD segment, no extension is needed
813 if (!next || *p_memsz != *p_filesz) {
814 return;
815 }
816
817 ElfW(Addr) next_start = page_start(next->p_vaddr);
818 ElfW(Addr) curr_end = page_end(phdr->p_vaddr + *p_memsz);
819
820 // If adjacent segment mappings overlap, no extension is needed.
821 if (curr_end >= next_start) {
822 return;
823 }
824
825 // Extend the LOAD segment mapping to be contiguous with that of
826 // the next LOAD segment.
827 ElfW(Addr) extend = next_start - curr_end;
828 *p_memsz += extend;
829 *p_filesz += extend;
830 }
831
LoadSegments()832 bool ElfReader::LoadSegments() {
833 for (size_t i = 0; i < phdr_num_; ++i) {
834 const ElfW(Phdr)* phdr = &phdr_table_[i];
835
836 if (phdr->p_type != PT_LOAD) {
837 continue;
838 }
839
840 ElfW(Addr) p_memsz = phdr->p_memsz;
841 ElfW(Addr) p_filesz = phdr->p_filesz;
842 _extend_load_segment_vma(phdr_table_, phdr_num_, i, &p_memsz, &p_filesz, should_pad_segments_);
843
844 // Segment addresses in memory.
845 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
846 ElfW(Addr) seg_end = seg_start + p_memsz;
847
848 ElfW(Addr) seg_page_start = page_start(seg_start);
849 ElfW(Addr) seg_page_end = page_end(seg_end);
850
851 ElfW(Addr) seg_file_end = seg_start + p_filesz;
852
853 // File offsets.
854 ElfW(Addr) file_start = phdr->p_offset;
855 ElfW(Addr) file_end = file_start + p_filesz;
856
857 ElfW(Addr) file_page_start = page_start(file_start);
858 ElfW(Addr) file_length = file_end - file_page_start;
859
860 if (file_size_ <= 0) {
861 DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_);
862 return false;
863 }
864
865 if (file_start + phdr->p_filesz > static_cast<size_t>(file_size_)) {
866 DL_ERR("invalid ELF file \"%s\" load segment[%zd]:"
867 " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")",
868 name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset),
869 reinterpret_cast<void*>(phdr->p_filesz),
870 reinterpret_cast<void*>(file_start + phdr->p_filesz), file_size_);
871 return false;
872 }
873
874 if (file_length != 0) {
875 int prot = PFLAGS_TO_PROT(phdr->p_flags);
876 if ((prot & (PROT_EXEC | PROT_WRITE)) == (PROT_EXEC | PROT_WRITE)) {
877 // W + E PT_LOAD segments are not allowed in O.
878 if (get_application_target_sdk_version() >= 26) {
879 DL_ERR_AND_LOG("\"%s\": W+E load segments are not allowed", name_.c_str());
880 return false;
881 }
882 DL_WARN_documented_change(26,
883 "writable-and-executable-segments-enforced-for-api-level-26",
884 "\"%s\" has load segments that are both writable and executable",
885 name_.c_str());
886 add_dlwarning(name_.c_str(), "W+E load segments");
887 }
888
889 void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start),
890 file_length,
891 prot,
892 MAP_FIXED|MAP_PRIVATE,
893 fd_,
894 file_offset_ + file_page_start);
895 if (seg_addr == MAP_FAILED) {
896 DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno));
897 return false;
898 }
899
900 // Mark segments as huge page eligible if they meet the requirements
901 // (executable and PMD aligned).
902 if ((phdr->p_flags & PF_X) && phdr->p_align == kPmdSize &&
903 get_transparent_hugepages_supported()) {
904 madvise(seg_addr, file_length, MADV_HUGEPAGE);
905 }
906 }
907
908 // if the segment is writable, and does not end on a page boundary,
909 // zero-fill it until the page limit.
910 //
911 // Do not attempt to zero the extended region past the first partial page,
912 // since doing so may:
913 // 1) Result in a SIGBUS, as the region is not backed by the underlying
914 // file.
915 // 2) Break the COW backing, faulting in new anon pages for a region
916 // that will not be used.
917
918 uint64_t unextended_seg_file_end = seg_start + phdr->p_filesz;
919 if ((phdr->p_flags & PF_W) != 0 && page_offset(unextended_seg_file_end) > 0) {
920 memset(reinterpret_cast<void*>(unextended_seg_file_end), 0,
921 kPageSize - page_offset(unextended_seg_file_end));
922 }
923
924 // Pages may be brought in due to readahead.
