• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread.h"
18 
19 #include <limits.h>  // for INT_MAX
20 #include <pthread.h>
21 #include <signal.h>
22 #include <stdlib.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <algorithm>
27 #include <atomic>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32 #include <optional>
33 #include <sstream>
34 
35 #include "android-base/file.h"
36 #include "android-base/stringprintf.h"
37 #include "android-base/strings.h"
38 
39 #include "unwindstack/AndroidUnwinder.h"
40 
41 #include "arch/context-inl.h"
42 #include "arch/context.h"
43 #include "art_field-inl.h"
44 #include "art_method-inl.h"
45 #include "base/atomic.h"
46 #include "base/bit_utils.h"
47 #include "base/casts.h"
48 #include "base/file_utils.h"
49 #include "base/memory_tool.h"
50 #include "base/mutex.h"
51 #include "base/stl_util.h"
52 #include "base/systrace.h"
53 #include "base/time_utils.h"
54 #include "base/timing_logger.h"
55 #include "base/to_str.h"
56 #include "base/utils.h"
57 #include "class_linker-inl.h"
58 #include "class_root-inl.h"
59 #include "debugger.h"
60 #include "dex/descriptors_names.h"
61 #include "dex/dex_file-inl.h"
62 #include "dex/dex_file_annotations.h"
63 #include "dex/dex_file_types.h"
64 #include "entrypoints/entrypoint_utils.h"
65 #include "entrypoints/quick/quick_alloc_entrypoints.h"
66 #include "gc/accounting/card_table-inl.h"
67 #include "gc/accounting/heap_bitmap-inl.h"
68 #include "gc/allocator/rosalloc.h"
69 #include "gc/heap.h"
70 #include "gc/space/space-inl.h"
71 #include "gc_root.h"
72 #include "handle_scope-inl.h"
73 #include "indirect_reference_table-inl.h"
74 #include "instrumentation.h"
75 #include "intern_table.h"
76 #include "interpreter/interpreter.h"
77 #include "interpreter/shadow_frame-inl.h"
78 #include "java_frame_root_info.h"
79 #include "jni/java_vm_ext.h"
80 #include "jni/jni_internal.h"
81 #include "mirror/class-alloc-inl.h"
82 #include "mirror/class_loader.h"
83 #include "mirror/object_array-alloc-inl.h"
84 #include "mirror/object_array-inl.h"
85 #include "mirror/stack_frame_info.h"
86 #include "mirror/stack_trace_element.h"
87 #include "monitor.h"
88 #include "monitor_objects_stack_visitor.h"
89 #include "native_stack_dump.h"
90 #include "nativehelper/scoped_local_ref.h"
91 #include "nativehelper/scoped_utf_chars.h"
92 #include "nterp_helpers.h"
93 #include "nth_caller_visitor.h"
94 #include "oat/oat_quick_method_header.h"
95 #include "oat/stack_map.h"
96 #include "obj_ptr-inl.h"
97 #include "object_lock.h"
98 #include "palette/palette.h"
99 #include "quick/quick_method_frame_info.h"
100 #include "quick_exception_handler.h"
101 #include "read_barrier-inl.h"
102 #include "reflection.h"
103 #include "reflective_handle_scope-inl.h"
104 #include "runtime-inl.h"
105 #include "runtime.h"
106 #include "runtime_callbacks.h"
107 #include "scoped_thread_state_change-inl.h"
108 #include "scoped_disable_public_sdk_checker.h"
109 #include "stack.h"
110 #include "thread-inl.h"
111 #include "thread_list.h"
112 #include "trace.h"
113 #include "verify_object.h"
114 #include "well_known_classes-inl.h"
115 
116 #ifdef ART_TARGET_ANDROID
117 #include <android/set_abort_message.h>
118 #endif
119 
120 #if ART_USE_FUTEXES
121 #include <linux/futex.h>
122 #include <sys/syscall.h>
123 #endif  // ART_USE_FUTEXES
124 
125 #pragma clang diagnostic push
126 #pragma clang diagnostic error "-Wconversion"
127 
128 extern "C" __attribute__((weak)) void* __hwasan_tag_pointer(const volatile void* p,
129                                                             unsigned char tag);
130 
131 namespace art HIDDEN {
132 
133 using android::base::StringAppendV;
134 using android::base::StringPrintf;
135 
136 extern "C" NO_RETURN void artDeoptimize(Thread* self, bool skip_method_exit_callbacks);
137 
138 bool Thread::is_started_ = false;
139 pthread_key_t Thread::pthread_key_self_;
140 ConditionVariable* Thread::resume_cond_ = nullptr;
141 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
142 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
143 Thread* Thread::jit_sensitive_thread_ = nullptr;
144 std::atomic<Mutex*> Thread::cp_placeholder_mutex_(nullptr);
145 #ifndef __BIONIC__
146 thread_local Thread* Thread::self_tls_ = nullptr;
147 #endif
148 
149 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
150 
151 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
152 
InitCardTable()153 void Thread::InitCardTable() {
154   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
155 }
156 
UnimplementedEntryPoint()157 static void UnimplementedEntryPoint() {
158   UNIMPLEMENTED(FATAL);
159 }
160 
161 void InitEntryPoints(JniEntryPoints* jpoints,
162                      QuickEntryPoints* qpoints,
163                      bool monitor_jni_entry_exit);
164 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
165 
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)166 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
167   CHECK(gUseReadBarrier);
168   tls32_.is_gc_marking = is_marking;
169   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking);
170 }
171 
InitTlsEntryPoints()172 void Thread::InitTlsEntryPoints() {
173   ScopedTrace trace("InitTlsEntryPoints");
174   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
175   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
176   uintptr_t* end = reinterpret_cast<uintptr_t*>(
177       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
178   for (uintptr_t* it = begin; it != end; ++it) {
179     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
180   }
181   bool monitor_jni_entry_exit = false;
182   PaletteShouldReportJniInvocations(&monitor_jni_entry_exit);
183   if (monitor_jni_entry_exit) {
184     AtomicSetFlag(ThreadFlag::kMonitorJniEntryExit);
185   }
186   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints, monitor_jni_entry_exit);
187 }
188 
ResetQuickAllocEntryPointsForThread()189 void Thread::ResetQuickAllocEntryPointsForThread() {
190   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
191 }
192 
193 class DeoptimizationContextRecord {
194  public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationMethodType method_type,DeoptimizationContextRecord * link)195   DeoptimizationContextRecord(const JValue& ret_val,
196                               bool is_reference,
197                               bool from_code,
198                               ObjPtr<mirror::Throwable> pending_exception,
199                               DeoptimizationMethodType method_type,
200                               DeoptimizationContextRecord* link)
201       : ret_val_(ret_val),
202         is_reference_(is_reference),
203         from_code_(from_code),
204         pending_exception_(pending_exception.Ptr()),
205         deopt_method_type_(method_type),
206         link_(link) {}
207 
GetReturnValue() const208   JValue GetReturnValue() const { return ret_val_; }
IsReference() const209   bool IsReference() const { return is_reference_; }
GetFromCode() const210   bool GetFromCode() const { return from_code_; }
GetPendingException() const211   ObjPtr<mirror::Throwable> GetPendingException() const REQUIRES_SHARED(Locks::mutator_lock_) {
212     return pending_exception_;
213   }
GetLink() const214   DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()215   mirror::Object** GetReturnValueAsGCRoot() {
216     DCHECK(is_reference_);
217     return ret_val_.GetGCRoot();
218   }
GetPendingExceptionAsGCRoot()219   mirror::Object** GetPendingExceptionAsGCRoot() {
220     return reinterpret_cast<mirror::Object**>(&pending_exception_);
221   }
GetDeoptimizationMethodType() const222   DeoptimizationMethodType GetDeoptimizationMethodType() const {
223     return deopt_method_type_;
224   }
225 
226  private:
227   // The value returned by the method at the top of the stack before deoptimization.
228   JValue ret_val_;
229 
230   // Indicates whether the returned value is a reference. If so, the GC will visit it.
231   const bool is_reference_;
232 
233   // Whether the context was created from an explicit deoptimization in the code.
234   const bool from_code_;
235 
236   // The exception that was pending before deoptimization (or null if there was no pending
237   // exception).
238   mirror::Throwable* pending_exception_;
239 
240   // Whether the context was created for an (idempotent) runtime method.
241   const DeoptimizationMethodType deopt_method_type_;
242 
243   // A link to the previous DeoptimizationContextRecord.
244   DeoptimizationContextRecord* const link_;
245 
246   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
247 };
248 
249 class StackedShadowFrameRecord {
250  public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)251   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
252                            StackedShadowFrameType type,
253                            StackedShadowFrameRecord* link)
254       : shadow_frame_(shadow_frame),
255         type_(type),
256         link_(link) {}
257 
GetShadowFrame() const258   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const259   StackedShadowFrameType GetType() const { return type_; }
GetLink() const260   StackedShadowFrameRecord* GetLink() const { return link_; }
261 
262  private:
263   ShadowFrame* const shadow_frame_;
264   const StackedShadowFrameType type_;
265   StackedShadowFrameRecord* const link_;
266 
267   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
268 };
269 
PushDeoptimizationContext(const JValue & return_value,bool is_reference,ObjPtr<mirror::Throwable> exception,bool from_code,DeoptimizationMethodType method_type)270 void Thread::PushDeoptimizationContext(const JValue& return_value,
271                                        bool is_reference,
272                                        ObjPtr<mirror::Throwable> exception,
273                                        bool from_code,
274                                        DeoptimizationMethodType method_type) {
275   DCHECK(exception != Thread::GetDeoptimizationException());
276   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
277       return_value,
278       is_reference,
279       from_code,
280       exception,
281       method_type,
282       tlsPtr_.deoptimization_context_stack);
283   tlsPtr_.deoptimization_context_stack = record;
284 }
285 
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code,DeoptimizationMethodType * method_type)286 void Thread::PopDeoptimizationContext(JValue* result,
287                                       ObjPtr<mirror::Throwable>* exception,
288                                       bool* from_code,
289                                       DeoptimizationMethodType* method_type) {
290   AssertHasDeoptimizationContext();
291   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
292   tlsPtr_.deoptimization_context_stack = record->GetLink();
293   result->SetJ(record->GetReturnValue().GetJ());
294   *exception = record->GetPendingException();
295   *from_code = record->GetFromCode();
296   *method_type = record->GetDeoptimizationMethodType();
297   delete record;
298 }
299 
AssertHasDeoptimizationContext()300 void Thread::AssertHasDeoptimizationContext() {
301   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
302       << "No deoptimization context for thread " << *this;
303 }
304 
305 enum {
306   kPermitAvailable = 0,  // Incrementing consumes the permit
307   kNoPermit = 1,  // Incrementing marks as waiter waiting
308   kNoPermitWaiterWaiting = 2
309 };
310 
Park(bool is_absolute,int64_t time)311 void Thread::Park(bool is_absolute, int64_t time) {
312   DCHECK(this == Thread::Current());
313 #if ART_USE_FUTEXES
314   // Consume the permit, or mark as waiting. This cannot cause park_state to go
315   // outside of its valid range (0, 1, 2), because in all cases where 2 is
316   // assigned it is set back to 1 before returning, and this method cannot run
317   // concurrently with itself since it operates on the current thread.
318   int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed);
319   if (old_state == kNoPermit) {
320     // no permit was available. block thread until later.
321     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time);
322     bool timed_out = false;
323     if (!is_absolute && time == 0) {
324       // Thread.getState() is documented to return waiting for untimed parks.
325       ScopedThreadSuspension sts(this, ThreadState::kWaiting);
326       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
327       int result = futex(tls32_.park_state_.Address(),
328                      FUTEX_WAIT_PRIVATE,
329                      /* sleep if val = */ kNoPermitWaiterWaiting,
330                      /* timeout */ nullptr,
331                      nullptr,
332                      0);
333       // This errno check must happen before the scope is closed, to ensure that
334       // no destructors (such as ScopedThreadSuspension) overwrite errno.
335       if (result == -1) {
336         switch (errno) {
337           case EAGAIN:
338             FALLTHROUGH_INTENDED;
339           case EINTR: break;  // park() is allowed to spuriously return
340           default: PLOG(FATAL) << "Failed to park";
341         }
342       }
343     } else if (time > 0) {
344       // Only actually suspend and futex_wait if we're going to wait for some
345       // positive amount of time - the kernel will reject negative times with
346       // EINVAL, and a zero time will just noop.
347 
348       // Thread.getState() is documented to return timed wait for timed parks.
349       ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting);
350       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
351       timespec timespec;
352       int result = 0;
353       if (is_absolute) {
354         // Time is millis when scheduled for an absolute time
355         timespec.tv_nsec = (time % 1000) * 1000000;
356         timespec.tv_sec = SaturatedTimeT(time / 1000);
357         // This odd looking pattern is recommended by futex documentation to
358         // wait until an absolute deadline, with otherwise identical behavior to
359         // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the
360         // correct time when the system clock changes.
361         result = futex(tls32_.park_state_.Address(),
362                        FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME,
363                        /* sleep if val = */ kNoPermitWaiterWaiting,
364                        &timespec,
365                        nullptr,
366                        static_cast<int>(FUTEX_BITSET_MATCH_ANY));
367       } else {
368         // Time is nanos when scheduled for a relative time
369         timespec.tv_sec = SaturatedTimeT(time / 1000000000);
370         timespec.tv_nsec = time % 1000000000;
371         result = futex(tls32_.park_state_.Address(),
372                        FUTEX_WAIT_PRIVATE,
373                        /* sleep if val = */ kNoPermitWaiterWaiting,
374                        &timespec,
375                        nullptr,
376                        0);
377       }
378       // This errno check must happen before the scope is closed, to ensure that
379       // no destructors (such as ScopedThreadSuspension) overwrite errno.
380       if (result == -1) {
381         switch (errno) {
382           case ETIMEDOUT:
383             timed_out = true;
384             FALLTHROUGH_INTENDED;
385           case EAGAIN:
386           case EINTR: break;  // park() is allowed to spuriously return
387           default: PLOG(FATAL) << "Failed to park";
388         }
389       }
390     }
391     // Mark as no longer waiting, and consume permit if there is one.
392     tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
393     // TODO: Call to signal jvmti here
394     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out);
395   } else {
396     // the fetch_add has consumed the permit. immediately return.
397     DCHECK_EQ(old_state, kPermitAvailable);
398   }
399 #else
400   #pragma clang diagnostic push
401   #pragma clang diagnostic warning "-W#warnings"
402   #warning "LockSupport.park/unpark implemented as noops without FUTEX support."
403   #pragma clang diagnostic pop
404   UNUSED(is_absolute, time);
405   UNIMPLEMENTED(WARNING);
406   sched_yield();
407 #endif
408 }
409 
Unpark()410 void Thread::Unpark() {
411 #if ART_USE_FUTEXES
412   // Set permit available; will be consumed either by fetch_add (when the thread
413   // tries to park) or store (when the parked thread is woken up)
414   if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed)
415       == kNoPermitWaiterWaiting) {
416     int result = futex(tls32_.park_state_.Address(),
417                        FUTEX_WAKE_PRIVATE,
418                        /* number of waiters = */ 1,
419                        nullptr,
420                        nullptr,
421                        0);
422     if (result == -1) {
423       PLOG(FATAL) << "Failed to unpark";
424     }
425   }
426 #else
427   UNIMPLEMENTED(WARNING);
428 #endif
429 }
430 
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)431 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
432   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
433       sf, type, tlsPtr_.stacked_shadow_frame_record);
434   tlsPtr_.stacked_shadow_frame_record = record;
435 }
436 
MaybePopDeoptimizedStackedShadowFrame()437 ShadowFrame* Thread::MaybePopDeoptimizedStackedShadowFrame() {
438   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
439   if (record == nullptr ||
440       record->GetType() != StackedShadowFrameType::kDeoptimizationShadowFrame) {
441     return nullptr;
442   }
443   return PopStackedShadowFrame();
444 }
445 
PopStackedShadowFrame()446 ShadowFrame* Thread::PopStackedShadowFrame() {
447   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
448   DCHECK_NE(record, nullptr);
449   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
450   ShadowFrame* shadow_frame = record->GetShadowFrame();
451   delete record;
452   return shadow_frame;
453 }
454 
455 class FrameIdToShadowFrame {
456  public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)457   static FrameIdToShadowFrame* Create(size_t frame_id,
458                                       ShadowFrame* shadow_frame,
459                                       FrameIdToShadowFrame* next,
460                                       size_t num_vregs) {
461     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
462     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
463     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
464   }
465 
Delete(FrameIdToShadowFrame * f)466   static void Delete(FrameIdToShadowFrame* f) {
467     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
468     delete[] memory;
469   }
470 
GetFrameId() const471   size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const472   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const473   FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)474   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()475   bool* GetUpdatedVRegFlags() {
476     return updated_vreg_flags_;
477   }
478 
479  private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)480   FrameIdToShadowFrame(size_t frame_id,
481                        ShadowFrame* shadow_frame,
482                        FrameIdToShadowFrame* next)
483       : frame_id_(frame_id),
484         shadow_frame_(shadow_frame),
485         next_(next) {}
486 
487   const size_t frame_id_;
488   ShadowFrame* const shadow_frame_;
489   FrameIdToShadowFrame* next_;
490   bool updated_vreg_flags_[0];
491 
492   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
493 };
494 
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)495 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
496                                                       size_t frame_id) {
497   FrameIdToShadowFrame* found = nullptr;
498   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
499     if (record->GetFrameId() == frame_id) {
500       if (kIsDebugBuild) {
501         // Check we have at most one record for this frame.
502         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
503         found = record;
504       } else {
505         return record;
506       }
507     }
508   }
509   return found;
510 }
511 
FindDebuggerShadowFrame(size_t frame_id)512 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
513   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
514       tlsPtr_.frame_id_to_shadow_frame, frame_id);
515   if (record != nullptr) {
516     return record->GetShadowFrame();
517   }
518   return nullptr;
519 }
520 
521 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)522 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
523   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
524       tlsPtr_.frame_id_to_shadow_frame, frame_id);
525   CHECK(record != nullptr);
526   return record->GetUpdatedVRegFlags();
527 }
528 
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)529 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
530                                                      uint32_t num_vregs,
531                                                      ArtMethod* method,
532                                                      uint32_t dex_pc) {
533   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
534   if (shadow_frame != nullptr) {
535     return shadow_frame;
536   }
537   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
538   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, method, dex_pc);
539   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
540                                                               shadow_frame,
541                                                               tlsPtr_.frame_id_to_shadow_frame,
542                                                               num_vregs);
543   for (uint32_t i = 0; i < num_vregs; i++) {
544     // Do this to clear all references for root visitors.
545     shadow_frame->SetVRegReference(i, nullptr);
546     // This flag will be changed to true if the debugger modifies the value.
547     record->GetUpdatedVRegFlags()[i] = false;
548   }
549   tlsPtr_.frame_id_to_shadow_frame = record;
550   return shadow_frame;
551 }
552 
GetCustomTLS(const char * key)553 TLSData* Thread::GetCustomTLS(const char* key) {
554   MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
555   auto it = custom_tls_.find(key);
556   return (it != custom_tls_.end()) ? it->second.get() : nullptr;
557 }
558 
SetCustomTLS(const char * key,TLSData * data)559 void Thread::SetCustomTLS(const char* key, TLSData* data) {
560   // We will swap the old data (which might be nullptr) with this and then delete it outside of the
561   // custom_tls_lock_.
562   std::unique_ptr<TLSData> old_data(data);
563   {
564     MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
565     custom_tls_.GetOrCreate(key, []() { return std::unique_ptr<TLSData>(); }).swap(old_data);
566   }
567 }
568 
RemoveDebuggerShadowFrameMapping(size_t frame_id)569 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
570   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
571   if (head->GetFrameId() == frame_id) {
572     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
573     FrameIdToShadowFrame::Delete(head);
574     return;
575   }
576   FrameIdToShadowFrame* prev = head;
577   for (FrameIdToShadowFrame* record = head->GetNext();
578        record != nullptr;
579        prev = record, record = record->GetNext()) {
580     if (record->GetFrameId() == frame_id) {
581       prev->SetNext(record->GetNext());
582       FrameIdToShadowFrame::Delete(record);
583       return;
584     }
585   }
586   LOG(FATAL) << "No shadow frame for frame " << frame_id;
587   UNREACHABLE();
588 }
589 
InitTid()590 void Thread::InitTid() {
591   tls32_.tid = ::art::GetTid();
592 }
593 
InitAfterFork()594 void Thread::InitAfterFork() {
595   // One thread (us) survived the fork, but we have a new tid so we need to
596   // update the value stashed in this Thread*.
597   InitTid();
598 }
599 
DeleteJPeer(JNIEnv * env)600 void Thread::DeleteJPeer(JNIEnv* env) {
601   // Make sure nothing can observe both opeer and jpeer set at the same time.
602   jobject old_jpeer = tlsPtr_.jpeer;
603   CHECK(old_jpeer != nullptr);
604   tlsPtr_.jpeer = nullptr;
605   env->DeleteGlobalRef(old_jpeer);
606 }
607 
CreateCallbackWithUffdGc(void * arg)608 void* Thread::CreateCallbackWithUffdGc(void* arg) {
609   return Thread::CreateCallback(arg);
610 }
611 
CreateCallback(void * arg)612 void* Thread::CreateCallback(void* arg) {
613   Thread* self = reinterpret_cast<Thread*>(arg);
614   Runtime* runtime = Runtime::Current();
615   if (runtime == nullptr) {
616     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
617     return nullptr;
618   }
619   {
620     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
621     //       after self->Init().
622     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
623     // Check that if we got here we cannot be shutting down (as shutdown should never have started
624     // while threads are being born).
625     CHECK(!runtime->IsShuttingDownLocked());
626     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
627     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
628     //       the runtime in such a case. In case this ever changes, we need to make sure here to
629     //       delete the tmp_jni_env, as we own it at this point.
630     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
631     self->tlsPtr_.tmp_jni_env = nullptr;
632     Runtime::Current()->EndThreadBirth();
633   }
634   {
635     ScopedObjectAccess soa(self);
636     self->InitStringEntryPoints();
637 
638     // Copy peer into self, deleting global reference when done.
639     CHECK(self->tlsPtr_.jpeer != nullptr);
640     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
641     // Make sure nothing can observe both opeer and jpeer set at the same time.