925 // Drop the padding (zero) pages, to avoid reclaim work later.
926 //
927 // NOTE: The madvise() here is special, as it also serves to hint to the
928 // kernel the portion of the LOAD segment that is padding.
929 //
930 // See: [1] https://android-review.googlesource.com/c/kernel/common/+/3032411
931 // [2] https://android-review.googlesource.com/c/kernel/common/+/3048835
932 uint64_t pad_start = page_end(unextended_seg_file_end);
933 uint64_t pad_end = page_end(seg_file_end);
934 CHECK(pad_start <= pad_end);
935 uint64_t pad_len = pad_end - pad_start;
936 if (page_size_migration_supported() && pad_len > 0 &&
937 madvise(reinterpret_cast<void*>(pad_start), pad_len, MADV_DONTNEED)) {
938 DL_WARN("\"%s\": madvise(0x%" PRIx64 ", 0x%" PRIx64 ", MADV_DONTNEED) failed: %m",
939 name_.c_str(), pad_start, pad_len);
940 }
941
942 seg_file_end = page_end(seg_file_end);
943
944 // seg_file_end is now the first page address after the file
945 // content. If seg_end is larger, we need to zero anything
946 // between them. This is done by using a private anonymous
947 // map for all extra pages.
948 if (seg_page_end > seg_file_end) {
949 size_t zeromap_size = seg_page_end - seg_file_end;
950 void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
951 zeromap_size,
952 PFLAGS_TO_PROT(phdr->p_flags),
953 MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
954 -1,
955 0);
956 if (zeromap == MAP_FAILED) {
957 DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno));
958 return false;
959 }
960
961 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss");
962 }
963 }
964 return true;
965 }
966
967 /* Used internally. Used to set the protection bits of all loaded segments
968 * with optional extra flags (i.e. really PROT_WRITE). Used by
969 * phdr_table_protect_segments and phdr_table_unprotect_segments.
970 */
_phdr_table_set_load_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int extra_prot_flags,bool should_pad_segments)971 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
972 ElfW(Addr) load_bias, int extra_prot_flags,
973 bool should_pad_segments) {
974 for (size_t i = 0; i < phdr_count; ++i) {
975 const ElfW(Phdr)* phdr = &phdr_table[i];
976
977 if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
978 continue;
979 }
980
981 ElfW(Addr) p_memsz = phdr->p_memsz;
982 ElfW(Addr) p_filesz = phdr->p_filesz;
983 _extend_load_segment_vma(phdr_table, phdr_count, i, &p_memsz, &p_filesz, should_pad_segments);
984
985 ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr + load_bias);
986 ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + p_memsz + load_bias);
987
988 int prot = PFLAGS_TO_PROT(phdr->p_flags) | extra_prot_flags;
989 if ((prot & PROT_WRITE) != 0) {
990 // make sure we're never simultaneously writable / executable
991 prot &= ~PROT_EXEC;
992 }
993 #if defined(__aarch64__)
994 if ((prot & PROT_EXEC) == 0) {
995 // Though it is not specified don't add PROT_BTI if segment is not
996 // executable.
997 prot &= ~PROT_BTI;
998 }
999 #endif
1000
1001 int ret =
1002 mprotect(reinterpret_cast<void*>(seg_page_start), seg_page_end - seg_page_start, prot);
1003 if (ret < 0) {
1004 return -1;
1005 }
1006 }
1007 return 0;
1008 }
1009
1010 /* Restore the original protection modes for all loadable segments.
1011 * You should only call this after phdr_table_unprotect_segments and
1012 * applying all relocations.
1013 *
1014 * AArch64: also called from linker_main and ElfReader::Load to apply
1015 * PROT_BTI for loaded main so and other so-s.
1016 *
1017 * Input:
1018 * phdr_table -> program header table
1019 * phdr_count -> number of entries in tables
1020 * load_bias -> load bias
1021 * should_pad_segments -> Are segments extended to avoid gaps in the memory map
1022 * prop -> GnuPropertySection or nullptr
1023 * Return:
1024 * 0 on success, -1 on failure (error code in errno).
1025 */
phdr_table_protect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,bool should_pad_segments,const GnuPropertySection * prop __unused)1026 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table, size_t phdr_count,
1027 ElfW(Addr) load_bias, bool should_pad_segments,
1028 const GnuPropertySection* prop __unused) {
1029 int prot = 0;
1030 #if defined(__aarch64__)
1031 if ((prop != nullptr) && prop->IsBTICompatible()) {
1032 prot |= PROT_BTI;
1033 }
1034 #endif
1035 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, prot, should_pad_segments);
1036 }
1037
1038 /* Change the protection of all loaded segments in memory to writable.
1039 * This is useful before performing relocations. Once completed, you
1040 * will have to call phdr_table_protect_segments to restore the original
1041 * protection flags on all segments.
1042 *
1043 * Note that some writable segments can also have their content turned
1044 * to read-only by calling phdr_table_protect_gnu_relro. This is no
1045 * performed here.
1046 *
1047 * Input:
1048 * phdr_table -> program header table
1049 * phdr_count -> number of entries in tables
1050 * load_bias -> load bias
1051 * should_pad_segments -> Are segments extended to avoid gaps in the memory map
1052 * Return:
1053 * 0 on success, -1 on failure (error code in errno).
1054 */
phdr_table_unprotect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,bool should_pad_segments)1055 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table,
1056 size_t phdr_count, ElfW(Addr) load_bias,
1057 bool should_pad_segments) {
1058 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE,
1059 should_pad_segments);
1060 }
1061
_extend_gnu_relro_prot_end(const ElfW (Phdr)* relro_phdr,const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Addr)* seg_page_end,bool should_pad_segments)1062 static inline void _extend_gnu_relro_prot_end(const ElfW(Phdr)* relro_phdr,
1063 const ElfW(Phdr)* phdr_table, size_t phdr_count,
1064 ElfW(Addr) load_bias, ElfW(Addr)* seg_page_end,
1065 bool should_pad_segments) {
1066 // Find the index and phdr of the LOAD containing the GNU_RELRO segment
1067 for (size_t index = 0; index < phdr_count; ++index) {
1068 const ElfW(Phdr)* phdr = &phdr_table[index];
1069
1070 if (phdr->p_type == PT_LOAD && phdr->p_vaddr == relro_phdr->p_vaddr) {
1071 // If the PT_GNU_RELRO mem size is not at least as large as the corresponding
1072 // LOAD segment mem size, we need to protect only a partial region of the
1073 // LOAD segment and therefore cannot avoid a VMA split.
1074 //
1075 // Note: Don't check the page-aligned mem sizes since the extended protection
1076 // may incorrectly write protect non-relocation data.
1077 //
1078 // Example:
1079 //
1080 // |---- 3K ----|-- 1K --|---- 3K ---- |-- 1K --|
1081 // ----------------------------------------------------------------
1082 // | | | | |
1083 // SEG X | RO | RO | RW | | SEG Y
1084 // | | | | |
1085 // ----------------------------------------------------------------
1086 // | | |
1087 // | | |
1088 // | | |
1089 // relro_vaddr relro_vaddr relro_vaddr
1090 // (load_vaddr) + +
1091 // relro_memsz load_memsz
1092 //
1093 // ----------------------------------------------------------------
1094 // | PAGE | PAGE |
1095 // ----------------------------------------------------------------
1096 // | Potential |
1097 // |----- Extended RO ----|
1098 // | Protection |
1099 //
1100 // If the check below uses page aligned mem sizes it will cause incorrect write
1101 // protection of the 3K RW part of the LOAD segment containing the GNU_RELRO.
1102 if (relro_phdr->p_memsz < phdr->p_memsz) {
1103 return;
1104 }
1105
1106 ElfW(Addr) p_memsz = phdr->p_memsz;
1107 ElfW(Addr) p_filesz = phdr->p_filesz;
1108
1109 // Attempt extending the VMA (mprotect range). Without extending the range,
1110 // mprotect will only RO protect a part of the extended RW LOAD segment, which
1111 // will leave an extra split RW VMA (the gap).
1112 _extend_load_segment_vma(phdr_table, phdr_count, index, &p_memsz, &p_filesz,
1113 should_pad_segments);
1114
1115 *seg_page_end = page_end(phdr->p_vaddr + p_memsz + load_bias);
1116 return;
1117 }
1118 }
1119 }
1120
1121 /* Used internally by phdr_table_protect_gnu_relro and
1122 * phdr_table_unprotect_gnu_relro.