642     self->DeleteJPeer(self->GetJniEnv());
643     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
644 
645     ArtField* priorityField = WellKnownClasses::java_lang_Thread_priority;
646     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
647 
648     runtime->GetRuntimeCallbacks()->ThreadStart(self);
649 
650     // Unpark ourselves if the java peer was unparked before it started (see
651     // b/28845097#comment49 for more information)
652 
653     ArtField* unparkedField = WellKnownClasses::java_lang_Thread_unparkedBeforeStart;
654     bool should_unpark = false;
655     {
656       // Hold the lock here, so that if another thread calls unpark before the thread starts
657       // we don't observe the unparkedBeforeStart field before the unparker writes to it,
658       // which could cause a lost unpark.
659       art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_);
660       should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE;
661     }
662     if (should_unpark) {
663       self->Unpark();
664     }
665     // Invoke the 'run' method of our java.lang.Thread.
666     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
667     WellKnownClasses::java_lang_Thread_run->InvokeVirtual<'V'>(self, receiver);
668   }
669   // Detach and delete self.
670   Runtime::Current()->GetThreadList()->Unregister(self, /* should_run_callbacks= */ true);
671 
672   return nullptr;
673 }
674 
FromManagedThread(Thread * self,ObjPtr<mirror::Object> thread_peer)675 Thread* Thread::FromManagedThread(Thread* self, ObjPtr<mirror::Object> thread_peer) {
676   ArtField* f = WellKnownClasses::java_lang_Thread_nativePeer;
677   Thread* result = reinterpret_cast64<Thread*>(f->GetLong(thread_peer));
678   // Check that if we have a result it is either suspended or we hold the thread_list_lock_
679   // to stop it from going away.
680   if (kIsDebugBuild) {
681     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
682     if (result != nullptr && !result->IsSuspended()) {
683       Locks::thread_list_lock_->AssertHeld(self);
684     }
685   }
686   return result;
687 }
688 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)689 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
690                                   jobject java_thread) {
691   return FromManagedThread(soa.Self(), soa.Decode<mirror::Object>(java_thread));
692 }
693 
FixStackSize(size_t stack_size)694 static size_t FixStackSize(size_t stack_size) {
695   // A stack size of zero means "use the default".
696   if (stack_size == 0) {
697     stack_size = Runtime::Current()->GetDefaultStackSize();
698   }
699 
700   // Dalvik used the bionic pthread default stack size for native threads,
701   // so include that here to support apps that expect large native stacks.
702   stack_size += 1 * MB;
703 
704   // Under sanitization, frames of the interpreter may become bigger, both for C code as
705   // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization
706   // of all core classes cannot be done in all test circumstances.
707   if (kMemoryToolIsAvailable) {
708     stack_size = std::max(2 * MB, stack_size);
709   }
710 
711   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
712   if (stack_size < PTHREAD_STACK_MIN) {
713     stack_size = PTHREAD_STACK_MIN;
714   }
715 
716   if (Runtime::Current()->GetImplicitStackOverflowChecks()) {
717     // If we are going to use implicit stack checks, allocate space for the protected
718     // region at the bottom of the stack.
719     stack_size += Thread::kStackOverflowImplicitCheckSize +
720         GetStackOverflowReservedBytes(kRuntimeISA);
721   } else {
722     // It's likely that callers are trying to ensure they have at least a certain amount of
723     // stack space, so we should add our reserved space on top of what they requested, rather
724     // than implicitly take it away from them.
725     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
726   }
727 
728   // Some systems require the stack size to be a multiple of the system page size, so round up.
729   stack_size = RoundUp(stack_size, gPageSize);
730 
731   return stack_size;
732 }
733 
734 // Return the nearest page-aligned address below the current stack top.
735 NO_INLINE
FindStackTop()736 static uint8_t* FindStackTop() {
737   return reinterpret_cast<uint8_t*>(
738       AlignDown(__builtin_frame_address(0), gPageSize));
739 }
740 
741 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
742 // overflow is detected.  It is located right below the stack_begin_.
743 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()744 void Thread::InstallImplicitProtection() {
745   uint8_t* pregion = tlsPtr_.stack_begin - GetStackOverflowProtectedSize();
746   // Page containing current top of stack.
747   uint8_t* stack_top = FindStackTop();
748 
749   // Try to directly protect the stack.
750   VLOG(threads) << "installing stack protected region at " << std::hex <<
751         static_cast<void*>(pregion) << " to " <<
752         static_cast<void*>(pregion + GetStackOverflowProtectedSize() - 1);
753   if (ProtectStack(/* fatal_on_error= */ false)) {
754     // Tell the kernel that we won't be needing these pages any more.
755     // NB. madvise will probably write zeroes into the memory (on linux it does).
756     size_t unwanted_size =
757         reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - gPageSize;
758     madvise(pregion, unwanted_size, MADV_DONTNEED);
759     return;
760   }
761 
762   // There is a little complexity here that deserves a special mention.  On some
763   // architectures, the stack is created using a VM_GROWSDOWN flag
764   // to prevent memory being allocated when it's not needed.  This flag makes the
765   // kernel only allocate memory for the stack by growing down in memory.  Because we
766   // want to put an mprotected region far away from that at the stack top, we need
767   // to make sure the pages for the stack are mapped in before we call mprotect.
768   //
769   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
770   // with a non-mapped stack (usually only the main thread).
771   //
772   // We map in the stack by reading every page from the stack bottom (highest address)
773   // to the stack top. (We then madvise this away.) This must be done by reading from the
774   // current stack pointer downwards.
775   //
776   // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
777   // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
778   // thus have to move the stack pointer. We do this portably by using a recursive function with a
779   // large stack frame size.
780 
781   // (Defensively) first remove the protection on the protected region as we'll want to read
782   // and write it. Ignore errors.
783   UnprotectStack();
784 
785   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
786       static_cast<void*>(pregion);
787 
788   struct RecurseDownStack {
789     // This function has an intentionally large stack size.
790 #pragma GCC diagnostic push
791 #pragma GCC diagnostic ignored "-Wframe-larger-than="
792     NO_INLINE
793     __attribute__((no_sanitize("memtag"))) static void Touch(uintptr_t target) {
794       volatile size_t zero = 0;
795       // Use a large local volatile array to ensure a large frame size. Do not use anything close
796       // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
797       // there is no pragma support for this.
798       // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
799       constexpr size_t kAsanMultiplier =
800 #ifdef ADDRESS_SANITIZER
801           2u;
802 #else
803           1u;
804 #endif
805       // Keep space uninitialized as it can overflow the stack otherwise (should Clang actually
806       // auto-initialize this local variable).
807       volatile char space[gPageSize - (kAsanMultiplier * 256)] __attribute__((uninitialized));
808       [[maybe_unused]] char sink = space[zero];
809       // Remove tag from the pointer. Nop in non-hwasan builds.
810       uintptr_t addr = reinterpret_cast<uintptr_t>(
811           __hwasan_tag_pointer != nullptr ? __hwasan_tag_pointer(space, 0) : space);
812       if (addr >= target + gPageSize) {
813         Touch(target);
814       }
815       zero *= 2;  // Try to avoid tail recursion.
816     }
817 #pragma GCC diagnostic pop
818   };
819   RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
820 
821   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
822       static_cast<void*>(pregion) << " to " <<
823       static_cast<void*>(pregion + GetStackOverflowProtectedSize() - 1);
824 
825   // Protect the bottom of the stack to prevent read/write to it.
826   ProtectStack(/* fatal_on_error= */ true);
827 
828   // Tell the kernel that we won't be needing these pages any more.
829   // NB. madvise will probably write zeroes into the memory (on linux it does).
830   size_t unwanted_size =
831       reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - gPageSize;
832   madvise(pregion, unwanted_size, MADV_DONTNEED);
833 }
834 
835 template <bool kSupportTransaction>
SetNativePeer(ObjPtr<mirror::Object> java_peer,Thread * thread)836 static void SetNativePeer(ObjPtr<mirror::Object> java_peer, Thread* thread)
837     REQUIRES_SHARED(Locks::mutator_lock_) {
838   ArtField* field = WellKnownClasses::java_lang_Thread_nativePeer;
839   if (kSupportTransaction && Runtime::Current()->IsActiveTransaction()) {
840     field->SetLong</*kTransactionActive=*/ true>(java_peer, reinterpret_cast<jlong>(thread));
841   } else {
842     field->SetLong</*kTransactionActive=*/ false>(java_peer, reinterpret_cast<jlong>(thread));
843   }
844 }
845 
SetNativePeer(JNIEnv * env,jobject java_peer,Thread * thread)846 static void SetNativePeer(JNIEnv* env, jobject java_peer, Thread* thread) {
847   ScopedObjectAccess soa(env);
848   SetNativePeer</*kSupportTransaction=*/ false>(soa.Decode<mirror::Object>(java_peer), thread);
849 }
850 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)851 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
852   CHECK(java_peer != nullptr);
853   Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
854 
855   if (VLOG_IS_ON(threads)) {
856     ScopedObjectAccess soa(env);
857 
858     ArtField* f = WellKnownClasses::java_lang_Thread_name;
859     ObjPtr<mirror::String> java_name =
860         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
861     std::string thread_name;
862     if (java_name != nullptr) {
863       thread_name = java_name->ToModifiedUtf8();
864     } else {
865       thread_name = "(Unnamed)";
866     }
867 
868     VLOG(threads) << "Creating native thread for " << thread_name;
869     self->Dump(LOG_STREAM(INFO));
870   }
871 
872   Runtime* runtime = Runtime::Current();
873 
874   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
875   bool thread_start_during_shutdown = false;
876   {
877     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
878     if (runtime->IsShuttingDownLocked()) {
879       thread_start_during_shutdown = true;
880     } else {
881       runtime->StartThreadBirth();
882     }
883   }
884   if (thread_start_during_shutdown) {
885     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
886     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
887     return;
888   }
889 
890   Thread* child_thread = new Thread(is_daemon);
891   // Use global JNI ref to hold peer live while child thread starts.
892   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
893   stack_size = FixStackSize(stack_size);
894 
895   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
896   // to assign it.
897   SetNativePeer(env, java_peer, child_thread);
898 
899   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
900   // do not have a good way to report this on the child's side.
901   std::string error_msg;
902   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
903       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
904 
905   int pthread_create_result = 0;
906   if (child_jni_env_ext.get() != nullptr) {
907     pthread_t new_pthread;
908     pthread_attr_t attr;
909     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
910     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
911     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
912                        "PTHREAD_CREATE_DETACHED");
913     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
914     pthread_create_result = pthread_create(&new_pthread,
915                                            &attr,
916                                            gUseUserfaultfd ? Thread::CreateCallbackWithUffdGc
917                                                            : Thread::CreateCallback,
918                                            child_thread);
919     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
920 
921     if (pthread_create_result == 0) {
922       // pthread_create started the new thread. The child is now responsible for managing the
923       // JNIEnvExt we created.
924       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
925       //       between the threads.
926       child_jni_env_ext.release();  // NOLINT pthreads API.
927       return;
928     }
929   }
930 
931   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
932   {
933     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
934     runtime->EndThreadBirth();
935   }
936   // Manually delete the global reference since Thread::Init will not have been run. Make sure
937   // nothing can observe both opeer and jpeer set at the same time.
938   child_thread->DeleteJPeer(env);
939   delete child_thread;
940   child_thread = nullptr;
941   // TODO: remove from thread group?
942   SetNativePeer(env, java_peer, nullptr);
943   {
944     std::string msg(child_jni_env_ext.get() == nullptr ?
945         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
946         StringPrintf("pthread_create (%s stack) failed: %s",
947                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
948     ScopedObjectAccess soa(env);
949     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
950   }
951 }
952 
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)953 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
954   // This function does all the initialization that must be run by the native thread it applies to.
955   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
956   // we can handshake with the corresponding native thread when it's ready.) Check this native
957   // thread hasn't been through here already...
958   CHECK(Thread::Current() == nullptr);
959 
960   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
961   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
962   tlsPtr_.pthread_self = pthread_self();
963   CHECK(is_started_);
964 
965   ScopedTrace trace("Thread::Init");
966 
967   SetUpAlternateSignalStack();
968   if (!InitStackHwm()) {
969     return false;
970   }
971   InitCpu();
972   InitTlsEntryPoints();
973   RemoveSuspendTrigger();
974   InitCardTable();
975   InitTid();
976 
977 #ifdef __BIONIC__
978   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
979 #else
980   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
981   Thread::self_tls_ = this;
982 #endif
983   DCHECK_EQ(Thread::Current(), this);
984 
985   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
986 
987   if (jni_env_ext != nullptr) {
988     DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
989     DCHECK_EQ(jni_env_ext->GetSelf(), this);
990     tlsPtr_.jni_env = jni_env_ext;
991   } else {
992     std::string error_msg;
993     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
994     if (tlsPtr_.jni_env == nullptr) {
995       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
996       return false;
997     }
998   }
999 
1000   ScopedTrace trace3("ThreadList::Register");
1001   thread_list->Register(this);
1002   return true;
1003 }
1004 
1005 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action,bool should_run_callbacks)1006 Thread* Thread::Attach(const char* thread_name,
1007                        bool as_daemon,
1008                        PeerAction peer_action,
1009                        bool should_run_callbacks) {
1010   Runtime* runtime = Runtime::Current();
1011   ScopedTrace trace("Thread::Attach");
1012   if (runtime == nullptr) {
1013     LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
1014         ((thread_name != nullptr) ? thread_name : "(Unnamed)");
1015     return nullptr;
1016   }
1017   Thread* self;
1018   {
1019     ScopedTrace trace2("Thread birth");
1020     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
1021     if (runtime->IsShuttingDownLocked()) {
1022       LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
1023           ((thread_name != nullptr) ? thread_name : "(Unnamed)");
1024       return nullptr;
1025     } else {
1026       Runtime::Current()->StartThreadBirth();
1027       self = new Thread(as_daemon);
1028       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
1029       Runtime::Current()->EndThreadBirth();
1030       if (!init_success) {
1031         delete self;
1032         return nullptr;
1033       }
1034     }
1035   }
1036 
1037   self->InitStringEntryPoints();
1038 
1039   CHECK_NE(self->GetState(), ThreadState::kRunnable);
1040   self->SetState(ThreadState::kNative);
1041 
1042   // Run the action that is acting on the peer.
1043   if (!peer_action(self)) {
1044     runtime->GetThreadList()->Unregister(self, should_run_callbacks);
1045     // Unregister deletes self, no need to do this here.
1046     return nullptr;
1047   }
1048 
1049   if (VLOG_IS_ON(threads)) {
1050     if (thread_name != nullptr) {
1051       VLOG(threads) << "Attaching thread " << thread_name;
1052     } else {
1053       VLOG(threads) << "Attaching unnamed thread.";
1054     }
1055     ScopedObjectAccess soa(self);
1056     self->Dump(LOG_STREAM(INFO));
1057   }
1058 
1059   if (should_run_callbacks) {
1060     ScopedObjectAccess soa(self);
1061     runtime->GetRuntimeCallbacks()->ThreadStart(self);
1062   }
1063 
1064   return self;
1065 }
1066 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer,bool should_run_callbacks)1067 Thread* Thread::Attach(const char* thread_name,
1068                        bool as_daemon,
1069                        jobject thread_group,
1070                        bool create_peer,
1071                        bool should_run_callbacks) {
1072   auto create_peer_action = [&](Thread* self) {
1073     // If we're the main thread, ClassLinker won't be created until after we're attached,
1074     // so that thread needs a two-stage attach. Regular threads don't need this hack.
1075     // In the compiler, all threads need this hack, because no-one's going to be getting
1076     // a native peer!
1077     if (create_peer) {
1078       self->CreatePeer(thread_name, as_daemon, thread_group);
1079       if (self->IsExceptionPending()) {
1080         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
1081         // the failure but do not dump the exception details. If we fail to allocate the peer, we
1082         // usually also fail to allocate an exception object and throw a pre-allocated OOME without
1083         // any useful information. If we do manage to allocate the exception object, the memory
1084         // information in the message could have been collected too late and therefore misleading.
1085         {
1086           ScopedObjectAccess soa(self);
1087           LOG(ERROR) << "Exception creating thread peer: "
1088                      << ((thread_name != nullptr) ? thread_name : "<null>");
1089           self->ClearException();
1090         }
1091         return false;
1092       }
1093     } else {
1094       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
1095       if (thread_name != nullptr) {
1096         self->SetCachedThreadName(thread_name);
1097         ::art::SetThreadName(thread_name);
1098       } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
1099         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
1100       }
1101     }
1102     return true;
1103   };
1104   return Attach(thread_name, as_daemon, create_peer_action, should_run_callbacks);
1105 }
1106 
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)1107 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
1108   auto set_peer_action = [&](Thread* self) {
1109     // Install the given peer.
1110     DCHECK(self == Thread::Current());
1111     ScopedObjectAccess soa(self);
1112     ObjPtr<mirror::Object> peer = soa.Decode<mirror::Object>(thread_peer);
1113     self->tlsPtr_.opeer = peer.Ptr();
1114     SetNativePeer</*kSupportTransaction=*/ false>(peer, self);
1115     return true;
1116   };
1117   return Attach(thread_name, as_daemon, set_peer_action, /* should_run_callbacks= */ true);
1118 }
1119 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)1120 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
1121   Runtime* runtime = Runtime::Current();
1122   CHECK(runtime->IsStarted());
1123   Thread* self = this;
1124   DCHECK_EQ(self, Thread::Current());
1125 
1126   ScopedObjectAccess soa(self);
1127   StackHandleScope<4u> hs(self);
1128   DCHECK(WellKnownClasses::java_lang_ThreadGroup->IsInitialized());
1129   Handle<mirror::Object> thr_group = hs.NewHandle(soa.Decode<mirror::Object>(
1130       thread_group != nullptr ? thread_group : runtime->GetMainThreadGroup()));
1131   Handle<mirror::String> thread_name = hs.NewHandle(
1132       name != nullptr ? mirror::String::AllocFromModifiedUtf8(self, name) : nullptr);
1133   // Add missing null check in case of OOM b/18297817
1134   if (name != nullptr && UNLIKELY(thread_name == nullptr)) {
1135     CHECK(self->IsExceptionPending());
1136     return;
1137   }
1138   jint thread_priority = GetNativePriority();
1139 
1140   DCHECK(WellKnownClasses::java_lang_Thread->IsInitialized());
1141   Handle<mirror::Object> peer =
1142       hs.NewHandle(WellKnownClasses::java_lang_Thread->AllocObject(self));
1143   if (UNLIKELY(peer == nullptr)) {
1144     CHECK(IsExceptionPending());
1145     return;
1146   }
1147   tlsPtr_.opeer = peer.Get();
1148   WellKnownClasses::java_lang_Thread_init->InvokeInstance<'V', 'L', 'L', 'I', 'Z'>(
1149       self, peer.Get(), thr_group.Get(), thread_name.Get(), thread_priority, as_daemon);
1150   if (self->IsExceptionPending()) {
1151     return;
1152   }
1153 
1154   SetNativePeer</*kSupportTransaction=*/ false>(peer.Get(), self);
1155 
1156   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
1157   if (peer_thread_name == nullptr) {
1158     // The Thread constructor should have set the Thread.name to a
1159     // non-null value. However, because we can run without code
1160     // available (in the compiler, in tests), we manually assign the
1161     // fields the constructor should have set.
1162     if (runtime->IsActiveTransaction()) {
1163       InitPeer<true>(tlsPtr_.opeer,
1164                      as_daemon,
1165                      thr_group.Get(),
1166                      thread_name.Get(),
1167                      thread_priority);
1168     } else {
1169       InitPeer<false>(tlsPtr_.opeer,
1170                       as_daemon,
1171                       thr_group.Get(),
1172                       thread_name.Get(),
1173                       thread_priority);
1174     }
1175     peer_thread_name.Assign(GetThreadName());
1176   }
1177   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
1178   if (peer_thread_name != nullptr) {
1179     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
1180   }
1181 }
1182 
CreateCompileTimePeer(const char * name,bool as_daemon,jobject thread_group)1183 ObjPtr<mirror::Object> Thread::CreateCompileTimePeer(const char* name,
1184                                                      bool as_daemon,
1185                                                      jobject thread_group) {
1186   Runtime* runtime = Runtime::Current();
1187   CHECK(!runtime->IsStarted());
1188   Thread* self = this;
1189   DCHECK_EQ(self, Thread::Current());
1190 
1191   ScopedObjectAccessUnchecked soa(self);
1192   StackHandleScope<3u> hs(self);
1193   DCHECK(WellKnownClasses::java_lang_ThreadGroup->IsInitialized());
1194   Handle<mirror::Object> thr_group = hs.NewHandle(soa.Decode<mirror::Object>(
1195       thread_group != nullptr ? thread_group : runtime->GetMainThreadGroup()));
1196   Handle<mirror::String> thread_name = hs.NewHandle(
1197       name != nullptr ? mirror::String::AllocFromModifiedUtf8(self, name) : nullptr);
1198   // Add missing null check in case of OOM b/18297817
1199   if (name != nullptr && UNLIKELY(thread_name == nullptr)) {
1200     CHECK(self->IsExceptionPending());
1201     return nullptr;
1202   }
1203   jint thread_priority = kNormThreadPriority;  // Always normalize to NORM priority.
1204 
1205   DCHECK(WellKnownClasses::java_lang_Thread->IsInitialized());
1206   Handle<mirror::Object> peer = hs.NewHandle(
1207       WellKnownClasses::java_lang_Thread->AllocObject(self));
1208   if (peer == nullptr) {
1209     CHECK(Thread::Current()->IsExceptionPending());
1210     return nullptr;
1211   }
1212 
1213   // We cannot call Thread.init, as it will recursively ask for currentThread.
1214 
1215   // The Thread constructor should have set the Thread.name to a
1216   // non-null value. However, because we can run without code
1217   // available (in the compiler, in tests), we manually assign the
1218   // fields the constructor should have set.