1123 */
_phdr_table_set_gnu_relro_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int prot_flags,bool should_pad_segments)1124 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
1125 ElfW(Addr) load_bias, int prot_flags,
1126 bool should_pad_segments) {
1127 const ElfW(Phdr)* phdr = phdr_table;
1128 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
1129
1130 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
1131 if (phdr->p_type != PT_GNU_RELRO) {
1132 continue;
1133 }
1134
1135 // Tricky: what happens when the relro segment does not start
1136 // or end at page boundaries? We're going to be over-protective
1137 // here and put every page touched by the segment as read-only.
1138
1139 // This seems to match Ian Lance Taylor's description of the
1140 // feature at http://www.airs.com/blog/archives/189.
1141
1142 // Extract:
1143 // Note that the current dynamic linker code will only work
1144 // correctly if the PT_GNU_RELRO segment starts on a page
1145 // boundary. This is because the dynamic linker rounds the
1146 // p_vaddr field down to the previous page boundary. If
1147 // there is anything on the page which should not be read-only,
1148 // the program is likely to fail at runtime. So in effect the
1149 // linker must only emit a PT_GNU_RELRO segment if it ensures
1150 // that it starts on a page boundary.
1151 ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr) + load_bias;
1152 ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias;
1153 _extend_gnu_relro_prot_end(phdr, phdr_table, phdr_count, load_bias, &seg_page_end,
1154 should_pad_segments);
1155
1156 int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
1157 seg_page_end - seg_page_start,
1158 prot_flags);
1159 if (ret < 0) {
1160 return -1;
1161 }
1162 }
1163 return 0;
1164 }
1165
1166 /* Apply GNU relro protection if specified by the program header. This will
1167 * turn some of the pages of a writable PT_LOAD segment to read-only, as
1168 * specified by one or more PT_GNU_RELRO segments. This must be always
1169 * performed after relocations.
1170 *
1171 * The areas typically covered are .got and .data.rel.ro, these are
1172 * read-only from the program's POV, but contain absolute addresses
1173 * that need to be relocated before use.
1174 *
1175 * Input:
1176 * phdr_table -> program header table
1177 * phdr_count -> number of entries in tables
1178 * load_bias -> load bias
1179 * should_pad_segments -> Were segments extended to avoid gaps in the memory map
1180 * Return:
1181 * 0 on success, -1 on failure (error code in errno).
1182 */
phdr_table_protect_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,bool should_pad_segments)1183 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table, size_t phdr_count,
1184 ElfW(Addr) load_bias, bool should_pad_segments) {
1185 return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ,
1186 should_pad_segments);
1187 }
1188
1189 /* Serialize the GNU relro segments to the given file descriptor. This can be
1190 * performed after relocations to allow another process to later share the
1191 * relocated segment, if it was loaded at the same address.
1192 *
1193 * Input:
1194 * phdr_table -> program header table
1195 * phdr_count -> number of entries in tables
1196 * load_bias -> load bias
1197 * fd -> writable file descriptor to use
1198 * file_offset -> pointer to offset into file descriptor to use/update
1199 * Return:
1200 * 0 on success, -1 on failure (error code in errno).
1201 */
phdr_table_serialize_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd,size_t * file_offset)1202 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table,
1203 size_t phdr_count,
1204 ElfW(Addr) load_bias,
1205 int fd,
1206 size_t* file_offset) {
1207 const ElfW(Phdr)* phdr = phdr_table;
1208 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
1209
1210 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
1211 if (phdr->p_type != PT_GNU_RELRO) {
1212 continue;
1213 }
1214
1215 ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr) + load_bias;
1216 ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias;
1217 ssize_t size = seg_page_end - seg_page_start;
1218
1219 ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
1220 if (written != size) {
1221 return -1;
1222 }
1223 void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
1224 MAP_PRIVATE|MAP_FIXED, fd, *file_offset);
1225 if (map == MAP_FAILED) {
1226 return -1;
1227 }
1228 *file_offset += size;
1229 }
1230 return 0;
1231 }
1232
1233 /* Where possible, replace the GNU relro segments with mappings of the given
1234 * file descriptor. This can be performed after relocations to allow a file
1235 * previously created by phdr_table_serialize_gnu_relro in another process to
1236 * replace the dirty relocated pages, saving memory, if it was loaded at the
1237 * same address. We have to compare the data before we map over it, since some
1238 * parts of the relro segment may not be identical due to other libraries in
1239 * the process being loaded at different addresses.