1219   if (runtime->IsActiveTransaction()) {
1220     InitPeer<true>(peer.Get(),
1221                    as_daemon,
1222                    thr_group.Get(),
1223                    thread_name.Get(),
1224                    thread_priority);
1225   } else {
1226     InitPeer<false>(peer.Get(),
1227                     as_daemon,
1228                     thr_group.Get(),
1229                     thread_name.Get(),
1230                     thread_priority);
1231   }
1232 
1233   return peer.Get();
1234 }
1235 
1236 template<bool kTransactionActive>
InitPeer(ObjPtr<mirror::Object> peer,bool as_daemon,ObjPtr<mirror::Object> thread_group,ObjPtr<mirror::String> thread_name,jint thread_priority)1237 void Thread::InitPeer(ObjPtr<mirror::Object> peer,
1238                       bool as_daemon,
1239                       ObjPtr<mirror::Object> thread_group,
1240                       ObjPtr<mirror::String> thread_name,
1241                       jint thread_priority) {
1242   WellKnownClasses::java_lang_Thread_daemon->SetBoolean<kTransactionActive>(peer,
1243       static_cast<uint8_t>(as_daemon ? 1u : 0u));
1244   WellKnownClasses::java_lang_Thread_group->SetObject<kTransactionActive>(peer, thread_group);
1245   WellKnownClasses::java_lang_Thread_name->SetObject<kTransactionActive>(peer, thread_name);
1246   WellKnownClasses::java_lang_Thread_priority->SetInt<kTransactionActive>(peer, thread_priority);
1247 }
1248 
SetCachedThreadName(const char * name)1249 void Thread::SetCachedThreadName(const char* name) {
1250   DCHECK(name != kThreadNameDuringStartup);
1251   const char* old_name = tlsPtr_.name.exchange(name == nullptr ? nullptr : strdup(name));
1252   if (old_name != nullptr && old_name !=  kThreadNameDuringStartup) {
1253     // Deallocate it, carefully. Note that the load has to be ordered wrt the store of the xchg.
1254     for (uint32_t i = 0; UNLIKELY(tls32_.num_name_readers.load(std::memory_order_seq_cst) != 0);
1255          ++i) {
1256       static constexpr uint32_t kNumSpins = 1000;
1257       // Ugly, but keeps us from having to do anything on the reader side.
1258       if (i > kNumSpins) {
1259         usleep(500);
1260       }
1261     }
1262     // We saw the reader count drop to zero since we replaced the name; old one is now safe to
1263     // deallocate.
1264     free(const_cast<char *>(old_name));
1265   }
1266 }
1267 
SetThreadName(const char * name)1268 void Thread::SetThreadName(const char* name) {
1269   SetCachedThreadName(name);
1270   ::art::SetThreadName(name);
1271   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1272 }
1273 
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1274 static void GetThreadStack(pthread_t thread,
1275                            void** stack_base,
1276                            size_t* stack_size,
1277                            size_t* guard_size) {
1278 #if defined(__APPLE__)
1279   *stack_size = pthread_get_stacksize_np(thread);
1280   void* stack_addr = pthread_get_stackaddr_np(thread);
1281 
1282   // Check whether stack_addr is the base or end of the stack.
1283   // (On Mac OS 10.7, it's the end.)
1284   int stack_variable;
1285   if (stack_addr > &stack_variable) {
1286     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1287   } else {
1288     *stack_base = stack_addr;
1289   }
1290 
1291   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1292   pthread_attr_t attributes;
1293   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1294   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1295   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1296 #else
1297   pthread_attr_t attributes;
1298   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1299   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1300   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1301   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1302 
1303 #if defined(__GLIBC__)
1304   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1305   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1306   // will be broken because we'll die long before we get close to 2GB.
1307   bool is_main_thread = (::art::GetTid() == static_cast<uint32_t>(getpid()));
1308   if (is_main_thread) {
1309     rlimit stack_limit;
1310     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1311       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1312     }
1313     if (stack_limit.rlim_cur == RLIM_INFINITY) {
1314       size_t old_stack_size = *stack_size;
1315 
1316       // Use the kernel default limit as our size, and adjust the base to match.
1317       *stack_size = 8 * MB;
1318       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1319 
1320       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1321                     << " to " << PrettySize(*stack_size)
1322                     << " with base " << *stack_base;
1323     }
1324   }
1325 #endif
1326 
1327 #endif
1328 }
1329 
InitStackHwm()1330 bool Thread::InitStackHwm() {
1331   ScopedTrace trace("InitStackHwm");
1332   void* read_stack_base;
1333   size_t read_stack_size;
1334   size_t read_guard_size;
1335   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1336 
1337   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1338   tlsPtr_.stack_size = read_stack_size;
1339 
1340   // The minimum stack size we can cope with is the protected region size + stack overflow check
1341   // region size + some memory for normal stack usage.
1342   //
1343   // The protected region is located at the beginning (lowest address) of the stack region.
1344   // Therefore, it starts at a page-aligned address. Its size should be a multiple of page sizes.
1345   // Typically, it is one page in size, however this varies in some configurations.
1346   //
1347   // The overflow reserved bytes is size of the stack overflow check region, located right after
1348   // the protected region, so also starts at a page-aligned address. The size is discretionary.
1349   // Typically it is 8K, but this varies in some configurations.
1350   //
1351   // The rest of the stack memory is available for normal stack usage. It is located right after
1352   // the stack overflow check region, so its starting address isn't necessarily page-aligned. The
1353   // size of the region is discretionary, however should be chosen in a way that the overall stack
1354   // size is a multiple of page sizes. Historically, it is chosen to be at least 4 KB.
1355   //
1356   // On systems with 4K page size, typically the minimum stack size will be 4+8+4 = 16K.
1357   // The thread won't be able to do much with this stack: even the GC takes between 8K and 12K.
1358   DCHECK_ALIGNED_PARAM(static_cast<size_t>(GetStackOverflowProtectedSize()),
1359                        static_cast<int32_t>(gPageSize));
1360   size_t min_stack = GetStackOverflowProtectedSize() +
1361       RoundUp(GetStackOverflowReservedBytes(kRuntimeISA) + 4 * KB, gPageSize);
1362   if (read_stack_size <= min_stack) {
1363     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1364     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1365                                __LINE__,
1366                                ::android::base::ERROR,
1367                                "Attempt to attach a thread with a too-small stack");
1368     return false;
1369   }
1370 
1371   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1372   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1373                                 read_stack_base,
1374                                 PrettySize(read_stack_size).c_str(),
1375                                 PrettySize(read_guard_size).c_str());
1376 
1377   // Set stack_end_ to the bottom of the stack saving space of stack overflows
1378 
1379   Runtime* runtime = Runtime::Current();
1380   bool implicit_stack_check =
1381       runtime->GetImplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1382 
1383   ResetDefaultStackEnd();
1384 
1385   // Install the protected region if we are doing implicit overflow checks.
1386   if (implicit_stack_check) {
1387     // The thread might have protected region at the bottom.  We need
1388     // to install our own region so we need to move the limits
1389     // of the stack to make room for it.
1390 
1391     tlsPtr_.stack_begin += read_guard_size + GetStackOverflowProtectedSize();
1392     tlsPtr_.stack_end += read_guard_size + GetStackOverflowProtectedSize();
1393     tlsPtr_.stack_size -= read_guard_size + GetStackOverflowProtectedSize();
1394 
1395     InstallImplicitProtection();
1396   }
1397 
1398   // Consistency check.
1399   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1400 
1401   return true;
1402 }
1403 
ShortDump(std::ostream & os) const1404 void Thread::ShortDump(std::ostream& os) const {
1405   os << "Thread[";
1406   if (GetThreadId() != 0) {
1407     // If we're in kStarting, we won't have a thin lock id or tid yet.
1408     os << GetThreadId()
1409        << ",tid=" << GetTid() << ',';
1410   }
1411   tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst);
1412   const char* name = tlsPtr_.name.load();
1413   os << GetState()
1414      << ",Thread*=" << this
1415      << ",peer=" << tlsPtr_.opeer
1416      << ",\"" << (name == nullptr ? "null" : name) << "\""
1417      << "]";
1418   tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */);
1419 }
1420 
Dump(std::ostream & os,bool dump_native_stack,bool force_dump_stack) const1421 Thread::DumpOrder Thread::Dump(std::ostream& os,
1422                                bool dump_native_stack,
1423                                bool force_dump_stack) const {
1424   DumpState(os);
1425   return DumpStack(os, dump_native_stack, force_dump_stack);
1426 }
1427 
Dump(std::ostream & os,unwindstack::AndroidLocalUnwinder & unwinder,bool dump_native_stack,bool force_dump_stack) const1428 Thread::DumpOrder Thread::Dump(std::ostream& os,
1429                                unwindstack::AndroidLocalUnwinder& unwinder,
1430                                bool dump_native_stack,
1431                                bool force_dump_stack) const {
1432   DumpState(os);
1433   return DumpStack(os, unwinder, dump_native_stack, force_dump_stack);
1434 }
1435 
GetThreadName() const1436 ObjPtr<mirror::String> Thread::GetThreadName() const {
1437   if (tlsPtr_.opeer == nullptr) {
1438     return nullptr;
1439   }
1440   ObjPtr<mirror::Object> name = WellKnownClasses::java_lang_Thread_name->GetObject(tlsPtr_.opeer);
1441   return name == nullptr ? nullptr : name->AsString();
1442 }
1443 
GetThreadName(std::string & name) const1444 void Thread::GetThreadName(std::string& name) const {
1445   tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst);
1446   // The store part of the increment has to be ordered with respect to the following load.
1447   const char* c_name = tlsPtr_.name.load(std::memory_order_seq_cst);
1448   name.assign(c_name == nullptr ? "<no name>" : c_name);
1449   tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */);
1450 }
1451 
GetCpuMicroTime() const1452 uint64_t Thread::GetCpuMicroTime() const {
1453 #if defined(__linux__)
1454   clockid_t cpu_clock_id;
1455   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1456   timespec now;
1457   clock_gettime(cpu_clock_id, &now);
1458   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) +
1459          static_cast<uint64_t>(now.tv_nsec) / UINT64_C(1000);
1460 #else  // __APPLE__
1461   UNIMPLEMENTED(WARNING);
1462   return -1;
1463 #endif
1464 }
1465 
1466 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1467 void Thread::UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1468   LOG(ERROR) << *thread << " suspend count already zero.";
1469   Locks::thread_suspend_count_lock_->Unlock(self);
1470   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1471     Locks::mutator_lock_->SharedTryLock(self);
1472     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1473       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1474     }
1475   }
1476   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1477     Locks::thread_list_lock_->TryLock(self);
1478     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1479       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1480     }
1481   }
1482   std::ostringstream ss;
1483   Runtime::Current()->GetThreadList()->Dump(ss);
1484   LOG(FATAL) << ss.str();
1485   UNREACHABLE();
1486 }
1487 
PassActiveSuspendBarriers()1488 bool Thread::PassActiveSuspendBarriers() {
1489   DCHECK_EQ(this, Thread::Current());
1490   DCHECK_NE(GetState(), ThreadState::kRunnable);
1491   // Grab the suspend_count lock and copy the current set of barriers. Then clear the list and the
1492   // flag. The IncrementSuspendCount function requires the lock so we prevent a race between setting
1493   // the kActiveSuspendBarrier flag and clearing it.
1494   // TODO: Consider doing this without the temporary vector. That code will be a bit
1495   // tricky, since the WrappedSuspend1Barrier may disappear once the barrier is decremented.
1496   std::vector<AtomicInteger*> pass_barriers{};
1497   {
1498     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1499     if (!ReadFlag(ThreadFlag::kActiveSuspendBarrier)) {
1500       // Quick exit test: The barriers have already been claimed - this is possible as there may
1501       // be a race to claim and it doesn't matter who wins.  All of the callers of this function
1502       // (except SuspendAllInternal) will first test the kActiveSuspendBarrier flag without the
1503       // lock. Here we double-check whether the barrier has been passed with the
1504       // suspend_count_lock_.
1505       return false;
1506     }
1507     if (tlsPtr_.active_suspendall_barrier != nullptr) {
1508       // We have at most one active active_suspendall_barrier. See thread.h comment.
1509       pass_barriers.push_back(tlsPtr_.active_suspendall_barrier);
1510       tlsPtr_.active_suspendall_barrier = nullptr;
1511     }
1512     for (WrappedSuspend1Barrier* w = tlsPtr_.active_suspend1_barriers; w != nullptr; w = w->next_) {
1513       CHECK_EQ(w->magic_, WrappedSuspend1Barrier::kMagic)
1514           << "first = " << tlsPtr_.active_suspend1_barriers << " current = " << w
1515           << " next = " << w->next_;
1516       pass_barriers.push_back(&(w->barrier_));
1517     }
1518     tlsPtr_.active_suspend1_barriers = nullptr;
1519     AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier);
1520     CHECK_GT(pass_barriers.size(), 0U);  // Since kActiveSuspendBarrier was set.
1521     // Decrement suspend barrier(s) while we still hold the lock, since SuspendThread may
1522     // remove and deallocate suspend barriers while holding suspend_count_lock_ .
1523     // There will typically only be a single barrier to pass here.
1524     for (AtomicInteger*& barrier : pass_barriers) {
1525       int32_t old_val = barrier->fetch_sub(1, std::memory_order_release);
1526       CHECK_GT(old_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << old_val;
1527       if (old_val != 1) {
1528         // We're done with it.
1529         barrier = nullptr;
1530       }
1531     }
1532   }
1533   // Finally do futex_wakes after releasing the lock.
1534   for (AtomicInteger* barrier : pass_barriers) {
1535 #if ART_USE_FUTEXES
1536     if (barrier != nullptr) {
1537       futex(barrier->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
1538     }
1539 #endif
1540   }
1541   return true;
1542 }
1543 
RunCheckpointFunction()1544 void Thread::RunCheckpointFunction() {
1545   DCHECK_EQ(Thread::Current(), this);
1546   CHECK(!GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags()));
1547   // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1548   // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1549   Closure* checkpoint;
1550   {
1551     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1552     checkpoint = tlsPtr_.checkpoint_function;
1553     if (!checkpoint_overflow_.empty()) {
1554       // Overflow list not empty, copy the first one out and continue.
1555       tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1556       checkpoint_overflow_.pop_front();
1557     } else {
1558       // No overflow checkpoints. Clear the kCheckpointRequest flag
1559       tlsPtr_.checkpoint_function = nullptr;
1560       AtomicClearFlag(ThreadFlag::kCheckpointRequest);
1561     }
1562   }
1563   // Outside the lock, run the checkpoint function.
1564   ScopedTrace trace("Run checkpoint function");
1565   CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1566   checkpoint->Run(this);
1567 }
1568 
RunEmptyCheckpoint()1569 void Thread::RunEmptyCheckpoint() {
1570   // Note: Empty checkpoint does not access the thread's stack,
1571   // so we do not need to check for the flip function.
1572   DCHECK_EQ(Thread::Current(), this);
1573   AtomicClearFlag(ThreadFlag::kEmptyCheckpointRequest);
1574   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1575 }
1576 
RequestCheckpoint(Closure * function)1577 bool Thread::RequestCheckpoint(Closure* function) {
1578   bool success;
1579   do {
1580     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
1581     if (old_state_and_flags.GetState() != ThreadState::kRunnable) {
1582       return false;  // Fail, thread is suspended and so can't run a checkpoint.
1583     }
1584     StateAndFlags new_state_and_flags = old_state_and_flags;
1585     new_state_and_flags.SetFlag(ThreadFlag::kCheckpointRequest);
1586     success = tls32_.state_and_flags.CompareAndSetWeakSequentiallyConsistent(
1587         old_state_and_flags.GetValue(), new_state_and_flags.GetValue());
1588   } while (!success);
1589   // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1590   if (tlsPtr_.checkpoint_function == nullptr) {
1591     tlsPtr_.checkpoint_function = function;
1592   } else {
1593     checkpoint_overflow_.push_back(function);
1594   }
1595   DCHECK(ReadFlag(ThreadFlag::kCheckpointRequest));
1596   TriggerSuspend();
1597   return true;
1598 }
1599 
RequestEmptyCheckpoint()1600 bool Thread::RequestEmptyCheckpoint() {
1601   StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
1602   if (old_state_and_flags.GetState() != ThreadState::kRunnable) {
1603     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1604     // heap access (eg. the read barrier).
1605     return false;
1606   }
1607 
1608   // We must be runnable to request a checkpoint.
1609   DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable);
1610   StateAndFlags new_state_and_flags = old_state_and_flags;
1611   new_state_and_flags.SetFlag(ThreadFlag::kEmptyCheckpointRequest);
1612   bool success = tls32_.state_and_flags.CompareAndSetStrongSequentiallyConsistent(
1613       old_state_and_flags.GetValue(), new_state_and_flags.GetValue());
1614   if (success) {
1615     TriggerSuspend();
1616   }
1617   return success;
1618 }
1619 
1620 class BarrierClosure : public Closure {
1621  public:
BarrierClosure(Closure * wrapped)1622   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1623 
Run(Thread * self)1624   void Run(Thread* self) override {
1625     wrapped_->Run(self);
1626     barrier_.Pass(self);
1627   }
1628 
Wait(Thread * self,ThreadState wait_state)1629   void Wait(Thread* self, ThreadState wait_state) {
1630     if (wait_state != ThreadState::kRunnable) {
1631       barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1632     } else {
1633       barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1634     }
1635   }
1636 
1637  private:
1638   Closure* wrapped_;
1639   Barrier barrier_;
1640 };
1641 
1642 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
RequestSynchronousCheckpoint(Closure * function,ThreadState wait_state)1643 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState wait_state) {
1644   Thread* self = Thread::Current();
1645   if (this == self) {
1646     Locks::thread_list_lock_->AssertExclusiveHeld(self);
1647     // Unlock the tll before running so that the state is the same regardless of thread.
1648     Locks::thread_list_lock_->ExclusiveUnlock(self);
1649     // Asked to run on this thread. Just run.
1650     function->Run(this);
1651     return true;
1652   }
1653 
1654   // The current thread is not this thread.
1655 
1656   VerifyState();
1657 
1658   Locks::thread_list_lock_->AssertExclusiveHeld(self);
1659   // If target "this" thread is runnable, try to schedule a checkpoint. Do some gymnastics to not
1660   // hold the suspend-count lock for too long.
1661   if (GetState() == ThreadState::kRunnable) {
1662     BarrierClosure barrier_closure(function);
1663     bool installed = false;
1664     {
1665       MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1666       installed = RequestCheckpoint(&barrier_closure);
1667     }
1668     if (installed) {
1669       // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1670       // reacquire it since we don't know if 'this' hasn't been deleted yet.
1671       Locks::thread_list_lock_->ExclusiveUnlock(self);
1672       ScopedThreadStateChange sts(self, wait_state);
1673       // Wait state can be kRunnable, in which case, for lock ordering purposes, it's as if we ran
1674       // the closure ourselves. This means that the target thread should not acquire a pre-mutator
1675       // lock without running the checkpoint, and the closure should not acquire a pre-mutator
1676       // lock or suspend.
1677       barrier_closure.Wait(self, wait_state);
1678       return true;
1679     }
1680     // No longer runnable. Fall-through.
1681   }
1682 
1683   // Target "this" thread was not runnable. Suspend it, hopefully redundantly,
1684   // but it might have become runnable in the meantime.
1685   // Although this is a thread suspension, the target thread only blocks while we run the
1686   // checkpoint, which is presumed to terminate quickly even if other threads are blocked.
1687   // Note: IncrementSuspendCount also expects the thread_list_lock to be held unless this == self.
1688   WrappedSuspend1Barrier wrapped_barrier{};
1689   {
1690     bool is_suspended = false;
1691 
1692     {
1693       MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1694       // If wait_state is kRunnable, function may not suspend. We thus never block because
1695       // we ourselves are being asked to suspend.
1696       if (UNLIKELY(wait_state != ThreadState::kRunnable && self->GetSuspendCount() != 0)) {
1697         // We are being asked to suspend while we are suspending another thread that may be
1698         // responsible for our suspension. This is likely to result in deadlock if we each
1699         // block on the suspension request. Instead we wait for the situation to change.
1700         ThreadExitFlag target_status;
1701         NotifyOnThreadExit(&target_status);
1702         for (int iter_count = 1; self->GetSuspendCount() != 0; ++iter_count) {
1703           Locks::thread_suspend_count_lock_->ExclusiveUnlock(self);
1704           Locks::thread_list_lock_->ExclusiveUnlock(self);
1705           {
1706             ScopedThreadStateChange sts(self, wait_state);
1707             usleep(ThreadList::kThreadSuspendSleepUs);
1708           }
1709           CHECK_LT(iter_count, ThreadList::kMaxSuspendRetries);
1710           Locks::thread_list_lock_->ExclusiveLock(self);
1711           if (target_status.HasExited()) {
1712             Locks::thread_list_lock_->ExclusiveUnlock(self);
1713             DCheckUnregisteredEverywhere(&target_status, &target_status);
1714             return false;
1715           }
1716           Locks::thread_suspend_count_lock_->ExclusiveLock(self);
1717         }
1718         UnregisterThreadExitFlag(&target_status);
1719       }
1720       IncrementSuspendCount(self, nullptr, &wrapped_barrier, SuspendReason::kInternal);
1721       VerifyState();
1722       DCHECK_GT(GetSuspendCount(), 0);
1723       if (wait_state != ThreadState::kRunnable) {
1724         DCHECK_EQ(self->GetSuspendCount(), 0);
1725       }
1726       // Since we've incremented the suspend count, "this" thread can no longer disappear.
1727       Locks::thread_list_lock_->ExclusiveUnlock(self);
1728       if (IsSuspended()) {
1729         // See the discussion in mutator_gc_coord.md and SuspendAllInternal for the race here.
1730         RemoveFirstSuspend1Barrier(&wrapped_barrier);
1731         if (!HasActiveSuspendBarrier()) {
1732           AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier);
1733         }
1734         is_suspended = true;
1735       }
1736     }
1737     if (!is_suspended) {
1738       // This waits while holding the mutator lock. Effectively `self` becomes
1739       // impossible to suspend until `this` responds to the suspend request.
1740       // Arguably that's not making anything qualitatively worse.
1741       bool success = !Runtime::Current()
1742                           ->GetThreadList()
1743                           ->WaitForSuspendBarrier(&wrapped_barrier.barrier_)
1744                           .has_value();
1745       CHECK(success);
1746     }
1747 
1748     // Ensure that the flip function for this thread, if pending, is finished *before*
1749     // the checkpoint function is run. Otherwise, we may end up with both `to' and 'from'
1750     // space references on the stack, confusing the GC's thread-flip logic. The caller is
1751     // runnable so can't have a pending flip function.
1752     DCHECK_EQ(self->GetState(), ThreadState::kRunnable);
1753     DCHECK(IsSuspended());
1754     DCHECK(!self->GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags()));
1755     EnsureFlipFunctionStarted(self, this);
1756     // Since we're runnable, and kPendingFlipFunction is set with all threads suspended, it
1757     // cannot be set again here. Thus kRunningFlipFunction is either already set after the
1758     // EnsureFlipFunctionStarted call, or will not be set before we call Run().