1240 *
1241 * Input:
1242 * phdr_table -> program header table
1243 * phdr_count -> number of entries in tables
1244 * load_bias -> load bias
1245 * fd -> readable file descriptor to use
1246 * file_offset -> pointer to offset into file descriptor to use/update
1247 * Return:
1248 * 0 on success, -1 on failure (error code in errno).
1249 */
phdr_table_map_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd,size_t * file_offset)1250 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table,
1251 size_t phdr_count,
1252 ElfW(Addr) load_bias,
1253 int fd,
1254 size_t* file_offset) {
1255 // Map the file at a temporary location so we can compare its contents.
1256 struct stat file_stat;
1257 if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
1258 return -1;
1259 }
1260 off_t file_size = file_stat.st_size;
1261 void* temp_mapping = nullptr;
1262 if (file_size > 0) {
1263 temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
1264 if (temp_mapping == MAP_FAILED) {
1265 return -1;
1266 }
1267 }
1268
1269 // Iterate over the relro segments and compare/remap the pages.
1270 const ElfW(Phdr)* phdr = phdr_table;
1271 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
1272
1273 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
1274 if (phdr->p_type != PT_GNU_RELRO) {
1275 continue;
1276 }
1277
1278 ElfW(Addr) seg_page_start = page_start(phdr->p_vaddr) + load_bias;
1279 ElfW(Addr) seg_page_end = page_end(phdr->p_vaddr + phdr->p_memsz) + load_bias;
1280
1281 char* file_base = static_cast<char*>(temp_mapping) + *file_offset;
1282 char* mem_base = reinterpret_cast<char*>(seg_page_start);
1283 size_t match_offset = 0;
1284 size_t size = seg_page_end - seg_page_start;
1285
1286 if (file_size - *file_offset < size) {
1287 // File is too short to compare to this segment. The contents are likely
1288 // different as well (it's probably for a different library version) so
1289 // just don't bother checking.
1290 break;
1291 }
1292
1293 while (match_offset < size) {
1294 // Skip over dissimilar pages.
1295 while (match_offset < size &&
1296 memcmp(mem_base + match_offset, file_base + match_offset, page_size()) != 0) {
1297 match_offset += page_size();
1298 }
1299
1300 // Count similar pages.
1301 size_t mismatch_offset = match_offset;
1302 while (mismatch_offset < size &&
1303 memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, page_size()) == 0) {
1304 mismatch_offset += page_size();
1305 }
1306
1307 // Map over similar pages.
1308 if (mismatch_offset > match_offset) {
1309 void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
1310 PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, *file_offset + match_offset);
1311 if (map == MAP_FAILED) {
1312 munmap(temp_mapping, file_size);
1313 return -1;
1314 }
1315 }
1316
1317 match_offset = mismatch_offset;
1318 }
1319
1320 // Add to the base file offset in case there are multiple relro segments.
1321 *file_offset += size;
1322 }
1323 munmap(temp_mapping, file_size);
1324 return 0;
1325 }
1326
1327
1328 #if defined(__arm__)
1329 /* Return the address and size of the .ARM.exidx section in memory,
1330 * if present.
1331 *
1332 * Input:
1333 * phdr_table -> program header table
1334 * phdr_count -> number of entries in tables
1335 * load_bias -> load bias
1336 * Output:
1337 * arm_exidx -> address of table in memory (null on failure).
1338 * arm_exidx_count -> number of items in table (0 on failure).
1339 * Return:
1340 * 0 on success, -1 on failure (_no_ error code in errno)
1341 */
phdr_table_get_arm_exidx(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Addr)** arm_exidx,size_t * arm_exidx_count)1342 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
1343 ElfW(Addr) load_bias,
1344 ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) {
1345 const ElfW(Phdr)* phdr = phdr_table;
1346 const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
1347
1348 for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
1349 if (phdr->p_type != PT_ARM_EXIDX) {
1350 continue;
1351 }
1352
1353 *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
1354 *arm_exidx_count = phdr->p_memsz / 8;
1355 return 0;
1356 }
1357 *arm_exidx = nullptr;
1358 *arm_exidx_count = 0;
1359 return -1;
1360 }
1361 #endif
1362
1363 /* Return the address and size of the ELF file's .dynamic section in memory,
1364 * or null if missing.