1759     if (ReadFlag(ThreadFlag::kRunningFlipFunction)) {
1760       WaitForFlipFunction(self);
1761     }
1762     function->Run(this);
1763   }
1764 
1765   {
1766     MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1767     DCHECK_NE(GetState(), ThreadState::kRunnable);
1768     DCHECK_GT(GetSuspendCount(), 0);
1769     DecrementSuspendCount(self);
1770     if (kIsDebugBuild) {
1771       CheckBarrierInactive(&wrapped_barrier);
1772     }
1773     resume_cond_->Broadcast(self);
1774   }
1775 
1776   Locks::thread_list_lock_->AssertNotHeld(self);
1777   return true;
1778 }
1779 
SetFlipFunction(Closure * function)1780 void Thread::SetFlipFunction(Closure* function) {
1781   // This is called with all threads suspended, except for the calling thread.
1782   DCHECK(IsSuspended() || Thread::Current() == this);
1783   DCHECK(function != nullptr);
1784   DCHECK(GetFlipFunction() == nullptr);
1785   tlsPtr_.flip_function.store(function, std::memory_order_relaxed);
1786   DCHECK(!GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags()));
1787   AtomicSetFlag(ThreadFlag::kPendingFlipFunction, std::memory_order_release);
1788 }
1789 
EnsureFlipFunctionStarted(Thread * self,Thread * target,StateAndFlags old_state_and_flags,ThreadExitFlag * tef,bool * finished)1790 bool Thread::EnsureFlipFunctionStarted(Thread* self,
1791                                        Thread* target,
1792                                        StateAndFlags old_state_and_flags,
1793                                        ThreadExitFlag* tef,
1794                                        bool* finished) {
1795   //  Note: If tef is non-null, *target may have been destroyed. We have to be careful about
1796   //  accessing it. That is the reason this is static and not a member function.
1797   DCHECK(self == Current());
1798   bool check_exited = (tef != nullptr);
1799   // Check that the thread can't unexpectedly exit while we are running.
1800   DCHECK(self == target || check_exited || target->ReadFlag(ThreadFlag::kSuspendRequest) ||
1801          Locks::thread_list_lock_->IsExclusiveHeld(self))
1802       << *target;
1803   bool become_runnable;
1804   auto maybe_release = [=]() NO_THREAD_SAFETY_ANALYSIS /* conditionally unlocks */ {
1805     if (check_exited) {
1806       Locks::thread_list_lock_->Unlock(self);
1807     }
1808   };
1809   auto set_finished = [=](bool value) {
1810     if (finished != nullptr) {
1811       *finished = value;
1812     }
1813   };
1814 
1815   if (check_exited) {
1816     Locks::thread_list_lock_->Lock(self);
1817     if (tef->HasExited()) {
1818       Locks::thread_list_lock_->Unlock(self);
1819       set_finished(true);
1820       return false;
1821     }
1822   }
1823   target->VerifyState();
1824   if (old_state_and_flags.GetValue() == 0) {
1825     become_runnable = false;
1826     old_state_and_flags = target->GetStateAndFlags(std::memory_order_relaxed);
1827   } else {
1828     become_runnable = true;
1829     DCHECK(!check_exited);
1830     DCHECK(target == self);
1831     DCHECK(old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction));
1832     DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest));
1833   }
1834   while (true) {
1835     DCHECK(!check_exited || (Locks::thread_list_lock_->IsExclusiveHeld(self) && !tef->HasExited()));
1836     if (!old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)) {
1837       maybe_release();
1838       set_finished(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction));
1839       return false;
1840     }
1841     DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction));
1842     StateAndFlags new_state_and_flags =
1843         old_state_and_flags.WithFlag(ThreadFlag::kRunningFlipFunction)
1844                            .WithoutFlag(ThreadFlag::kPendingFlipFunction);
1845     if (become_runnable) {
1846       DCHECK_EQ(self, target);
1847       DCHECK_NE(self->GetState(), ThreadState::kRunnable);
1848       new_state_and_flags = new_state_and_flags.WithState(ThreadState::kRunnable);
1849     }
1850     if (target->tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(),
1851                                                                 new_state_and_flags.GetValue())) {
1852       if (become_runnable) {
1853         self->GetMutatorLock()->TransitionFromSuspendedToRunnable(self);
1854       }
1855       art::Locks::mutator_lock_->AssertSharedHeld(self);
1856       maybe_release();
1857       // Thread will not go away while kRunningFlipFunction is set.
1858       target->RunFlipFunction(self);
1859       // At this point, no flip function flags should be set. It's unsafe to DCHECK that, since
1860       // the thread may now have exited.
1861       set_finished(true);
1862       return become_runnable;
1863     }
1864     if (become_runnable) {
1865       DCHECK(!check_exited);  // We didn't acquire thread_list_lock_ .
1866       // Let caller retry.
1867       return false;
1868     }
1869     old_state_and_flags = target->GetStateAndFlags(std::memory_order_acquire);
1870   }
1871   // Unreachable.
1872 }
1873 
RunFlipFunction(Thread * self)1874 void Thread::RunFlipFunction(Thread* self) {
1875   // This function is called either by the thread running `ThreadList::FlipThreadRoots()` or when
1876   // a thread becomes runnable, after we've successfully set the kRunningFlipFunction ThreadFlag.
1877   DCHECK(ReadFlag(ThreadFlag::kRunningFlipFunction));
1878 
1879   Closure* flip_function = GetFlipFunction();
1880   tlsPtr_.flip_function.store(nullptr, std::memory_order_relaxed);
1881   DCHECK(flip_function != nullptr);
1882   VerifyState();
1883   flip_function->Run(this);
1884   DCHECK(!ReadFlag(ThreadFlag::kPendingFlipFunction));
1885   VerifyState();
1886   AtomicClearFlag(ThreadFlag::kRunningFlipFunction, std::memory_order_release);
1887   // From here on this thread may go away, and it is no longer safe to access.
1888 
1889   // Notify all threads that are waiting for completion.
1890   // TODO: Should we create a separate mutex and condition variable instead
1891   // of piggy-backing on the `thread_suspend_count_lock_` and `resume_cond_`?
1892   MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1893   resume_cond_->Broadcast(self);
1894 }
1895 
WaitForFlipFunction(Thread * self) const1896 void Thread::WaitForFlipFunction(Thread* self) const {
1897   // Another thread is running the flip function. Wait for it to complete.
1898   // Check the flag while holding the mutex so that we do not miss the broadcast.
1899   // Repeat the check after waiting to guard against spurious wakeups (and because
1900   // we share the `thread_suspend_count_lock_` and `resume_cond_` with other code).
1901   // Check that the thread can't unexpectedly exit while we are running.
1902   DCHECK(self == this || ReadFlag(ThreadFlag::kSuspendRequest) ||
1903          Locks::thread_list_lock_->IsExclusiveHeld(self));
1904   MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1905   while (true) {
1906     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_acquire);
1907     if (!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) {
1908       return;
1909     }
1910     // We sometimes hold mutator lock here. OK since the flip function must complete quickly.
1911     resume_cond_->WaitHoldingLocks(self);
1912   }
1913 }
1914 
WaitForFlipFunctionTestingExited(Thread * self,ThreadExitFlag * tef)1915 void Thread::WaitForFlipFunctionTestingExited(Thread* self, ThreadExitFlag* tef) {
1916   Locks::thread_list_lock_->Lock(self);
1917   if (tef->HasExited()) {
1918     Locks::thread_list_lock_->Unlock(self);
1919     return;
1920   }
1921   // We need to hold suspend_count_lock_ to avoid missed wakeups when the flip function finishes.
1922   // We need to hold thread_list_lock_ because the tef test result is only valid while we hold the
1923   // lock, and once kRunningFlipFunction is no longer set, "this" may be deallocated. Hence the
1924   // complicated locking dance.
1925   MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1926   while (true) {
1927     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_acquire);
1928     Locks::thread_list_lock_->Unlock(self);  // So we can wait or return.
1929     if (!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) {
1930       return;
1931     }
1932     resume_cond_->WaitHoldingLocks(self);
1933     Locks::thread_suspend_count_lock_->Unlock(self);  // To re-lock thread_list_lock.
1934     Locks::thread_list_lock_->Lock(self);
1935     Locks::thread_suspend_count_lock_->Lock(self);
1936     if (tef->HasExited()) {
1937       Locks::thread_list_lock_->Unlock(self);
1938       return;
1939     }
1940   }
1941 }
1942 
FullSuspendCheck(bool implicit)1943 void Thread::FullSuspendCheck(bool implicit) {
1944   ScopedTrace trace(__FUNCTION__);
1945   DCHECK(!ReadFlag(ThreadFlag::kSuspensionImmune));
1946   DCHECK(this == Thread::Current());
1947   VLOG(threads) << this << " self-suspending";
1948   // Make thread appear suspended to other threads, release mutator_lock_.
1949   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1950   ScopedThreadSuspension(this, ThreadState::kSuspended);  // NOLINT
1951   if (implicit) {
1952     // For implicit suspend check we want to `madvise()` away
1953     // the alternate signal stack to avoid wasting memory.
1954     MadviseAwayAlternateSignalStack();
1955   }
1956   VLOG(threads) << this << " self-reviving";
1957 }
1958 
GetSchedulerGroupName(pid_t tid)1959 static std::string GetSchedulerGroupName(pid_t tid) {
1960   // /proc/<pid>/cgroup looks like this:
1961   // 2:devices:/
1962   // 1:cpuacct,cpu:/
1963   // We want the third field from the line whose second field contains the "cpu" token.
1964   std::string cgroup_file;
1965   if (!android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid),
1966                                        &cgroup_file)) {
1967     return "";
1968   }
1969   std::vector<std::string> cgroup_lines;
1970   Split(cgroup_file, '\n', &cgroup_lines);
1971   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1972     std::vector<std::string> cgroup_fields;
1973     Split(cgroup_lines[i], ':', &cgroup_fields);
1974     std::vector<std::string> cgroups;
1975     Split(cgroup_fields[1], ',', &cgroups);
1976     for (size_t j = 0; j < cgroups.size(); ++j) {
1977       if (cgroups[j] == "cpu") {
1978         return cgroup_fields[2].substr(1);  // Skip the leading slash.
1979       }
1980     }
1981   }
1982   return "";
1983 }
1984 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1985 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1986   std::string group_name;
1987   int priority;
1988   bool is_daemon = false;
1989   Thread* self = Thread::Current();
1990 
1991   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1992   // cause ScopedObjectAccessUnchecked to deadlock.
1993   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1994     ScopedObjectAccessUnchecked soa(self);
1995     priority = WellKnownClasses::java_lang_Thread_priority->GetInt(thread->tlsPtr_.opeer);
1996     is_daemon = WellKnownClasses::java_lang_Thread_daemon->GetBoolean(thread->tlsPtr_.opeer);
1997 
1998     ObjPtr<mirror::Object> thread_group =
1999         WellKnownClasses::java_lang_Thread_group->GetObject(thread->tlsPtr_.opeer);
2000 
2001     if (thread_group != nullptr) {
2002       ObjPtr<mirror::Object> group_name_object =
2003           WellKnownClasses::java_lang_ThreadGroup_name->GetObject(thread_group);
2004       group_name = (group_name_object != nullptr)
2005           ? group_name_object->AsString()->ToModifiedUtf8()
2006           : "<null>";
2007     }
2008   } else if (thread != nullptr) {
2009     priority = thread->GetNativePriority();
2010   } else {
2011     palette_status_t status = PaletteSchedGetPriority(tid, &priority);
2012     CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
2013   }
2014 
2015   std::string scheduler_group_name(GetSchedulerGroupName(tid));
2016   if (scheduler_group_name.empty()) {
2017     scheduler_group_name = "default";
2018   }
2019 
2020   if (thread != nullptr) {
2021     thread->tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst);
2022     os << '"' << thread->tlsPtr_.name.load() << '"';
2023     thread->tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */);
2024     if (is_daemon) {
2025       os << " daemon";
2026     }
2027     os << " prio=" << priority
2028        << " tid=" << thread->GetThreadId()
2029        << " " << thread->GetState();
2030     if (thread->IsStillStarting()) {
2031       os << " (still starting up)";
2032     }
2033     if (thread->tls32_.disable_thread_flip_count != 0) {
2034       os << " DisableFlipCount = " << thread->tls32_.disable_thread_flip_count;
2035     }
2036     os << "\n";
2037   } else {
2038     os << '"' << ::art::GetThreadName(tid) << '"'
2039        << " prio=" << priority
2040        << " (not attached)\n";
2041   }
2042 
2043   if (thread != nullptr) {
2044     auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) {
2045       StateAndFlags state_and_flags = thread->GetStateAndFlags(std::memory_order_relaxed);
2046       static_assert(
2047           static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u);
2048       state_and_flags.SetState(ThreadState::kRunnable);  // Clear state bits.
2049       os << "  | group=\"" << group_name << "\""
2050          << " sCount=" << thread->tls32_.suspend_count
2051          << " ucsCount=" << thread->tls32_.user_code_suspend_count
2052          << " flags=" << state_and_flags.GetValue()
2053          << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
2054          << " self=" << reinterpret_cast<const void*>(thread) << "\n";
2055     };
2056     if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) {
2057       Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self);  // For annotalysis.
2058       suspend_log_fn();
2059     } else {
2060       MutexLock mu(self, *Locks::thread_suspend_count_lock_);
2061       suspend_log_fn();
2062     }
2063   }
2064 
2065   os << "  | sysTid=" << tid
2066      << " nice=" << getpriority(PRIO_PROCESS, static_cast<id_t>(tid))
2067      << " cgrp=" << scheduler_group_name;
2068   if (thread != nullptr) {
2069     int policy;
2070     sched_param sp;
2071 #if !defined(__APPLE__)
2072     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
2073     policy = sched_getscheduler(tid);
2074     if (policy == -1) {
2075       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
2076     }
2077     int sched_getparam_result = sched_getparam(tid, &sp);
2078     if (sched_getparam_result == -1) {
2079       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
2080       sp.sched_priority = -1;
2081     }
2082 #else
2083     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
2084                        __FUNCTION__);
2085 #endif
2086     os << " sched=" << policy << "/" << sp.sched_priority
2087        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
2088   }
2089   os << "\n";
2090 
2091   // Grab the scheduler stats for this thread.
2092   std::string scheduler_stats;
2093   if (android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid),
2094                                       &scheduler_stats)
2095       && !scheduler_stats.empty()) {
2096     scheduler_stats = android::base::Trim(scheduler_stats);  // Lose the trailing '\n'.
2097   } else {
2098     scheduler_stats = "0 0 0";
2099   }
2100 
2101   char native_thread_state = '?';
2102   int utime = 0;
2103   int stime = 0;
2104   int task_cpu = 0;
2105   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
2106 
2107   os << "  | state=" << native_thread_state
2108      << " schedstat=( " << scheduler_stats << " )"
2109      << " utm=" << utime
2110      << " stm=" << stime
2111      << " core=" << task_cpu
2112      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
2113   if (thread != nullptr) {
2114     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
2115         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
2116         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
2117     // Dump the held mutexes.
2118     os << "  | held mutexes=";
2119     for (size_t i = 0; i < kLockLevelCount; ++i) {
2120       if (i != kMonitorLock) {
2121         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
2122         if (mutex != nullptr) {
2123           os << " \"" << mutex->GetName() << "\"";
2124           if (mutex->IsReaderWriterMutex()) {
2125             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
2126             if (rw_mutex->GetExclusiveOwnerTid() == tid) {
2127               os << "(exclusive held)";
2128             } else {
2129               os << "(shared held)";
2130             }
2131           }
2132         }
2133       }
2134     }
2135     os << "\n";
2136   }
2137 }
2138 
DumpState(std::ostream & os) const2139 void Thread::DumpState(std::ostream& os) const {
2140   Thread::DumpState(os, this, GetTid());
2141 }
2142 
2143 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
StackDumpVisitorart::StackDumpVisitor2144   StackDumpVisitor(std::ostream& os_in,
2145                    Thread* thread_in,
2146                    Context* context,
2147                    bool can_allocate,
2148                    bool check_suspended = true,
2149                    bool dump_locks = true)
2150       REQUIRES_SHARED(Locks::mutator_lock_)
2151       : MonitorObjectsStackVisitor(thread_in,
2152                                    context,
2153                                    check_suspended,
2154                                    can_allocate && dump_locks),
2155         os(os_in),
2156         last_method(nullptr),
2157         last_line_number(0),
2158         repetition_count(0) {}
2159 
~StackDumpVisitorart::StackDumpVisitor2160   virtual ~StackDumpVisitor() {
2161     if (frame_count == 0) {
2162       os << "  (no managed stack frames)\n";
2163     }
2164   }
2165 
2166   static constexpr size_t kMaxRepetition = 3u;
2167 
StartMethodart::StackDumpVisitor2168   VisitMethodResult StartMethod(ArtMethod* m, [[maybe_unused]] size_t frame_nr) override
2169       REQUIRES_SHARED(Locks::mutator_lock_) {
2170     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
2171     ObjPtr<mirror::DexCache> dex_cache = m->GetDexCache();
2172     int line_number = -1;
2173     uint32_t dex_pc = GetDexPc(false);
2174     if (dex_cache != nullptr) {  // be tolerant of bad input
2175       const DexFile* dex_file = dex_cache->GetDexFile();
2176       line_number = annotations::GetLineNumFromPC(dex_file, m, dex_pc);
2177     }
2178     if (line_number == last_line_number && last_method == m) {
2179       ++repetition_count;
2180     } else {
2181       if (repetition_count >= kMaxRepetition) {
2182         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
2183       }
2184       repetition_count = 0;
2185       last_line_number = line_number;
2186       last_method = m;
2187     }
2188 
2189     if (repetition_count >= kMaxRepetition) {
2190       // Skip visiting=printing anything.
2191       return VisitMethodResult::kSkipMethod;
2192     }
2193 
2194     os << "  at " << m->PrettyMethod(false);
2195     if (m->IsNative()) {
2196       os << "(Native method)";
2197     } else {
2198       const char* source_file(m->GetDeclaringClassSourceFile());
2199       if (line_number == -1) {
2200         // If we failed to map to a line number, use
2201         // the dex pc as the line number and leave source file null
2202         source_file = nullptr;
2203         line_number = static_cast<int32_t>(dex_pc);
2204       }
2205       os << "(" << (source_file != nullptr ? source_file : "unavailable")
2206                        << ":" << line_number << ")";
2207     }
2208     os << "\n";
2209     // Go and visit locks.
2210     return VisitMethodResult::kContinueMethod;
2211   }
2212 
EndMethodart::StackDumpVisitor2213   VisitMethodResult EndMethod([[maybe_unused]] ArtMethod* m) override {
2214     return VisitMethodResult::kContinueMethod;
2215   }
2216 
VisitWaitingObjectart::StackDumpVisitor2217   void VisitWaitingObject(ObjPtr<mirror::Object> obj, [[maybe_unused]] ThreadState state) override
2218       REQUIRES_SHARED(Locks::mutator_lock_) {
2219     PrintObject(obj, "  - waiting on ", ThreadList::kInvalidThreadId);
2220   }
VisitSleepingObjectart::StackDumpVisitor2221   void VisitSleepingObject(ObjPtr<mirror::Object> obj)
2222       override
2223       REQUIRES_SHARED(Locks::mutator_lock_) {
2224     PrintObject(obj, "  - sleeping on ", ThreadList::kInvalidThreadId);
2225   }
VisitBlockedOnObjectart::StackDumpVisitor2226   void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
2227                             ThreadState state,
2228                             uint32_t owner_tid)
2229       override
2230       REQUIRES_SHARED(Locks::mutator_lock_) {
2231     const char* msg;
2232     switch (state) {
2233       case ThreadState::kBlocked:
2234         msg = "  - waiting to lock ";
2235         break;
2236 
2237       case ThreadState::kWaitingForLockInflation:
2238         msg = "  - waiting for lock inflation of ";
2239         break;
2240 
2241       default:
2242         LOG(FATAL) << "Unreachable";
2243         UNREACHABLE();
2244     }
2245     PrintObject(obj, msg, owner_tid);
2246     num_blocked++;
2247   }
VisitLockedObjectart::StackDumpVisitor2248   void VisitLockedObject(ObjPtr<mirror::Object> obj)
2249       override
2250       REQUIRES_SHARED(Locks::mutator_lock_) {
2251     PrintObject(obj, "  - locked ", ThreadList::kInvalidThreadId);
2252     num_locked++;
2253   }
2254 
PrintObjectart::StackDumpVisitor2255   void PrintObject(ObjPtr<mirror::Object> obj,
2256                    const char* msg,
2257                    uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
2258     if (obj == nullptr) {
2259       os << msg << "an unknown object";
2260     } else {
2261       const std::string pretty_type(obj->PrettyTypeOf());
2262       // It's often unsafe to allow lock inflation here. We may be the only runnable thread, or
2263       // this may be called from a checkpoint. We get the hashcode on a best effort basis.
2264       static constexpr int kNumRetries = 3;
2265       static constexpr int kSleepMicros = 10;
2266       int32_t hash_code;
2267       for (int i = 0;; ++i) {
2268         hash_code = obj->IdentityHashCodeNoInflation();
2269         if (hash_code != 0 || i == kNumRetries) {
2270           break;
2271         }
2272         usleep(kSleepMicros);
2273       }
2274       if (hash_code == 0) {
2275         os << msg
2276            << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
2277                            reinterpret_cast<intptr_t>(obj.Ptr()),
2278                            pretty_type.c_str());
2279       } else {
2280         // - waiting on <0x608c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
2281         os << msg << StringPrintf("<0x%08x> (a %s)", hash_code, pretty_type.c_str());
2282       }
2283     }
2284     if (owner_tid != ThreadList::kInvalidThreadId) {
2285       os << " held by thread " << owner_tid;
2286     }
2287     os << "\n";
2288   }
2289 
2290   std::ostream& os;
2291   ArtMethod* last_method;
2292   int last_line_number;
2293   size_t repetition_count;
2294   size_t num_blocked = 0;
2295   size_t num_locked = 0;
2296 };
2297 
ShouldShowNativeStack(const Thread * thread)2298 static bool ShouldShowNativeStack(const Thread* thread)
2299     REQUIRES_SHARED(Locks::mutator_lock_) {
2300   ThreadState state = thread->GetState();
2301 
2302   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
2303   if (state > ThreadState::kWaiting && state < ThreadState::kStarting) {
2304     return true;
2305   }
2306 
2307   // In an Object.wait variant or Thread.sleep? That's not interesting.
2308   if (state == ThreadState::kTimedWaiting ||
2309       state == ThreadState::kSleeping ||
2310       state == ThreadState::kWaiting) {
2311     return false;
2312   }
2313 
2314   // Threads with no managed stack frames should be shown.
2315   if (!thread->HasManagedStack()) {
2316     return true;
2317   }
2318 
2319   // In some other native method? That's interesting.
2320   // We don't just check kNative because native methods will be in state kSuspended if they're
2321   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
2322   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
2323   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
2324   return current_method != nullptr && current_method->IsNative();
2325 }
2326 
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const2327 Thread::DumpOrder Thread::DumpJavaStack(std::ostream& os,
2328                                         bool check_suspended,
2329                                         bool dump_locks) const {
2330   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
2331   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
2332   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
2333   // thread.
2334   ScopedExceptionStorage ses(Thread::Current());
2335 
2336   std::unique_ptr<Context> context(Context::Create());
2337   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
2338                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
2339   dumper.WalkStack();
2340   if (IsJitSensitiveThread()) {
2341     return DumpOrder::kMain;
2342   } else if (dumper.num_blocked > 0) {
2343     return DumpOrder::kBlocked;
2344   } else if (dumper.num_locked > 0) {
2345     return DumpOrder::kLocked;
2346   } else {
2347     return DumpOrder::kDefault;
2348   }
2349 }
2350 
DumpStack(std::ostream & os,bool dump_native_stack,bool force_dump_stack) const2351 Thread::DumpOrder Thread::DumpStack(std::ostream& os,
2352                                     bool dump_native_stack,
2353                                     bool force_dump_stack) const {
2354   unwindstack::AndroidLocalUnwinder unwinder;
2355   return DumpStack(os, unwinder, dump_native_stack, force_dump_stack);
2356 }
2357 
DumpStack(std::ostream & os,unwindstack::AndroidLocalUnwinder & unwinder,bool dump_native_stack,bool force_dump_stack) const2358 Thread::DumpOrder Thread::DumpStack(std::ostream& os,
2359                                     unwindstack::AndroidLocalUnwinder& unwinder,
2360                                     bool dump_native_stack,
2361                                     bool force_dump_stack) const {
2362   // TODO: we call this code when dying but may not have suspended the thread ourself. The
2363   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
2364   //       the race with the thread_suspend_count_lock_).
2365   bool dump_for_abort = (gAborting > 0);
2366   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
2367   if (!kIsDebugBuild) {
2368     // We always want to dump the stack for an abort, however, there is no point dumping another
2369     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
2370     safe_to_dump = (safe_to_dump || dump_for_abort);
2371   }
2372   DumpOrder dump_order = DumpOrder::kDefault;
2373   if (safe_to_dump || force_dump_stack) {
2374     uint64_t nanotime = NanoTime();
2375     // If we're currently in native code, dump that stack before dumping the managed stack.
2376     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
2377       ArtMethod* method =
2378           GetCurrentMethod(nullptr,
2379                            /*check_suspended=*/ !force_dump_stack,
2380                            /*abort_on_error=*/ !(dump_for_abort || force_dump_stack));
2381       DumpNativeStack(os, unwinder, GetTid(), "  native: ", method);
2382     }
2383     dump_order = DumpJavaStack(os,
2384                                /*check_suspended=*/ !force_dump_stack,
2385                                /*dump_locks=*/ !force_dump_stack);
2386     Runtime* runtime = Runtime::Current();
2387     std::optional<uint64_t> start = runtime != nullptr ? runtime->SiqQuitNanoTime() : std::nullopt;
2388     if (start.has_value()) {
2389       os << "DumpLatencyMs: " << static_cast<float>(nanotime - start.value()) / 1000000.0 << "\n";
2390     }
2391   } else {
2392     os << "Not able to dump stack of thread that isn't suspended";
2393   }
2394   return dump_order;
2395 }
2396 
ThreadExitCallback(void * arg)2397 void Thread::ThreadExitCallback(void* arg) {
2398   Thread* self = reinterpret_cast<Thread*>(arg);
2399   if (self->tls32_.thread_exit_check_count == 0) {
2400     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2401         "going to use a pthread_key_create destructor?): " << *self;
2402     CHECK(is_started_);
2403 #ifdef __BIONIC__
2404     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2405 #else
2406     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2407     Thread::self_tls_ = self;
2408 #endif
2409     self->tls32_.thread_exit_check_count = 1;
2410   } else {
2411     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2412   }
2413 }
2414 
Startup()2415 void Thread::Startup() {
2416   CHECK(!is_started_);
2417   is_started_ = true;
2418   {
2419     // MutexLock to keep annotalysis happy.
2420     //
2421     // Note we use null for the thread because Thread::Current can
2422     // return garbage since (is_started_ == true) and
2423     // Thread::pthread_key_self_ is not yet initialized.
2424     // This was seen on glibc.
2425     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2426     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2427                                          *Locks::thread_suspend_count_lock_);
2428   }
2429 
2430   // Allocate a TLS slot.
2431   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2432                      "self key");
2433 
2434   // Double-check the TLS slot allocation.
2435   if (pthread_getspecific(pthread_key_self_) != nullptr) {
2436     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2437   }
2438 #ifndef __BIONIC__
2439   CHECK(Thread::self_tls_ == nullptr);
2440 #endif
2441 }
2442 
FinishStartup()2443 void Thread::FinishStartup() {
2444   Runtime* runtime = Runtime::Current();
2445   CHECK(runtime->IsStarted());
2446 
2447   // Finish attaching the main thread.
2448   ScopedObjectAccess soa(Thread::Current());
2449   soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2450   soa.Self()->AssertNoPendingException();
2451 
2452   runtime->RunRootClinits(soa.Self());
2453 
2454   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2455   // threads, this is done in Thread.start() on the Java side.
2456   soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2457   soa.Self()->AssertNoPendingException();
2458 }
2459 
Shutdown()2460 void Thread::Shutdown() {
2461   CHECK(is_started_);
2462   is_started_ = false;
2463   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2464   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2465   if (resume_cond_ != nullptr) {
2466     delete resume_cond_;
2467     resume_cond_ = nullptr;
2468   }
2469 }
2470 
NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable & soa,jobject thread_group)2471 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2472   ObjPtr<mirror::Object> thread_object = soa.Self()->GetPeer();
2473   ObjPtr<mirror::Object> thread_group_object = soa.Decode<mirror::Object>(thread_group);
2474   if (thread_group == nullptr || kIsDebugBuild) {
2475     // There is always a group set. Retrieve it.
2476     thread_group_object = WellKnownClasses::java_lang_Thread_group->GetObject(thread_object);
2477     if (kIsDebugBuild && thread_group != nullptr) {
2478       CHECK(thread_group_object == soa.Decode<mirror::Object>(thread_group));
2479     }
2480   }
2481   WellKnownClasses::java_lang_ThreadGroup_add->InvokeVirtual<'V', 'L'>(
2482       soa.Self(), thread_group_object, thread_object);
2483 }
2484 
SignalExitFlags()2485 void Thread::SignalExitFlags() {
2486   ThreadExitFlag* next;
2487   for (ThreadExitFlag* tef = tlsPtr_.thread_exit_flags; tef != nullptr; tef = next) {
2488     DCHECK(!tef->exited_);
2489     tef->exited_ = true;
2490     next = tef->next_;
2491     if (kIsDebugBuild) {
2492       ThreadExitFlag* const garbage_tef = reinterpret_cast<ThreadExitFlag*>(1);
2493       // Link fields should no longer be used.
2494       tef->prev_ = tef->next_ = garbage_tef;
2495     }
2496   }
2497   tlsPtr_.thread_exit_flags = nullptr;  // Now unused.
2498 }
2499 
Thread(bool daemon)2500 Thread::Thread(bool daemon)
2501     : tls32_(daemon),
2502       wait_monitor_(nullptr),
2503       is_runtime_thread_(false) {
2504   wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock);
2505   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2506   tlsPtr_.mutator_lock = Locks::mutator_lock_;
2507   DCHECK(tlsPtr_.mutator_lock != nullptr);
2508   tlsPtr_.name.store(kThreadNameDuringStartup, std::memory_order_relaxed);
2509   CHECK_NE(GetStackOverflowProtectedSize(), 0u);
2510 
2511   static_assert((sizeof(Thread) % 4) == 0U,
2512                 "art::Thread has a size which is not a multiple of 4.");
2513   DCHECK_EQ(GetStateAndFlags(std::memory_order_relaxed).GetValue(), 0u);
2514   StateAndFlags state_and_flags = StateAndFlags(0u).WithState(ThreadState::kNative);
2515   tls32_.state_and_flags.store(state_and_flags.GetValue(), std::memory_order_relaxed);
2516   tls32_.interrupted.store(false, std::memory_order_relaxed);
2517   // Initialize with no permit; if the java Thread was unparked before being
2518   // started, it will unpark itself before calling into java code.
2519   tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
2520   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2521   std::fill(tlsPtr_.rosalloc_runs,
2522             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2523             gc::allocator::RosAlloc::GetDedicatedFullRun());
2524   tlsPtr_.checkpoint_function = nullptr;
2525   tlsPtr_.active_suspendall_barrier = nullptr;
2526   tlsPtr_.active_suspend1_barriers = nullptr;
2527   tlsPtr_.flip_function.store(nullptr, std::memory_order_relaxed);
2528   tlsPtr_.thread_local_mark_stack = nullptr;
2529   ResetTlab();
2530 }
2531 
CanLoadClasses() const2532 bool Thread::CanLoadClasses() const {
2533   return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable();
2534 }
2535 
IsStillStarting() const2536 bool Thread::IsStillStarting() const {
2537   // You might think you can check whether the state is kStarting, but for much of thread startup,
2538   // the thread is in kNative; it might also be in kVmWait.
2539   // You might think you can check whether the peer is null, but the peer is actually created and
2540   // assigned fairly early on, and needs to be.
2541   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2542   // this thread _ever_ entered kRunnable".
2543   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2544       (tlsPtr_.name.load() == kThreadNameDuringStartup);
2545 }
2546 
AssertPendingException() const2547 void Thread::AssertPendingException() const {
2548   CHECK(IsExceptionPending()) << "Pending exception expected.";
2549 }
2550 
AssertPendingOOMException() const2551 void Thread::AssertPendingOOMException() const {
2552   AssertPendingException();
2553   auto* e = GetException();
2554   CHECK_EQ(e->GetClass(), WellKnownClasses::java_lang_OutOfMemoryError.Get()) << e->Dump();
2555 }
2556 
AssertNoPendingException() const2557 void Thread::AssertNoPendingException() const {
2558   if (UNLIKELY(IsExceptionPending())) {
2559     ScopedObjectAccess soa(Thread::Current());
2560     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2561   }
2562 }
2563 
AssertNoPendingExceptionForNewException(const char * msg) const2564 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2565   if (UNLIKELY(IsExceptionPending())) {
2566     ScopedObjectAccess soa(Thread::Current());
2567     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2568         << GetException()->Dump();
2569   }
2570 }
2571 
2572 class MonitorExitVisitor : public SingleRootVisitor {
2573  public:
MonitorExitVisitor(Thread * self)2574   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2575 
2576   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info)2577   void VisitRoot(mirror::Object* entered_monitor,
2578                  [[maybe_unused]] const RootInfo& info) override NO_THREAD_SAFETY_ANALYSIS {
2579     if (self_->HoldsLock(entered_monitor)) {
2580       LOG(WARNING) << "Calling MonitorExit on object "
2581                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2582                    << " left locked by native thread "
2583                    << *Thread::Current() << " which is detaching";
2584       entered_monitor->MonitorExit(self_);
2585     }
2586   }
2587 
2588  private:
2589   Thread* const self_;
2590 };
2591 
Destroy(bool should_run_callbacks)2592 void Thread::Destroy(bool should_run_callbacks) {
2593   Thread* self = this;
2594   DCHECK_EQ(self, Thread::Current());
2595 
2596   if (tlsPtr_.jni_env != nullptr) {
2597     {
2598       ScopedObjectAccess soa(self);
2599       MonitorExitVisitor visitor(self);
2600       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2601       tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2602     }
2603     // Release locally held global references which releasing may require the mutator lock.
2604     if (tlsPtr_.jpeer != nullptr) {
2605       // If pthread_create fails we don't have a jni env here.
2606       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2607       tlsPtr_.jpeer = nullptr;
2608     }
2609     if (tlsPtr_.class_loader_override != nullptr) {
2610       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2611       tlsPtr_.class_loader_override = nullptr;
2612     }
2613   }
2614 
2615   if (tlsPtr_.opeer != nullptr) {
2616     ScopedObjectAccess soa(self);
2617     // We may need to call user-supplied managed code, do this before final clean-up.
2618     HandleUncaughtExceptions();
2619     RemoveFromThreadGroup();
2620     Runtime* runtime = Runtime::Current();
2621     if (runtime != nullptr && should_run_callbacks) {
2622       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2623     }
2624 
2625     // this.nativePeer = 0;
2626     SetNativePeer</*kSupportTransaction=*/ true>(tlsPtr_.opeer, nullptr);
2627 
2628     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2629     // who is waiting.
2630     ObjPtr<mirror::Object> lock =
2631         WellKnownClasses::java_lang_Thread_lock->GetObject(tlsPtr_.opeer);
2632     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2633     if (lock != nullptr) {
2634       StackHandleScope<1> hs(self);
2635       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2636       ObjectLock<mirror::Object> locker(self, h_obj);
2637       locker.NotifyAll();
2638     }
2639 
2640     tlsPtr_.opeer = nullptr;
2641   }
2642 
2643   {
2644     ScopedObjectAccess soa(self);
2645     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2646 
2647     if (UNLIKELY(self->GetMethodTraceBuffer() != nullptr)) {
2648       Trace::FlushThreadBuffer(self);
2649     }
2650   }
2651   // Mark-stack revocation must be performed at the very end. No
2652   // checkpoint/flip-function or read-barrier should be called after this.
2653   if (gUseReadBarrier) {
2654     Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2655   }
2656 }
2657 
~Thread()2658 Thread::~Thread() {
2659   CHECK(tlsPtr_.class_loader_override == nullptr);
2660   CHECK(tlsPtr_.jpeer == nullptr);
2661   CHECK(tlsPtr_.opeer == nullptr);
2662   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
2663   if (initialized) {
2664     delete tlsPtr_.jni_env;
2665     tlsPtr_.jni_env = nullptr;
2666   }
2667   CHECK_NE(GetState(), ThreadState::kRunnable);
2668   CHECK(!ReadFlag(ThreadFlag::kCheckpointRequest));
2669   CHECK(!ReadFlag(ThreadFlag::kEmptyCheckpointRequest));
2670   CHECK(!ReadFlag(ThreadFlag::kSuspensionImmune));
2671   CHECK(tlsPtr_.checkpoint_function == nullptr);
2672   CHECK_EQ(checkpoint_overflow_.size(), 0u);
2673   // A pending flip function request is OK. FlipThreadRoots will have been notified that we
2674   // exited, and nobody will attempt to process the request.
2675 
2676   // Make sure we processed all deoptimization requests.
2677   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2678   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2679       "Not all deoptimized frames have been consumed by the debugger.";
2680 
2681   // We may be deleting a still born thread.
2682   SetStateUnsafe(ThreadState::kTerminated);
2683 
2684   delete wait_cond_;
2685   delete wait_mutex_;
2686 
2687   if (tlsPtr_.long_jump_context != nullptr) {
2688     delete tlsPtr_.long_jump_context;
2689   }
2690 
2691   if (initialized) {
2692     CleanupCpu();
2693   }
2694 
2695   SetCachedThreadName(nullptr);  // Deallocate name.
2696   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2697 
2698   CHECK_EQ(tlsPtr_.method_trace_buffer, nullptr);
2699 
2700   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2701 
2702   TearDownAlternateSignalStack();
2703 }
2704 
HandleUncaughtExceptions()2705 void Thread::HandleUncaughtExceptions() {
2706   Thread* self = this;
2707   DCHECK_EQ(self, Thread::Current());
2708   if (!self->IsExceptionPending()) {
2709     return;
2710   }
2711 
2712   // Get and clear the exception.
2713   ObjPtr<mirror::Object> exception = self->GetException();
2714   self->ClearException();
2715 
2716   // Call the Thread instance's dispatchUncaughtException(Throwable)
2717   WellKnownClasses::java_lang_Thread_dispatchUncaughtException->InvokeFinal<'V', 'L'>(
2718       self, tlsPtr_.opeer, exception);
2719 
2720   // If the dispatchUncaughtException threw, clear that exception too.
2721   self->ClearException();
2722 }
2723 
RemoveFromThreadGroup()2724 void Thread::RemoveFromThreadGroup() {
2725   Thread* self = this;
2726   DCHECK_EQ(self, Thread::Current());
2727   // this.group.threadTerminated(this);
2728   // group can be null if we're in the compiler or a test.
2729   ObjPtr<mirror::Object> group =
2730       WellKnownClasses::java_lang_Thread_group->GetObject(tlsPtr_.opeer);
2731   if (group != nullptr) {
2732     WellKnownClasses::java_lang_ThreadGroup_threadTerminated->InvokeVirtual<'V', 'L'>(
2733         self, group, tlsPtr_.opeer);
2734   }
2735 }
2736 
2737 template <bool kPointsToStack>
2738 class JniTransitionReferenceVisitor : public StackVisitor {
2739  public:
JniTransitionReferenceVisitor(Thread * thread,void * obj)2740   JniTransitionReferenceVisitor(Thread* thread, void* obj) REQUIRES_SHARED(Locks::mutator_lock_)
2741       : StackVisitor(thread, /*context=*/ nullptr, StackVisitor::StackWalkKind::kSkipInlinedFrames),
2742         obj_(obj),
2743         found_(false) {}
2744 
VisitFrame()2745   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2746     ArtMethod* m = GetMethod();
2747     if (!m->IsNative() || m->IsCriticalNative()) {
2748       return true;
2749     }
2750     if (kPointsToStack) {
2751       uint8_t* sp = reinterpret_cast<uint8_t*>(GetCurrentQuickFrame());
2752       size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes();
2753       uint32_t* current_vreg = reinterpret_cast<uint32_t*>(sp + frame_size + sizeof(ArtMethod*));
2754       if (!m->IsStatic()) {
2755         if (current_vreg == obj_) {
2756           found_ = true;
2757           return false;
2758         }
2759         current_vreg += 1u;
2760       }
2761       uint32_t shorty_length;
2762       const char* shorty = m->GetShorty(&shorty_length);
2763       for (size_t i = 1; i != shorty_length; ++i) {
2764         switch (shorty[i]) {
2765           case 'D':
2766           case 'J':
2767             current_vreg += 2u;
2768             break;
2769           case 'L':
2770             if (current_vreg == obj_) {
2771               found_ = true;
2772               return false;
2773             }
2774             FALLTHROUGH_INTENDED;
2775           default:
2776             current_vreg += 1u;
2777             break;
2778         }
2779       }
2780       // Continue only if the object is somewhere higher on the stack.
2781       return obj_ >= current_vreg;
2782     } else {  // if (kPointsToStack)
2783       if (m->IsStatic() && obj_ == m->GetDeclaringClassAddressWithoutBarrier()) {
2784         found_ = true;
2785         return false;
2786       }
2787       return true;
2788     }
2789   }
2790 
Found() const2791   bool Found() const {
2792     return found_;
2793   }
2794 
2795  private:
2796   void* obj_;
2797   bool found_;
2798 };
2799 
IsJniTransitionReference(jobject obj) const2800 bool Thread::IsJniTransitionReference(jobject obj) const {
2801   DCHECK(obj != nullptr);
2802   // We need a non-const pointer for stack walk even if we're not modifying the thread state.
2803   Thread* thread = const_cast<Thread*>(this);
2804   uint8_t* raw_obj = reinterpret_cast<uint8_t*>(obj);
2805   if (static_cast<size_t>(raw_obj - tlsPtr_.stack_begin) < tlsPtr_.stack_size) {
2806     JniTransitionReferenceVisitor</*kPointsToStack=*/ true> visitor(thread, raw_obj);
2807     visitor.WalkStack();
2808     return visitor.Found();
2809   } else {
2810     JniTransitionReferenceVisitor</*kPointsToStack=*/ false> visitor(thread, raw_obj);
2811     visitor.WalkStack();
2812     return visitor.Found();
2813   }
2814 }
2815 
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)2816 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
2817   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2818       visitor, RootInfo(kRootNativeStack, thread_id));
2819   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2820     cur->VisitRoots(buffered_visitor);
2821   }
2822 }
2823 
DecodeGlobalJObject(jobject obj) const2824 ObjPtr<mirror::Object> Thread::DecodeGlobalJObject(jobject obj) const {
2825   DCHECK(obj != nullptr);
2826   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2827   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2828   DCHECK_NE(kind, kJniTransition);
2829   DCHECK_NE(kind, kLocal);
2830   ObjPtr<mirror::Object> result;
2831   bool expect_null = false;
2832   if (kind == kGlobal) {
2833     result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2834   } else {
2835     DCHECK_EQ(kind, kWeakGlobal);
2836     result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2837     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2838       // This is a special case where it's okay to return null.
2839       expect_null = true;
2840       result = nullptr;
2841     }
2842   }
2843 
2844   DCHECK(expect_null || result != nullptr)
2845       << "use of deleted " << ToStr<IndirectRefKind>(kind).c_str()
2846       << " " << static_cast<const void*>(obj);
2847   return result;
2848 }
2849 
IsJWeakCleared(jweak obj) const2850 bool Thread::IsJWeakCleared(jweak obj) const {
2851   CHECK(obj != nullptr);
2852   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2853   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2854   CHECK_EQ(kind, kWeakGlobal);
2855   return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2856 }
2857 
2858 // Implements java.lang.Thread.interrupted.
Interrupted()2859 bool Thread::Interrupted() {
2860   DCHECK_EQ(Thread::Current(), this);
2861   // No other thread can concurrently reset the interrupted flag.