1365 *
1366 * Input:
1367 * phdr_table -> program header table
1368 * phdr_count -> number of entries in tables
1369 * load_bias -> load bias
1370 * Output:
1371 * dynamic -> address of table in memory (null on failure).
1372 * dynamic_flags -> protection flags for section (unset on failure)
1373 * Return:
1374 * void
1375 */
phdr_table_get_dynamic_section(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Dyn)** dynamic,ElfW (Word)* dynamic_flags)1376 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
1377 ElfW(Addr) load_bias, ElfW(Dyn)** dynamic,
1378 ElfW(Word)* dynamic_flags) {
1379 *dynamic = nullptr;
1380 for (size_t i = 0; i<phdr_count; ++i) {
1381 const ElfW(Phdr)& phdr = phdr_table[i];
1382 if (phdr.p_type == PT_DYNAMIC) {
1383 *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr);
1384 if (dynamic_flags) {
1385 *dynamic_flags = phdr.p_flags;
1386 }
1387 return;
1388 }
1389 }
1390 }
1391
1392 /* Return the program interpreter string, or nullptr if missing.
1393 *
1394 * Input:
1395 * phdr_table -> program header table
1396 * phdr_count -> number of entries in tables
1397 * load_bias -> load bias
1398 * Return:
1399 * pointer to the program interpreter string.
1400 */
phdr_table_get_interpreter_name(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)1401 const char* phdr_table_get_interpreter_name(const ElfW(Phdr)* phdr_table, size_t phdr_count,
1402 ElfW(Addr) load_bias) {
1403 for (size_t i = 0; i<phdr_count; ++i) {
1404 const ElfW(Phdr)& phdr = phdr_table[i];
1405 if (phdr.p_type == PT_INTERP) {
1406 return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr);
1407 }
1408 }
1409 return nullptr;
1410 }
1411
1412 // Sets loaded_phdr_ to the address of the program header table as it appears
1413 // in the loaded segments in memory. This is in contrast with phdr_table_,
1414 // which is temporary and will be released before the library is relocated.
FindPhdr()1415 bool ElfReader::FindPhdr() {
1416 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
1417
1418 // If there is a PT_PHDR, use it directly.
1419 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
1420 if (phdr->p_type == PT_PHDR) {
1421 return CheckPhdr(load_bias_ + phdr->p_vaddr);
1422 }
1423 }
1424
1425 // Otherwise, check the first loadable segment. If its file offset
1426 // is 0, it starts with the ELF header, and we can trivially find the
1427 // loaded program header from it.
1428 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
1429 if (phdr->p_type == PT_LOAD) {
1430 if (phdr->p_offset == 0) {
1431 ElfW(Addr) elf_addr = load_bias_ + phdr->p_vaddr;
1432 const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
1433 ElfW(Addr) offset = ehdr->e_phoff;
1434 return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset);
1435 }
1436 break;
1437 }
1438 }
1439
1440 DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str());
1441 return false;
1442 }
1443
1444 // Tries to find .note.gnu.property section.
1445 // It is not considered an error if such section is missing.
FindGnuPropertySection()1446 bool ElfReader::FindGnuPropertySection() {
1447 #if defined(__aarch64__)
1448 note_gnu_property_ = GnuPropertySection(phdr_table_, phdr_num_, load_start(), name_.c_str());
1449 #endif
1450 return true;
1451 }
1452
1453 // Ensures that our program header is actually within a loadable
1454 // segment. This should help catch badly-formed ELF files that
1455 // would cause the linker to crash later when trying to access it.
CheckPhdr(ElfW (Addr)loaded)1456 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
1457 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
1458 ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
1459 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
1460 if (phdr->p_type != PT_LOAD) {
1461 continue;
1462 }
1463 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
1464 ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
1465 if (seg_start <= loaded && loaded_end <= seg_end) {
1466 loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
1467 return true;
1468 }
1469 }
1470 DL_ERR("\"%s\" loaded phdr %p not in loadable segment",
1471 name_.c_str(), reinterpret_cast<void*>(loaded));
1472 return false;
1473 }
1474