2862   bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst);
2863   if (interrupted) {
2864     tls32_.interrupted.store(false, std::memory_order_seq_cst);
2865   }
2866   return interrupted;
2867 }
2868 
2869 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2870 bool Thread::IsInterrupted() {
2871   return tls32_.interrupted.load(std::memory_order_seq_cst);
2872 }
2873 
Interrupt(Thread * self)2874 void Thread::Interrupt(Thread* self) {
2875   {
2876     MutexLock mu(self, *wait_mutex_);
2877     if (tls32_.interrupted.load(std::memory_order_seq_cst)) {
2878       return;
2879     }
2880     tls32_.interrupted.store(true, std::memory_order_seq_cst);
2881     NotifyLocked(self);
2882   }
2883   Unpark();
2884 }
2885 
Notify()2886 void Thread::Notify() {
2887   Thread* self = Thread::Current();
2888   MutexLock mu(self, *wait_mutex_);
2889   NotifyLocked(self);
2890 }
2891 
NotifyLocked(Thread * self)2892 void Thread::NotifyLocked(Thread* self) {
2893   if (wait_monitor_ != nullptr) {
2894     wait_cond_->Signal(self);
2895   }
2896 }
2897 
SetClassLoaderOverride(jobject class_loader_override)2898 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2899   if (tlsPtr_.class_loader_override != nullptr) {
2900     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2901   }
2902   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2903 }
2904 
2905 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2906 
2907 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2908 class FetchStackTraceVisitor : public StackVisitor {
2909  public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2910   explicit FetchStackTraceVisitor(Thread* thread,
2911                                   ArtMethodDexPcPair* saved_frames = nullptr,
2912                                   size_t max_saved_frames = 0)
2913       REQUIRES_SHARED(Locks::mutator_lock_)
2914       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2915         saved_frames_(saved_frames),
2916         max_saved_frames_(max_saved_frames) {}
2917 
VisitFrame()2918   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2919     // We want to skip frames up to and including the exception's constructor.
2920     // Note we also skip the frame if it doesn't have a method (namely the callee
2921     // save frame)
2922     ArtMethod* m = GetMethod();
2923     if (skipping_ && !m->IsRuntimeMethod() &&
2924         !GetClassRoot<mirror::Throwable>()->IsAssignableFrom(m->GetDeclaringClass())) {
2925       skipping_ = false;
2926     }
2927     if (!skipping_) {
2928       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
2929         if (depth_ < max_saved_frames_) {
2930           saved_frames_[depth_].first = m;
2931           saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2932         }
2933         ++depth_;
2934       }
2935     } else {
2936       ++skip_depth_;
2937     }
2938     return true;
2939   }
2940 
GetDepth() const2941   uint32_t GetDepth() const {
2942     return depth_;
2943   }
2944 
GetSkipDepth() const2945   uint32_t GetSkipDepth() const {
2946     return skip_depth_;
2947   }
2948 
2949  private:
2950   uint32_t depth_ = 0;
2951   uint32_t skip_depth_ = 0;
2952   bool skipping_ = true;
2953   ArtMethodDexPcPair* saved_frames_;
2954   const size_t max_saved_frames_;
2955 
2956   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2957 };
2958 
2959 class BuildInternalStackTraceVisitor : public StackVisitor {
2960  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,uint32_t skip_depth)2961   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, uint32_t skip_depth)
2962       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2963         self_(self),
2964         skip_depth_(skip_depth),
2965         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2966 
Init(uint32_t depth)2967   bool Init(uint32_t depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2968     // Allocate method trace as an object array where the first element is a pointer array that
2969     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2970     // class of the ArtMethod pointers.
2971     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2972     StackHandleScope<1> hs(self_);
2973     ObjPtr<mirror::Class> array_class =
2974         GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker);
2975     // The first element is the methods and dex pc array, the other elements are declaring classes
2976     // for the methods to ensure classes in the stack trace don't get unloaded.
2977     Handle<mirror::ObjectArray<mirror::Object>> trace(
2978         hs.NewHandle(mirror::ObjectArray<mirror::Object>::Alloc(
2979             hs.Self(), array_class, static_cast<int32_t>(depth) + 1)));
2980     if (trace == nullptr) {
2981       // Acquire uninterruptible_ in all paths.
2982       self_->StartAssertNoThreadSuspension("Building internal stack trace");
2983       self_->AssertPendingOOMException();
2984       return false;
2985     }
2986     ObjPtr<mirror::PointerArray> methods_and_pcs =
2987         class_linker->AllocPointerArray(self_, depth * 2);
2988     const char* last_no_suspend_cause =
2989         self_->StartAssertNoThreadSuspension("Building internal stack trace");
2990     if (methods_and_pcs == nullptr) {
2991       self_->AssertPendingOOMException();
2992       return false;
2993     }
2994     trace->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(0, methods_and_pcs);
2995     trace_ = trace.Get();
2996     // If We are called from native, use non-transactional mode.
2997     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2998     return true;
2999   }
3000 
RELEASE(Roles::uninterruptible_)3001   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
3002     self_->EndAssertNoThreadSuspension(nullptr);
3003   }
3004 
VisitFrame()3005   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
3006     if (trace_ == nullptr) {
3007       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
3008     }
3009     if (skip_depth_ > 0) {
3010       skip_depth_--;
3011       return true;
3012     }
3013     ArtMethod* m = GetMethod();
3014     if (m->IsRuntimeMethod()) {
3015       return true;  // Ignore runtime frames (in particular callee save).
3016     }
3017     AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
3018     return true;
3019   }
3020 
AddFrame(ArtMethod * method,uint32_t dex_pc)3021   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
3022     ObjPtr<mirror::PointerArray> methods_and_pcs = GetTraceMethodsAndPCs();
3023     methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
3024         count_, method, pointer_size_);
3025     methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
3026         static_cast<uint32_t>(methods_and_pcs->GetLength()) / 2 + count_, dex_pc, pointer_size_);
3027     // Save the declaring class of the method to ensure that the declaring classes of the methods
3028     // do not get unloaded while the stack trace is live. However, this does not work for copied
3029     // methods because the declaring class of a copied method points to an interface class which
3030     // may be in a different class loader. Instead, retrieve the class loader associated with the
3031     // allocator that holds the copied method. This is much cheaper than finding the actual class.
3032     ObjPtr<mirror::Object> keep_alive;
3033     if (UNLIKELY(method->IsCopied())) {
3034       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3035       keep_alive = class_linker->GetHoldingClassLoaderOfCopiedMethod(self_, method);
3036     } else {
3037       keep_alive = method->GetDeclaringClass();
3038     }
3039     trace_->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
3040         static_cast<int32_t>(count_) + 1, keep_alive);
3041     ++count_;
3042   }
3043 
GetTraceMethodsAndPCs() const3044   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
3045     return ObjPtr<mirror::PointerArray>::DownCast(trace_->Get(0));
3046   }
3047 
GetInternalStackTrace() const3048   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
3049     return trace_;
3050   }
3051 
3052  private:
3053   Thread* const self_;
3054   // How many more frames to skip.
3055   uint32_t skip_depth_;
3056   // Current position down stack trace.
3057   uint32_t count_ = 0;
3058   // An object array where the first element is a pointer array that contains the `ArtMethod`
3059   // pointers on the stack and dex PCs. The rest of the elements are referencing objects
3060   // that shall keep the methods alive, namely the declaring class of the `ArtMethod` for
3061   // declared methods and the class loader for copied methods (because it's faster to find
3062   // the class loader than the actual class that holds the copied method). The `trace_[i+1]`
3063   // contains the declaring class or class loader of the `ArtMethod` of the i'th frame.
3064   // We're initializing a newly allocated trace, so we do not need to record that under
3065   // a transaction. If the transaction is aborted, the whole trace shall be unreachable.
3066   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
3067   // For cross compilation.
3068   const PointerSize pointer_size_;
3069 
3070   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
3071 };
3072 
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const3073 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
3074   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
3075   constexpr size_t kMaxSavedFrames = 256;
3076   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
3077   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
3078                                        &saved_frames[0],
3079                                        kMaxSavedFrames);
3080   count_visitor.WalkStack();
3081   const uint32_t depth = count_visitor.GetDepth();
3082   const uint32_t skip_depth = count_visitor.GetSkipDepth();
3083 
3084   // Build internal stack trace.
3085   BuildInternalStackTraceVisitor build_trace_visitor(
3086       soa.Self(), const_cast<Thread*>(this), skip_depth);
3087   if (!build_trace_visitor.Init(depth)) {
3088     return nullptr;  // Allocation failed.
3089   }
3090   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
3091   // than doing the stack walk twice.
3092   if (depth < kMaxSavedFrames) {
3093     for (size_t i = 0; i < depth; ++i) {
3094       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
3095     }
3096   } else {
3097     build_trace_visitor.WalkStack();
3098   }
3099 
3100   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
3101   if (kIsDebugBuild) {
3102     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
3103     // Second half of trace_methods is dex PCs.
3104     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
3105       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
3106           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
3107       CHECK(method != nullptr);
3108     }
3109   }
3110   return soa.AddLocalReference<jobject>(trace);
3111 }
3112 
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const3113 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
3114   // Only count the depth since we do not pass a stack frame array as an argument.
3115   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
3116   count_visitor.WalkStack();
3117   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
3118 }
3119 
CreateStackTraceElement(const ScopedObjectAccessAlreadyRunnable & soa,ArtMethod * method,uint32_t dex_pc)3120 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
3121     const ScopedObjectAccessAlreadyRunnable& soa,
3122     ArtMethod* method,
3123     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
3124   int32_t line_number;
3125   StackHandleScope<3> hs(soa.Self());
3126   auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
3127   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
3128   if (method->IsProxyMethod()) {
3129     line_number = -1;
3130     class_name_object.Assign(method->GetDeclaringClass()->GetName());
3131     // source_name_object intentionally left null for proxy methods
3132   } else {
3133     line_number = method->GetLineNumFromDexPC(dex_pc);
3134     // Allocate element, potentially triggering GC
3135     // TODO: reuse class_name_object via Class::name_?
3136     const char* descriptor = method->GetDeclaringClassDescriptor();
3137     CHECK(descriptor != nullptr);
3138     std::string class_name(PrettyDescriptor(descriptor));
3139     class_name_object.Assign(
3140         mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
3141     if (class_name_object == nullptr) {
3142       soa.Self()->AssertPendingOOMException();
3143       return nullptr;
3144     }
3145     const char* source_file = method->GetDeclaringClassSourceFile();
3146     if (line_number == -1) {
3147       // Make the line_number field of StackTraceElement hold the dex pc.
3148       // source_name_object is intentionally left null if we failed to map the dex pc to
3149       // a line number (most probably because there is no debug info). See b/30183883.
3150       line_number = static_cast<int32_t>(dex_pc);
3151     } else {
3152       if (source_file != nullptr) {
3153         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
3154         if (source_name_object == nullptr) {
3155           soa.Self()->AssertPendingOOMException();
3156           return nullptr;
3157         }
3158       }
3159     }
3160   }
3161   const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
3162   CHECK(method_name != nullptr);
3163   Handle<mirror::String> method_name_object(
3164       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
3165   if (method_name_object == nullptr) {
3166     return nullptr;
3167   }
3168   return mirror::StackTraceElement::Alloc(soa.Self(),
3169                                           class_name_object,
3170                                           method_name_object,
3171                                           source_name_object,
3172                                           line_number);
3173 }
3174 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)3175 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
3176     const ScopedObjectAccessAlreadyRunnable& soa,
3177     jobject internal,
3178     jobjectArray output_array,
3179     int* stack_depth) {
3180   // Decode the internal stack trace into the depth, method trace and PC trace.
3181   // Subtract one for the methods and PC trace.
3182   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
3183   DCHECK_GE(depth, 0);
3184 
3185   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
3186 
3187   jobjectArray result;
3188 
3189   if (output_array != nullptr) {
3190     // Reuse the array we were given.
3191     result = output_array;
3192     // ...adjusting the number of frames we'll write to not exceed the array length.
3193     const int32_t traces_length =
3194         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
3195     depth = std::min(depth, traces_length);
3196   } else {
3197     // Create java_trace array and place in local reference table
3198     ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> java_traces =
3199         class_linker->AllocStackTraceElementArray(soa.Self(), static_cast<size_t>(depth));
3200     if (java_traces == nullptr) {
3201       return nullptr;
3202     }
3203     result = soa.AddLocalReference<jobjectArray>(java_traces);
3204   }
3205 
3206   if (stack_depth != nullptr) {
3207     *stack_depth = depth;
3208   }
3209 
3210   for (uint32_t i = 0; i < static_cast<uint32_t>(depth); ++i) {
3211     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
3212         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
3213     // Methods and dex PC trace is element 0.
3214     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
3215     const ObjPtr<mirror::PointerArray> method_trace =
3216         ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0));
3217     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
3218     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
3219     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
3220         i + static_cast<uint32_t>(method_trace->GetLength()) / 2, kRuntimePointerSize);
3221     const ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
3222     if (obj == nullptr) {
3223       return nullptr;
3224     }
3225     // We are called from native: use non-transactional mode.
3226     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(
3227         static_cast<int32_t>(i), obj);
3228   }
3229   return result;
3230 }
3231 
InitStackFrameInfo(const ScopedObjectAccessAlreadyRunnable & soa,ClassLinker * class_linker,Handle<mirror::StackFrameInfo> stackFrameInfo,ArtMethod * method,uint32_t dex_pc)3232 [[nodiscard]] static ObjPtr<mirror::StackFrameInfo> InitStackFrameInfo(
3233     const ScopedObjectAccessAlreadyRunnable& soa,
3234     ClassLinker* class_linker,
3235     Handle<mirror::StackFrameInfo> stackFrameInfo,
3236     ArtMethod* method,
3237     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
3238   StackHandleScope<4> hs(soa.Self());
3239   int32_t line_number;
3240   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
3241   if (method->IsProxyMethod()) {
3242     line_number = -1;
3243     // source_name_object intentionally left null for proxy methods
3244   } else {
3245     line_number = method->GetLineNumFromDexPC(dex_pc);
3246     if (line_number == -1) {
3247       // Make the line_number field of StackFrameInfo hold the dex pc.
3248       // source_name_object is intentionally left null if we failed to map the dex pc to
3249       // a line number (most probably because there is no debug info). See b/30183883.
3250       line_number = static_cast<int32_t>(dex_pc);
3251     } else {
3252       const char* source_file = method->GetDeclaringClassSourceFile();
3253       if (source_file != nullptr) {
3254         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
3255         if (source_name_object == nullptr) {
3256           soa.Self()->AssertPendingOOMException();
3257           return nullptr;
3258         }
3259       }
3260     }
3261   }
3262 
3263   Handle<mirror::Class> declaring_class_object(
3264       hs.NewHandle<mirror::Class>(method->GetDeclaringClass()));
3265 
3266   ArtMethod* interface_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
3267   const char* method_name = interface_method->GetName();
3268   CHECK(method_name != nullptr);
3269   Handle<mirror::String> method_name_object(
3270       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
3271   if (method_name_object == nullptr) {
3272     soa.Self()->AssertPendingOOMException();
3273     return nullptr;
3274   }
3275 
3276   dex::ProtoIndex proto_idx =
3277       method->GetDexFile()->GetIndexForProtoId(interface_method->GetPrototype());
3278   Handle<mirror::MethodType> method_type_object(hs.NewHandle<mirror::MethodType>(
3279       class_linker->ResolveMethodType(soa.Self(), proto_idx, interface_method)));
3280   if (method_type_object == nullptr) {
3281     soa.Self()->AssertPendingOOMException();
3282     return nullptr;
3283   }
3284 
3285   stackFrameInfo->AssignFields(declaring_class_object,
3286                                method_type_object,
3287                                method_name_object,
3288                                source_name_object,
3289                                line_number,
3290                                static_cast<int32_t>(dex_pc));
3291   return stackFrameInfo.Get();
3292 }
3293 
3294 constexpr jlong FILL_CLASS_REFS_ONLY = 0x2;  // StackStreamFactory.FILL_CLASS_REFS_ONLY
3295 
InternalStackTraceToStackFrameInfoArray(const ScopedObjectAccessAlreadyRunnable & soa,jlong mode,jobject internal,jint startLevel,jint batchSize,jint startBufferIndex,jobjectArray output_array)3296 jint Thread::InternalStackTraceToStackFrameInfoArray(
3297     const ScopedObjectAccessAlreadyRunnable& soa,
3298     jlong mode,  // See java.lang.StackStreamFactory for the mode flags
3299     jobject internal,
3300     jint startLevel,
3301     jint batchSize,
3302     jint startBufferIndex,
3303     jobjectArray output_array) {
3304   // Decode the internal stack trace into the depth, method trace and PC trace.
3305   // Subtract one for the methods and PC trace.
3306   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
3307   DCHECK_GE(depth, 0);
3308 
3309   StackHandleScope<6> hs(soa.Self());
3310   Handle<mirror::ObjectArray<mirror::Object>> framesOrClasses =
3311       hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Object>>(output_array));
3312 
3313   jint endBufferIndex = startBufferIndex;
3314 
3315   if (startLevel < 0 || startLevel >= depth) {
3316     return endBufferIndex;
3317   }
3318 
3319   int32_t bufferSize = framesOrClasses->GetLength();
3320   if (startBufferIndex < 0 || startBufferIndex >= bufferSize) {
3321     return endBufferIndex;
3322   }
3323 
3324   // The FILL_CLASS_REFS_ONLY flag is defined in AbstractStackWalker.fetchStackFrames() javadoc.
3325   bool isClassArray = (mode & FILL_CLASS_REFS_ONLY) != 0;
3326 
3327   Handle<mirror::ObjectArray<mirror::Object>> decoded_traces =
3328       hs.NewHandle(soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>());
3329   // Methods and dex PC trace is element 0.
3330   DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
3331   Handle<mirror::PointerArray> method_trace =
3332       hs.NewHandle(ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0)));
3333 
3334   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
3335   Handle<mirror::Class> sfi_class =
3336       hs.NewHandle(class_linker->FindSystemClass(soa.Self(), "Ljava/lang/StackFrameInfo;"));
3337   DCHECK(sfi_class != nullptr);
3338 
3339   MutableHandle<mirror::StackFrameInfo> frame = hs.NewHandle<mirror::StackFrameInfo>(nullptr);
3340   MutableHandle<mirror::Class> clazz = hs.NewHandle<mirror::Class>(nullptr);
3341   for (uint32_t i = static_cast<uint32_t>(startLevel); i < static_cast<uint32_t>(depth); ++i) {
3342     if (endBufferIndex >= startBufferIndex + batchSize || endBufferIndex >= bufferSize) {
3343       break;
3344     }
3345 
3346     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
3347     if (isClassArray) {
3348       clazz.Assign(method->GetDeclaringClass());
3349       framesOrClasses->Set(endBufferIndex, clazz.Get());
3350     } else {
3351       // Prepare parameters for fields in StackFrameInfo
3352       uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
3353           i + static_cast<uint32_t>(method_trace->GetLength()) / 2, kRuntimePointerSize);
3354 
3355       ObjPtr<mirror::Object> frameObject = framesOrClasses->Get(endBufferIndex);
3356       // If libcore didn't allocate the object, we just stop here, but it's unlikely.
3357       if (frameObject == nullptr || !frameObject->InstanceOf(sfi_class.Get())) {
3358         break;
3359       }
3360       frame.Assign(ObjPtr<mirror::StackFrameInfo>::DownCast(frameObject));
3361       frame.Assign(InitStackFrameInfo(soa, class_linker, frame, method, dex_pc));
3362       // Break if InitStackFrameInfo fails to allocate objects or assign the fields.
3363       if (frame == nullptr) {
3364         break;
3365       }
3366     }
3367 
3368     ++endBufferIndex;
3369   }
3370 
3371   return endBufferIndex;
3372 }
3373 
CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const3374 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
3375   // This code allocates. Do not allow it to operate with a pending exception.
3376   if (IsExceptionPending()) {
3377     return nullptr;
3378   }
3379 
3380   class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
3381    public:
3382     CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
3383                                       Thread* self,
3384                                       Context* context)
3385         : MonitorObjectsStackVisitor(self, context),
3386           wait_jobject_(soaa_in.Env(), nullptr),
3387           block_jobject_(soaa_in.Env(), nullptr),
3388           soaa_(soaa_in) {}
3389 
3390    protected:
3391     VisitMethodResult StartMethod(ArtMethod* m, [[maybe_unused]] size_t frame_nr) override
3392         REQUIRES_SHARED(Locks::mutator_lock_) {
3393       ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
3394           soaa_, m, GetDexPc(/* abort on error */ false));
3395       if (obj == nullptr) {
3396         return VisitMethodResult::kEndStackWalk;
3397       }
3398       stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
3399       return VisitMethodResult::kContinueMethod;
3400     }
3401 
3402     VisitMethodResult EndMethod([[maybe_unused]] ArtMethod* m) override {
3403       lock_objects_.push_back({});
3404       lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
3405 
3406       DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
3407 
3408       return VisitMethodResult::kContinueMethod;
3409     }
3410 
3411     void VisitWaitingObject(ObjPtr<mirror::Object> obj, [[maybe_unused]] ThreadState state) override
3412         REQUIRES_SHARED(Locks::mutator_lock_) {
3413       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3414     }
3415     void VisitSleepingObject(ObjPtr<mirror::Object> obj)
3416         override
3417         REQUIRES_SHARED(Locks::mutator_lock_) {
3418       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3419     }
3420     void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
3421                               [[maybe_unused]] ThreadState state,
3422                               [[maybe_unused]] uint32_t owner_tid) override
3423         REQUIRES_SHARED(Locks::mutator_lock_) {
3424       block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3425     }
3426     void VisitLockedObject(ObjPtr<mirror::Object> obj)
3427         override
3428         REQUIRES_SHARED(Locks::mutator_lock_) {
3429       frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
3430     }
3431 
3432    public:
3433     std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
3434     ScopedLocalRef<jobject> wait_jobject_;
3435     ScopedLocalRef<jobject> block_jobject_;
3436     std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
3437 
3438    private:
3439     const ScopedObjectAccessAlreadyRunnable& soaa_;
3440 
3441     std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
3442   };
3443 
3444   std::unique_ptr<Context> context(Context::Create());
3445   CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
3446   dumper.WalkStack();
3447 
3448   // There should not be a pending exception. Otherwise, return with it pending.
3449   if (IsExceptionPending()) {
3450     return nullptr;
3451   }
3452 
3453   // Now go and create Java arrays.
3454 
3455   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3456 
3457   StackHandleScope<6> hs(soa.Self());
3458   Handle<mirror::Class> h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass(
3459       soa.Self(),
3460       "[Ldalvik/system/AnnotatedStackTraceElement;"));
3461   if (h_aste_array_class == nullptr) {
3462     return nullptr;
3463   }
3464   Handle<mirror::Class> h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType());
3465 
3466   Handle<mirror::Class> h_o_array_class =
3467       hs.NewHandle(GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
3468   DCHECK(h_o_array_class != nullptr);  // Class roots must be already initialized.
3469 
3470 
3471   // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
3472   class_linker->EnsureInitialized(soa.Self(),
3473                                   h_aste_class,
3474                                   /* can_init_fields= */ true,
3475                                   /* can_init_parents= */ true);
3476   if (soa.Self()->IsExceptionPending()) {
3477     // This should not fail in a healthy runtime.
3478     return nullptr;
3479   }
3480 
3481   ArtField* stack_trace_element_field =
3482       h_aste_class->FindDeclaredInstanceField("stackTraceElement", "Ljava/lang/StackTraceElement;");
3483   DCHECK(stack_trace_element_field != nullptr);
3484   ArtField* held_locks_field =
3485       h_aste_class->FindDeclaredInstanceField("heldLocks", "[Ljava/lang/Object;");
3486   DCHECK(held_locks_field != nullptr);
3487   ArtField* blocked_on_field =
3488       h_aste_class->FindDeclaredInstanceField("blockedOn", "Ljava/lang/Object;");
3489   DCHECK(blocked_on_field != nullptr);
3490 
3491   int32_t length = static_cast<int32_t>(dumper.stack_trace_elements_.size());
3492   ObjPtr<mirror::ObjectArray<mirror::Object>> array =
3493       mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), h_aste_array_class.Get(), length);
3494   if (array == nullptr) {
3495     soa.Self()->AssertPendingOOMException();
3496     return nullptr;
3497   }
3498 
3499   ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
3500 
3501   MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
3502   MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
3503       hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
3504   for (size_t i = 0; i != static_cast<size_t>(length); ++i) {
3505     handle.Assign(h_aste_class->AllocObject(soa.Self()));
3506     if (handle == nullptr) {
3507       soa.Self()->AssertPendingOOMException();
3508       return nullptr;
3509     }
3510 
3511     // Set stack trace element.
3512     stack_trace_element_field->SetObject<false>(
3513         handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
3514 
3515     // Create locked-on array.
3516     if (!dumper.lock_objects_[i].empty()) {
3517       handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(
3518           soa.Self(), h_o_array_class.Get(), static_cast<int32_t>(dumper.lock_objects_[i].size())));
3519       if (handle2 == nullptr) {
3520         soa.Self()->AssertPendingOOMException();
3521         return nullptr;
3522       }
3523       int32_t j = 0;
3524       for (auto& scoped_local : dumper.lock_objects_[i]) {
3525         if (scoped_local == nullptr) {
3526           continue;
3527         }
3528         handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
3529         DCHECK(!soa.Self()->IsExceptionPending());
3530         j++;
3531       }
3532       held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
3533     }
3534 
3535     // Set blocked-on object.
3536     if (i == 0) {
3537       if (dumper.block_jobject_ != nullptr) {
3538         blocked_on_field->SetObject<false>(
3539             handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
3540       }
3541     }
3542 
3543     ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
3544     soa.Env()->SetObjectArrayElement(result.get(), static_cast<jsize>(i), elem.get());
3545     DCHECK(!soa.Self()->IsExceptionPending());
3546   }
3547 
3548   return result.release();
3549 }
3550 
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)3551 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
3552   va_list args;
3553   va_start(args, fmt);
3554   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
3555   va_end(args);
3556 }
3557 
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)3558 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
3559                                 const char* fmt, va_list ap) {
3560   std::string msg;
3561   StringAppendV(&msg, fmt, ap);
3562   ThrowNewException(exception_class_descriptor, msg.c_str());
3563 }
3564 
ThrowNewException(const char * exception_class_descriptor,const char * msg)3565 void Thread::ThrowNewException(const char* exception_class_descriptor,
3566                                const char* msg) {
3567   // Callers should either clear or call ThrowNewWrappedException.
3568   AssertNoPendingExceptionForNewException(msg);
3569   ThrowNewWrappedException(exception_class_descriptor, msg);
3570 }
3571 
GetCurrentClassLoader(Thread * self)3572 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
3573     REQUIRES_SHARED(Locks::mutator_lock_) {
3574   ArtMethod* method = self->GetCurrentMethod(nullptr);
3575   return method != nullptr
3576       ? method->GetDeclaringClass()->GetClassLoader()
3577       : nullptr;
3578 }
3579 
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)3580 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
3581                                       const char* msg) {
3582   DCHECK_EQ(this, Thread::Current());
3583   ScopedObjectAccessUnchecked soa(this);
3584   StackHandleScope<3> hs(soa.Self());
3585 
3586   // Disable public sdk checks if we need to throw exceptions.
3587   // The checks are only used in AOT compilation and may block (exception) class
3588   // initialization if it needs access to private fields (e.g. serialVersionUID).
3589   //
3590   // Since throwing an exception will EnsureInitialization and the public sdk may
3591   // block that, disable the checks. It's ok to do so, because the thrown exceptions
3592   // are not part of the application code that needs to verified.
3593   ScopedDisablePublicSdkChecker sdpsc;
3594 
3595   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3596   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3597   ClearException();
3598   Runtime* runtime = Runtime::Current();
3599   auto* cl = runtime->GetClassLinker();
3600   Handle<mirror::Class> exception_class(
3601       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
3602   if (UNLIKELY(exception_class == nullptr)) {
3603     CHECK(IsExceptionPending());
3604     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3605     return;
3606   }
3607 
3608   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3609                                                              true))) {
3610     DCHECK(IsExceptionPending());
3611     return;
3612   }
3613   DCHECK_IMPLIES(runtime->IsStarted(), exception_class->IsThrowableClass());
3614   Handle<mirror::Throwable> exception(
3615       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3616 
3617   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3618   if (exception == nullptr) {
3619     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3620     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
3621     return;
3622   }
3623 
3624   // Choose an appropriate constructor and set up the arguments.
3625   const char* signature;
3626   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3627   if (msg != nullptr) {
3628     // Ensure we remember this and the method over the String allocation.
3629     msg_string.reset(
3630         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3631     if (UNLIKELY(msg_string.get() == nullptr)) {
3632       CHECK(IsExceptionPending());  // OOME.
3633       return;
3634     }
3635     if (cause.get() == nullptr) {
3636       signature = "(Ljava/lang/String;)V";
3637     } else {
3638       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3639     }
3640   } else {
3641     if (cause.get() == nullptr) {
3642       signature = "()V";
3643     } else {
3644       signature = "(Ljava/lang/Throwable;)V";
3645     }
3646   }
3647   ArtMethod* exception_init_method =
3648       exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3649 
3650   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3651       << PrettyDescriptor(exception_class_descriptor);
3652 
3653   if (UNLIKELY(!runtime->IsStarted())) {
3654     // Something is trying to throw an exception without a started runtime, which is the common
3655     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3656     // the exception fields directly.
3657     if (msg != nullptr) {
3658       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3659     }
3660     if (cause.get() != nullptr) {
3661       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3662     }
3663     ScopedLocalRef<jobject> trace(GetJniEnv(), CreateInternalStackTrace(soa));
3664     if (trace.get() != nullptr) {
3665       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
3666     }
3667     SetException(exception.Get());
3668   } else {
3669     jvalue jv_args[2];
3670     size_t i = 0;
3671 
3672     if (msg != nullptr) {
3673       jv_args[i].l = msg_string.get();
3674       ++i;
3675     }
3676     if (cause.get() != nullptr) {
3677       jv_args[i].l = cause.get();
3678       ++i;
3679     }
3680     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3681     InvokeWithJValues(soa, ref.get(), exception_init_method, jv_args);
3682     if (LIKELY(!IsExceptionPending())) {
3683       SetException(exception.Get());
3684     }
3685   }
3686 }
3687 
ThrowOutOfMemoryError(const char * msg)3688 void Thread::ThrowOutOfMemoryError(const char* msg) {
3689   LOG(WARNING) << "Throwing OutOfMemoryError "
3690                << '"' << msg << '"'
3691                << " (VmSize " << GetProcessStatus("VmSize")
3692                << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")");
3693   ScopedTrace trace("OutOfMemoryError");
3694   if (!tls32_.throwing_OutOfMemoryError) {
3695     tls32_.throwing_OutOfMemoryError = true;
3696     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3697     tls32_.throwing_OutOfMemoryError = false;
3698   } else {
3699     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3700     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
3701   }
3702 }
3703 
CurrentFromGdb()3704 Thread* Thread::CurrentFromGdb() {
3705   return Thread::Current();
3706 }
3707 
DumpFromGdb() const3708 void Thread::DumpFromGdb() const {
3709   std::ostringstream ss;
3710   Dump(ss);
3711   std::string str(ss.str());
3712   // log to stderr for debugging command line processes
3713   std::cerr << str;
3714 #ifdef ART_TARGET_ANDROID
3715   // log to logcat for debugging frameworks processes
3716   LOG(INFO) << str;
3717 #endif
3718 }
3719 
3720 // Explicitly instantiate 32 and 64bit thread offset dumping support.
3721 template
3722 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3723 template
3724 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3725 
3726 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)3727 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3728 #define DO_THREAD_OFFSET(x, y) \
3729     if (offset == (x).Uint32Value()) { \
3730       os << (y); \
3731       return; \
3732     }
3733   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3734   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3735   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3736   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3737   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3738   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3739   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3740   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3741   DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3742   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3743   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3744   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3745   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3746 #undef DO_THREAD_OFFSET
3747 
3748 #define JNI_ENTRY_POINT_INFO(x) \
3749     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3750       os << #x; \
3751       return; \
3752     }
3753   JNI_ENTRY_POINT_INFO(pDlsymLookup)
3754   JNI_ENTRY_POINT_INFO(pDlsymLookupCritical)
3755 #undef JNI_ENTRY_POINT_INFO
3756 
3757 #define QUICK_ENTRY_POINT_INFO(x) \
3758     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3759       os << #x; \
3760       return; \
3761     }
3762   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3763   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3764   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3765   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3766   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3767   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3768   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3769   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3770   QUICK_ENTRY_POINT_INFO(pAllocStringObject)
3771   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3772   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3773   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3774   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3775   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3776   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3777   QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess)
3778   QUICK_ENTRY_POINT_INFO(pResolveType)
3779   QUICK_ENTRY_POINT_INFO(pResolveString)
3780   QUICK_ENTRY_POINT_INFO(pSet8Instance)
3781   QUICK_ENTRY_POINT_INFO(pSet8Static)
3782   QUICK_ENTRY_POINT_INFO(pSet16Instance)
3783   QUICK_ENTRY_POINT_INFO(pSet16Static)
3784   QUICK_ENTRY_POINT_INFO(pSet32Instance)
3785   QUICK_ENTRY_POINT_INFO(pSet32Static)
3786   QUICK_ENTRY_POINT_INFO(pSet64Instance)
3787   QUICK_ENTRY_POINT_INFO(pSet64Static)
3788   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3789   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3790   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3791   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3792   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3793   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3794   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3795   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3796   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3797   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3798   QUICK_ENTRY_POINT_INFO(pGet32Instance)
3799   QUICK_ENTRY_POINT_INFO(pGet32Static)
3800   QUICK_ENTRY_POINT_INFO(pGet64Instance)
3801   QUICK_ENTRY_POINT_INFO(pGet64Static)
3802   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3803   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3804   QUICK_ENTRY_POINT_INFO(pAputObject)
3805   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3806   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3807   QUICK_ENTRY_POINT_INFO(pJniMethodEntryHook)
3808   QUICK_ENTRY_POINT_INFO(pJniDecodeReferenceResult)
3809   QUICK_ENTRY_POINT_INFO(pJniLockObject)
3810   QUICK_ENTRY_POINT_INFO(pJniUnlockObject)
3811   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3812   QUICK_ENTRY_POINT_INFO(pLockObject)
3813   QUICK_ENTRY_POINT_INFO(pUnlockObject)
3814   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3815   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3816   QUICK_ENTRY_POINT_INFO(pCmplDouble)
3817   QUICK_ENTRY_POINT_INFO(pCmplFloat)
3818   QUICK_ENTRY_POINT_INFO(pCos)
3819   QUICK_ENTRY_POINT_INFO(pSin)
3820   QUICK_ENTRY_POINT_INFO(pAcos)
3821   QUICK_ENTRY_POINT_INFO(pAsin)
3822   QUICK_ENTRY_POINT_INFO(pAtan)
3823   QUICK_ENTRY_POINT_INFO(pAtan2)
3824   QUICK_ENTRY_POINT_INFO(pCbrt)
3825   QUICK_ENTRY_POINT_INFO(pCosh)
3826   QUICK_ENTRY_POINT_INFO(pExp)
3827   QUICK_ENTRY_POINT_INFO(pExpm1)
3828   QUICK_ENTRY_POINT_INFO(pHypot)
3829   QUICK_ENTRY_POINT_INFO(pLog)
3830   QUICK_ENTRY_POINT_INFO(pLog10)
3831   QUICK_ENTRY_POINT_INFO(pNextAfter)
3832   QUICK_ENTRY_POINT_INFO(pSinh)
3833   QUICK_ENTRY_POINT_INFO(pTan)
3834   QUICK_ENTRY_POINT_INFO(pTanh)
3835   QUICK_ENTRY_POINT_INFO(pFmod)
3836   QUICK_ENTRY_POINT_INFO(pL2d)
3837   QUICK_ENTRY_POINT_INFO(pFmodf)
3838   QUICK_ENTRY_POINT_INFO(pL2f)
3839   QUICK_ENTRY_POINT_INFO(pD2iz)
3840   QUICK_ENTRY_POINT_INFO(pF2iz)
3841   QUICK_ENTRY_POINT_INFO(pIdivmod)
3842   QUICK_ENTRY_POINT_INFO(pD2l)
3843   QUICK_ENTRY_POINT_INFO(pF2l)
3844   QUICK_ENTRY_POINT_INFO(pLdiv)
3845   QUICK_ENTRY_POINT_INFO(pLmod)
3846   QUICK_ENTRY_POINT_INFO(pLmul)
3847   QUICK_ENTRY_POINT_INFO(pShlLong)
3848   QUICK_ENTRY_POINT_INFO(pShrLong)
3849   QUICK_ENTRY_POINT_INFO(pUshrLong)
3850   QUICK_ENTRY_POINT_INFO(pIndexOf)
3851   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3852   QUICK_ENTRY_POINT_INFO(pMemcpy)
3853   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3854   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3855   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3856   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3857   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3858   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3859   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3860   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3861   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3862   QUICK_ENTRY_POINT_INFO(pTestSuspend)
3863   QUICK_ENTRY_POINT_INFO(pDeliverException)
3864   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3865   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3866   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3867   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3868   QUICK_ENTRY_POINT_INFO(pDeoptimize)
3869   QUICK_ENTRY_POINT_INFO(pA64Load)
3870   QUICK_ENTRY_POINT_INFO(pA64Store)
3871   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3872   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3873   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BB)
3874   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3875   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3876   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3877   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3878   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3879   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3880   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3881   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3882   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3883   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3884   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3885   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3886   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3887   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3888   QUICK_ENTRY_POINT_INFO(pNewStringFromUtf16Bytes_BII)
3889   QUICK_ENTRY_POINT_INFO(pJniReadBarrier)
3890   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3891   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3892   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3893   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3894   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3895   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3896   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3897   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3898   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3899   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3900   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3901   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3902   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3903   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3904   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3905   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3906   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3907   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3908   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3909   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3910   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3911   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3912   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3913   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3914   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3915   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3916   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3917   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3918   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3919   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3920   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3921   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3922 #undef QUICK_ENTRY_POINT_INFO
3923 
3924   os << offset;
3925 }
3926 
QuickDeliverException(bool skip_method_exit_callbacks)3927 void Thread::QuickDeliverException(bool skip_method_exit_callbacks) {
3928   // Get exception from thread.
3929   ObjPtr<mirror::Throwable> exception = GetException();
3930   CHECK(exception != nullptr);
3931   if (exception == GetDeoptimizationException()) {
3932     // This wasn't a real exception, so just clear it here. If there was an actual exception it
3933     // will be recorded in the DeoptimizationContext and it will be restored later.
3934     ClearException();
3935     artDeoptimize(this, skip_method_exit_callbacks);
3936     UNREACHABLE();
3937   }
3938 
3939   ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3940 
3941   // This is a real exception: let the instrumentation know about it. Exception throw listener
3942   // could set a breakpoint or install listeners that might require a deoptimization. Hence the
3943   // deoptimization check needs to happen after calling the listener.
3944   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3945   if (instrumentation->HasExceptionThrownListeners() &&
3946       IsExceptionThrownByCurrentMethod(exception)) {
3947     // Instrumentation may cause GC so keep the exception object safe.
3948     StackHandleScope<1> hs(this);
3949     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3950     instrumentation->ExceptionThrownEvent(this, exception);
3951   }
3952   // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something?
3953   // Note: we do this *after* reporting the exception to instrumentation in case it now requires
3954   // deoptimization. It may happen if a debugger is attached and requests new events (single-step,
3955   // breakpoint, ...) when the exception is reported.
3956   // Frame pop can be requested on a method unwind callback which requires a deopt. We could
3957   // potentially check after each unwind callback to see if a frame pop was requested and deopt if
3958   // needed. Since this is a debug only feature and this path is only taken when an exception is
3959   // thrown, it is not performance critical and we keep it simple by just deopting if method exit
3960   // listeners are installed and frame pop feature is supported.
3961   bool needs_deopt =
3962       instrumentation->HasMethodExitListeners() && Runtime::Current()->AreNonStandardExitsEnabled();
3963   if (Dbg::IsForcedInterpreterNeededForException(this) || IsForceInterpreter() || needs_deopt) {
3964     NthCallerVisitor visitor(this, 0, false);
3965     visitor.WalkStack();
3966     if (visitor.GetCurrentQuickFrame() != nullptr) {
3967       if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.GetOuterMethod(), visitor.caller_pc)) {
3968         // method_type shouldn't matter due to exception handling.
3969         const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3970         // Save the exception into the deoptimization context so it can be restored
3971         // before entering the interpreter.
3972         PushDeoptimizationContext(
3973             JValue(),
3974             /* is_reference= */ false,
3975             exception,
3976             /* from_code= */ false,
3977             method_type);
3978         artDeoptimize(this, skip_method_exit_callbacks);
3979         UNREACHABLE();
3980       } else {
3981         LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3982                      << visitor.caller->PrettyMethod();
3983       }
3984     } else {
3985       // This is either top of call stack, or shadow frame.
3986       DCHECK(visitor.caller == nullptr || visitor.IsShadowFrame());
3987     }
3988   }
3989 
3990   // Don't leave exception visible while we try to find the handler, which may cause class
3991   // resolution.
3992   ClearException();
3993   QuickExceptionHandler exception_handler(this, false);
3994   exception_handler.FindCatch(exception, skip_method_exit_callbacks);
3995   if (exception_handler.GetClearException()) {
3996     // Exception was cleared as part of delivery.
3997     DCHECK(!IsExceptionPending());
3998   } else {
3999     // Exception was put back with a throw location.
4000     DCHECK(IsExceptionPending());
4001     // Check the to-space invariant on the re-installed exception (if applicable).
4002     ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
4003   }
4004   exception_handler.DoLongJump();
4005 }
4006 
GetLongJumpContext()4007 Context* Thread::GetLongJumpContext() {
4008   Context* result = tlsPtr_.long_jump_context;
4009   if (result == nullptr) {
4010     result = Context::Create();
4011   } else {
4012     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
4013     result->Reset();
4014   }
4015   return result;
4016 }
4017 
GetCurrentMethod(uint32_t * dex_pc_out,bool check_suspended,bool abort_on_error) const4018 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out,
4019                                     bool check_suspended,
4020                                     bool abort_on_error) const {
4021   // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
4022   //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java
4023   //       stack.
4024   ArtMethod* method = nullptr;
4025   uint32_t dex_pc = dex::kDexNoIndex;
4026   StackVisitor::WalkStack(
4027       [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
4028         ArtMethod* m = visitor->GetMethod();
4029         if (m->IsRuntimeMethod()) {
4030           // Continue if this is a runtime method.
4031           return true;
4032         }
4033         method = m;
4034         dex_pc = visitor->GetDexPc(abort_on_error);
4035         return false;
4036       },
4037       const_cast<Thread*>(this),
4038       /* context= */ nullptr,
4039       StackVisitor::StackWalkKind::kIncludeInlinedFrames,
4040       check_suspended);
4041 
4042   if (dex_pc_out != nullptr) {
4043     *dex_pc_out = dex_pc;
4044   }
4045   return method;
4046 }
4047 
HoldsLock(ObjPtr<mirror::Object> object) const4048 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
4049   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
4050 }
4051 
4052 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
4053     REQUIRES_SHARED(Locks::mutator_lock_);
4054 
4055 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
4056 template <typename RootVisitor, bool kPrecise = false>
4057 class ReferenceMapVisitor : public StackVisitor {
4058  public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)4059   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
4060       REQUIRES_SHARED(Locks::mutator_lock_)
4061       // We are visiting the references in compiled frames, so we do not need
4062       // to know the inlined frames.
4063       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
4064         visitor_(visitor),
4065         visit_declaring_class_(!Runtime::Current()->GetHeap()->IsPerformingUffdCompaction()) {}
4066 
VisitFrame()4067   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
4068     if (false) {
4069       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
4070                 << StringPrintf("@ PC:%04x", GetDexPc());
4071     }
4072     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
4073     if (shadow_frame != nullptr) {
4074       VisitShadowFrame(shadow_frame);
4075     } else if (GetCurrentOatQuickMethodHeader()->IsNterpMethodHeader()) {
4076       VisitNterpFrame();
4077     } else {
4078       VisitQuickFrame();
4079     }
4080     return true;
4081   }
4082 
VisitShadowFrame(ShadowFrame * shadow_frame)4083   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
4084     ArtMethod* m = shadow_frame->GetMethod();
4085     VisitDeclaringClass(m);
4086     DCHECK(m != nullptr);
4087     size_t num_regs = shadow_frame->NumberOfVRegs();
4088     // handle scope for JNI or References for interpreter.
4089     for (size_t reg = 0; reg < num_regs; ++reg) {
4090       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
4091       if (ref != nullptr) {
4092         mirror::Object* new_ref = ref;
4093         visitor_(&new_ref, reg, this);
4094         if (new_ref != ref) {
4095           shadow_frame->SetVRegReference(reg, new_ref);
4096         }
4097       }
4098     }
4099     // Mark lock count map required for structured locking checks.
4100     shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this);
4101   }
4102 
4103  private:
4104   // Visiting the declaring class is necessary so that we don't unload the class of a method that
4105   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
4106   // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)4107   void VisitDeclaringClass(ArtMethod* method)
4108       REQUIRES_SHARED(Locks::mutator_lock_)
4109       NO_THREAD_SAFETY_ANALYSIS {
4110     if (!visit_declaring_class_) {
4111       return;
4112     }
4113     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
4114     // klass can be null for runtime methods.
4115     if (klass != nullptr) {
4116       if (kVerifyImageObjectsMarked) {
4117         gc::Heap* const heap = Runtime::Current()->GetHeap();
4118         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
4119                                                                                 /*fail_ok=*/true);
4120         if (space != nullptr && space->IsImageSpace()) {
4121           bool failed = false;
4122           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
4123             failed = true;
4124             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
4125           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
4126             failed = true;
4127             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
4128           }
4129           if (failed) {
4130             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
4131             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
4132             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
4133                                      << " klass@" << klass.Ptr();
4134             // Pretty info last in case it crashes.
4135             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
4136                        << klass->PrettyClass();
4137           }
4138         }
4139       }
4140       mirror::Object* new_ref = klass.Ptr();
4141       visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kMethodDeclaringClass, this);
4142       if (new_ref != klass) {
4143         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
4144       }
4145     }
4146   }
4147 
VisitNterpFrame()4148   void VisitNterpFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
4149     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
4150     StackReference<mirror::Object>* vreg_ref_base =
4151         reinterpret_cast<StackReference<mirror::Object>*>(NterpGetReferenceArray(cur_quick_frame));
4152     StackReference<mirror::Object>* vreg_int_base =
4153         reinterpret_cast<StackReference<mirror::Object>*>(NterpGetRegistersArray(cur_quick_frame));
4154     CodeItemDataAccessor accessor((*cur_quick_frame)->DexInstructionData());
4155     const uint16_t num_regs = accessor.RegistersSize();
4156     // An nterp frame has two arrays: a dex register array and a reference array
4157     // that shadows the dex register array but only containing references
4158     // (non-reference dex registers have nulls). See nterp_helpers.cc.
4159     for (size_t reg = 0; reg < num_regs; ++reg) {
4160       StackReference<mirror::Object>* ref_addr = vreg_ref_base + reg;
4161       mirror::Object* ref = ref_addr->AsMirrorPtr();
4162       if (ref != nullptr) {
4163         mirror::Object* new_ref = ref;
4164         visitor_(&new_ref, reg, this);
4165         if (new_ref != ref) {
4166           ref_addr->Assign(new_ref);
4167           StackReference<mirror::Object>* int_addr = vreg_int_base + reg;
4168           int_addr->Assign(new_ref);
4169         }
4170       }
4171     }
4172   }
4173 
4174   template <typename T>
4175   ALWAYS_INLINE
VisitQuickFrameWithVregCallback()4176   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
4177     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
4178     DCHECK(cur_quick_frame != nullptr);
4179     ArtMethod* m = *cur_quick_frame;
4180     VisitDeclaringClass(m);
4181 
4182     if (m->IsNative()) {
4183       // TODO: Spill the `this` reference in the AOT-compiled String.charAt()
4184       // slow-path for throwing SIOOBE, so that we can remove this carve-out.
4185       if (UNLIKELY(m->IsIntrinsic()) &&
4186           m->GetIntrinsic() == enum_cast<uint32_t>(Intrinsics::kStringCharAt)) {
4187         // The String.charAt() method is AOT-compiled with an intrinsic implementation
4188         // instead of a JNI stub. It has a slow path that constructs a runtime frame
4189         // for throwing SIOOBE and in that path we do not get the `this` pointer
4190         // spilled on the stack, so there is nothing to visit. We can distinguish
4191         // this from the GenericJni path by checking that the PC is in the boot image
4192         // (PC shall be known thanks to the runtime frame for throwing SIOOBE).
4193         // Note that JIT does not emit that intrinic implementation.
4194         const void* pc = reinterpret_cast<const void*>(GetCurrentQuickFramePc());
4195         if (pc != nullptr && Runtime::Current()->GetHeap()->IsInBootImageOatFile(pc)) {
4196           return;
4197         }
4198       }
4199       // Native methods spill their arguments to the reserved vregs in the caller's frame
4200       // and use pointers to these stack references as jobject, jclass, jarray, etc.
4201       // Note: We can come here for a @CriticalNative method when it needs to resolve the
4202       // target native function but there would be no references to visit below.
4203       const size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes();
4204       const size_t method_pointer_size = static_cast<size_t>(kRuntimePointerSize);
4205       uint32_t* current_vreg = reinterpret_cast<uint32_t*>(
4206           reinterpret_cast<uint8_t*>(cur_quick_frame) + frame_size + method_pointer_size);
4207       auto visit = [&]() REQUIRES_SHARED(Locks::mutator_lock_) {
4208         auto* ref_addr = reinterpret_cast<StackReference<mirror::Object>*>(current_vreg);
4209         mirror::Object* ref = ref_addr->AsMirrorPtr();
4210         if (ref != nullptr) {
4211           mirror::Object* new_ref = ref;
4212           visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kNativeReferenceArgument, this);
4213           if (ref != new_ref) {
4214             ref_addr->Assign(new_ref);
4215           }
4216         }
4217       };
4218       const char* shorty = m->GetShorty();
4219       if (!m->IsStatic()) {
4220         visit();
4221         current_vreg += 1u;
4222       }
4223       for (shorty += 1u; *shorty != 0; ++shorty) {
4224         switch (*shorty) {
4225           case 'D':
4226           case 'J':
4227             current_vreg += 2u;
4228             break;
4229           case 'L':
4230             visit();
4231             FALLTHROUGH_INTENDED;
4232           default:
4233             current_vreg += 1u;
4234             break;
4235         }
4236       }
4237     } else if (!m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
4238       // Process register map (which native, runtime and proxy methods don't have)
4239       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
4240       DCHECK(method_header->IsOptimized());
4241       StackReference<mirror::Object>* vreg_base =
4242           reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame);
4243       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
4244       CodeInfo code_info = kPrecise
4245           ? CodeInfo(method_header)  // We will need dex register maps.
4246           : CodeInfo::DecodeGcMasksOnly(method_header);
4247       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
4248       DCHECK(map.IsValid());
4249 
4250       T vreg_info(m, code_info, map, visitor_);
4251 
4252       // Visit stack entries that hold pointers.
4253       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map);
4254       for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) {
4255         if (stack_mask.LoadBit(i)) {
4256           StackReference<mirror::Object>* ref_addr = vreg_base + i;
4257           mirror::Object* ref = ref_addr->AsMirrorPtr();
4258           if (ref != nullptr) {
4259             mirror::Object* new_ref = ref;
4260             vreg_info.VisitStack(&new_ref, i, this);
4261             if (ref != new_ref) {
4262               ref_addr->Assign(new_ref);
4263             }
4264           }
4265         }
4266       }
4267       // Visit callee-save registers that hold pointers.
4268       uint32_t register_mask = code_info.GetRegisterMaskOf(map);
4269       for (uint32_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
4270         if (register_mask & (1 << i)) {
4271           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
4272           if (kIsDebugBuild && ref_addr == nullptr) {
4273             std::string thread_name;
4274             GetThread()->GetThreadName(thread_name);
4275             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
4276             DescribeStack(GetThread());
4277             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
4278                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
4279           }
4280           if (*ref_addr != nullptr) {
4281             vreg_info.VisitRegister(ref_addr, i, this);
4282           }
4283         }
4284       }
4285     } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
4286       // If this is a proxy method, visit its reference arguments.
4287       DCHECK(!m->IsStatic());
4288       DCHECK(!m->IsNative());
4289       std::vector<StackReference<mirror::Object>*> ref_addrs =
4290           GetProxyReferenceArguments(cur_quick_frame);
4291       for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
4292         mirror::Object* ref = ref_addr->AsMirrorPtr();
4293         if (ref != nullptr) {
4294           mirror::Object* new_ref = ref;
4295           visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kProxyReferenceArgument, this);
4296           if (ref != new_ref) {
4297             ref_addr->Assign(new_ref);
4298           }
4299         }
4300       }
4301     }
4302   }
4303 
VisitQuickFrame()4304   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
4305     if (kPrecise) {
4306       VisitQuickFramePrecise();
4307     } else {
4308       VisitQuickFrameNonPrecise();
4309     }
4310   }
4311 
VisitQuickFrameNonPrecise()4312   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
4313     struct UndefinedVRegInfo {
4314       UndefinedVRegInfo([[maybe_unused]] ArtMethod* method,
4315                         [[maybe_unused]] const CodeInfo& code_info,
4316                         [[maybe_unused]] const StackMap& map,
4317                         RootVisitor& _visitor)
4318           : visitor(_visitor) {}
4319 
4320       ALWAYS_INLINE
4321       void VisitStack(mirror::Object** ref,
4322                       [[maybe_unused]] size_t stack_index,
4323                       const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
4324         visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
4325       }
4326 
4327       ALWAYS_INLINE
4328       void VisitRegister(mirror::Object** ref,
4329                          [[maybe_unused]] size_t register_index,
4330                          const StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
4331         visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
4332       }
4333 
4334       RootVisitor& visitor;
4335     };
4336     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
4337   }
4338 
VisitQuickFramePrecise()4339   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
4340     struct StackMapVRegInfo {
4341       StackMapVRegInfo(ArtMethod* method,
4342                        const CodeInfo& _code_info,
4343                        const StackMap& map,
4344                        RootVisitor& _visitor)
4345           : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
4346             code_info(_code_info),
4347             dex_register_map(code_info.GetDexRegisterMapOf(map)),
4348             visitor(_visitor) {
4349         DCHECK_EQ(dex_register_map.size(), number_of_dex_registers);
4350       }
4351 
4352       // TODO: If necessary, we should consider caching a reverse map instead of the linear
4353       //       lookups for each location.
4354       void FindWithType(const size_t index,
4355                         const DexRegisterLocation::Kind kind,
4356                         mirror::Object** ref,
4357                         const StackVisitor* stack_visitor)
4358           REQUIRES_SHARED(Locks::mutator_lock_) {
4359         bool found = false;
4360         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
4361           DexRegisterLocation location = dex_register_map[dex_reg];
4362           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
4363             visitor(ref, dex_reg, stack_visitor);
4364             found = true;
4365           }
4366         }
4367 
4368         if (!found) {
4369           // If nothing found, report with unknown.
4370           visitor(ref, JavaFrameRootInfo::kUnknownVreg, stack_visitor);
4371         }
4372       }
4373 
4374       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
4375           REQUIRES_SHARED(Locks::mutator_lock_) {
4376         const size_t stack_offset = stack_index * kFrameSlotSize;
4377         FindWithType(stack_offset,
4378                      DexRegisterLocation::Kind::kInStack,
4379                      ref,
4380                      stack_visitor);
4381       }
4382 
4383       void VisitRegister(mirror::Object** ref,
4384                          size_t register_index,
4385                          const StackVisitor* stack_visitor)
4386           REQUIRES_SHARED(Locks::mutator_lock_) {
4387         FindWithType(register_index,
4388                      DexRegisterLocation::Kind::kInRegister,
4389                      ref,
4390                      stack_visitor);
4391       }
4392 
4393       size_t number_of_dex_registers;
4394       const CodeInfo& code_info;
4395       DexRegisterMap dex_register_map;
4396       RootVisitor& visitor;
4397     };
4398     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
4399   }
4400 
4401   // Visitor for when we visit a root.
4402   RootVisitor& visitor_;
4403   bool visit_declaring_class_;
4404 };
4405 
4406 class RootCallbackVisitor {
4407  public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)4408   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
4409 
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const4410   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
4411       REQUIRES_SHARED(Locks::mutator_lock_) {
4412     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
4413   }
4414 
4415  private:
4416   RootVisitor* const visitor_;
4417   const uint32_t tid_;
4418 };
4419 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)4420 void Thread::VisitReflectiveTargets(ReflectiveValueVisitor* visitor) {
4421   for (BaseReflectiveHandleScope* brhs = GetTopReflectiveHandleScope();
4422        brhs != nullptr;
4423        brhs = brhs->GetLink()) {
4424     brhs->VisitTargets(visitor);
4425   }
4426 }
4427 
4428 // FIXME: clang-r433403 reports the below function exceeds frame size limit.
4429 // http://b/197647048
4430 #pragma GCC diagnostic push
4431 #pragma GCC diagnostic ignored "-Wframe-larger-than="
4432 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)4433 void Thread::VisitRoots(RootVisitor* visitor) {
4434   const uint32_t thread_id = GetThreadId();
4435   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
4436   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
4437     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
4438                        RootInfo(kRootNativeStack, thread_id));
4439   }
4440   if (tlsPtr_.async_exception != nullptr) {
4441     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
4442                        RootInfo(kRootNativeStack, thread_id));
4443   }
4444   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
4445   tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
4446   tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
4447   HandleScopeVisitRoots(visitor, thread_id);
4448   // Visit roots for deoptimization.
4449   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
4450     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4451     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4452     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
4453          record != nullptr;
4454          record = record->GetLink()) {
4455       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
4456            shadow_frame != nullptr;
4457            shadow_frame = shadow_frame->GetLink()) {
4458         mapper.VisitShadowFrame(shadow_frame);
4459       }
4460     }
4461   }
4462   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
4463        record != nullptr;
4464        record = record->GetLink()) {
4465     if (record->IsReference()) {
4466       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
4467                                   RootInfo(kRootThreadObject, thread_id));
4468     }
4469     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
4470                                 RootInfo(kRootThreadObject, thread_id));
4471   }
4472   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
4473     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4474     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4475     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
4476          record != nullptr;
4477          record = record->GetNext()) {
4478       mapper.VisitShadowFrame(record->GetShadowFrame());
4479     }
4480   }
4481   // Visit roots on this thread's stack
4482   RuntimeContextType context;
4483   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4484   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
4485   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
4486 }
4487 #pragma GCC diagnostic pop
4488 
SweepCacheEntry(IsMarkedVisitor * visitor,const Instruction * inst,size_t * value)4489 static void SweepCacheEntry(IsMarkedVisitor* visitor, const Instruction* inst, size_t* value)
4490     REQUIRES_SHARED(Locks::mutator_lock_) {
4491   if (inst == nullptr) {
4492     return;
4493   }
4494   using Opcode = Instruction::Code;
4495   Opcode opcode = inst->Opcode();
4496   switch (opcode) {
4497     case Opcode::NEW_INSTANCE:
4498     case Opcode::CHECK_CAST:
4499     case Opcode::INSTANCE_OF:
4500     case Opcode::NEW_ARRAY:
4501     case Opcode::CONST_CLASS: {
4502       mirror::Class* klass = reinterpret_cast<mirror::Class*>(*value);
4503       if (klass == nullptr || klass == Runtime::GetWeakClassSentinel()) {
4504         return;
4505       }
4506       mirror::Class* new_klass = down_cast<mirror::Class*>(visitor->IsMarked(klass));
4507       if (new_klass == nullptr) {
4508         *value = reinterpret_cast<size_t>(Runtime::GetWeakClassSentinel());
4509       } else if (new_klass != klass) {
4510         *value = reinterpret_cast<size_t>(new_klass);
4511       }
4512       return;
4513     }
4514     case Opcode::CONST_STRING:
4515     case Opcode::CONST_STRING_JUMBO: {
4516       mirror::Object* object = reinterpret_cast<mirror::Object*>(*value);
4517       if (object == nullptr) {
4518         return;
4519       }
4520       mirror::Object* new_object = visitor->IsMarked(object);
4521       // We know the string is marked because it's a strongly-interned string that
4522       // is always alive (see b/117621117 for trying to make those strings weak).
4523       if (kIsDebugBuild && new_object == nullptr) {
4524         // (b/275005060) Currently the problem is reported only on CC GC.
4525         // Therefore we log it with more information. But since the failure rate
4526         // is quite high, sampling it.
4527         if (gUseReadBarrier) {
4528           Runtime* runtime = Runtime::Current();
4529           gc::collector::ConcurrentCopying* cc = runtime->GetHeap()->ConcurrentCopyingCollector();
4530           CHECK_NE(cc, nullptr);
4531           LOG(FATAL) << cc->DumpReferenceInfo(object, "string")
4532                      << " string interned: " << std::boolalpha
4533                      << runtime->GetInternTable()->LookupStrong(Thread::Current(),
4534                                                                 down_cast<mirror::String*>(object))
4535                      << std::noboolalpha;
4536         } else {
4537           // Other GCs
4538           LOG(FATAL) << __FUNCTION__
4539                      << ": IsMarked returned null for a strongly interned string: " << object;
4540         }
4541       } else if (new_object != object) {
4542         *value = reinterpret_cast<size_t>(new_object);
4543       }
4544       return;
4545     }
4546     default:
4547       // The following opcode ranges store non-reference values.
4548       if ((Opcode::IGET <= opcode && opcode <= Opcode::SPUT_SHORT) ||
4549           (Opcode::INVOKE_VIRTUAL <= opcode && opcode <= Opcode::INVOKE_INTERFACE_RANGE)) {
4550         return;  // Nothing to do for the GC.
4551       }
4552       // New opcode is using the cache. We need to explicitly handle it in this method.
4553       DCHECK(false) << "Unhandled opcode " << inst->Opcode();
4554   }
4555 }
4556 
SweepInterpreterCache(IsMarkedVisitor * visitor)4557 void Thread::SweepInterpreterCache(IsMarkedVisitor* visitor) {
4558   for (InterpreterCache::Entry& entry : GetInterpreterCache()->GetArray()) {
4559     SweepCacheEntry(visitor, reinterpret_cast<const Instruction*>(entry.first), &entry.second);
4560   }
4561 }
4562 
4563 // FIXME: clang-r433403 reports the below function exceeds frame size limit.
4564 // http://b/197647048
4565 #pragma GCC diagnostic push
4566 #pragma GCC diagnostic ignored "-Wframe-larger-than="
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)4567 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
4568   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
4569     VisitRoots</* kPrecise= */ true>(visitor);
4570   } else {
4571     VisitRoots</* kPrecise= */ false>(visitor);
4572   }
4573 }
4574 #pragma GCC diagnostic pop
4575 
4576 class VerifyRootVisitor : public SingleRootVisitor {
4577  public:
VisitRoot(mirror::Object * root,const RootInfo & info)4578   void VisitRoot(mirror::Object* root, [[maybe_unused]] const RootInfo& info) override
4579       REQUIRES_SHARED(Locks::mutator_lock_) {
4580     VerifyObject(root);
4581   }
4582 };
4583 
VerifyStackImpl()4584 void Thread::VerifyStackImpl() {
4585   if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
4586     VerifyRootVisitor visitor;
4587     std::unique_ptr<Context> context(Context::Create());
4588     RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
4589     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
4590     mapper.WalkStack();
4591   }
4592 }
4593 
4594 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()4595 void Thread::SetStackEndForStackOverflow() {
4596   // During stack overflow we allow use of the full stack.
4597   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
4598     // However, we seem to have already extended to use the full stack.
4599     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
4600                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
4601     DumpStack(LOG_STREAM(ERROR));
4602     LOG(FATAL) << "Recursive stack overflow.";
4603   }
4604 
4605   tlsPtr_.stack_end = tlsPtr_.stack_begin;
4606 
4607   // Remove the stack overflow protection if is it set up.
4608   bool implicit_stack_check = Runtime::Current()->GetImplicitStackOverflowChecks();
4609   if (implicit_stack_check) {
4610     if (!UnprotectStack()) {
4611       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
4612     }
4613   }
4614 }
4615 
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)4616 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
4617   DCHECK_LE(start, end);
4618   DCHECK_LE(end, limit);
4619   tlsPtr_.thread_local_start = start;
4620   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
4621   tlsPtr_.thread_local_end = end;
4622   tlsPtr_.thread_local_limit = limit;
4623   tlsPtr_.thread_local_objects = 0;
4624 }
4625 
ResetTlab()4626 void Thread::ResetTlab() {
4627   gc::Heap* const heap = Runtime::Current()->GetHeap();
4628   if (heap->GetHeapSampler().IsEnabled()) {
4629     // Note: We always ResetTlab before SetTlab, therefore we can do the sample
4630     // offset adjustment here.
4631     heap->AdjustSampleOffset(GetTlabPosOffset());
4632     VLOG(heap) << "JHP: ResetTlab, Tid: " << GetTid()
4633                << " adjustment = "
4634                << (tlsPtr_.thread_local_pos - tlsPtr_.thread_local_start);
4635   }
4636   SetTlab(nullptr, nullptr, nullptr);
4637 }
4638 
HasTlab() const4639 bool Thread::HasTlab() const {
4640   const bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
4641   if (has_tlab) {
4642     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
4643   } else {
4644     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
4645   }
4646   return has_tlab;
4647 }
4648 
AdjustTlab(size_t slide_bytes)4649 void Thread::AdjustTlab(size_t slide_bytes) {
4650   if (HasTlab()) {
4651     tlsPtr_.thread_local_start -= slide_bytes;
4652     tlsPtr_.thread_local_pos -= slide_bytes;
4653     tlsPtr_.thread_local_end -= slide_bytes;
4654     tlsPtr_.thread_local_limit -= slide_bytes;
4655   }
4656 }
4657 
operator <<(std::ostream & os,const Thread & thread)4658 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
4659   thread.ShortDump(os);
4660   return os;
4661 }
4662 
ProtectStack(bool fatal_on_error)4663 bool Thread::ProtectStack(bool fatal_on_error) {
4664   void* pregion = tlsPtr_.stack_begin - GetStackOverflowProtectedSize();
4665   VLOG(threads) << "Protecting stack at " << pregion;
4666   if (mprotect(pregion, GetStackOverflowProtectedSize(), PROT_NONE) == -1) {
4667     if (fatal_on_error) {
4668       // b/249586057, LOG(FATAL) times out
4669       LOG(ERROR) << "Unable to create protected region in stack for implicit overflow check. "
4670           "Reason: "
4671           << strerror(errno) << " size:  " << GetStackOverflowProtectedSize();
4672       exit(1);
4673     }
4674     return false;
4675   }
4676   return true;
4677 }
4678 
UnprotectStack()4679 bool Thread::UnprotectStack() {
4680   void* pregion = tlsPtr_.stack_begin - GetStackOverflowProtectedSize();
4681   VLOG(threads) << "Unprotecting stack at " << pregion;
4682   return mprotect(pregion, GetStackOverflowProtectedSize(), PROT_READ|PROT_WRITE) == 0;
4683 }
4684 
NumberOfHeldMutexes() const4685 size_t Thread::NumberOfHeldMutexes() const {
4686   size_t count = 0;
4687   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
4688     count += mu != nullptr ? 1 : 0;
4689   }
4690   return count;
4691 }
4692 
DeoptimizeWithDeoptimizationException(JValue * result)4693 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
4694   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
4695   ClearException();
4696   ObjPtr<mirror::Throwable> pending_exception;
4697   bool from_code = false;
4698   DeoptimizationMethodType method_type;
4699   PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
4700   SetTopOfStack(nullptr);
4701 
4702   // Restore the exception that was pending before deoptimization then interpret the
4703   // deoptimized frames.
4704   if (pending_exception != nullptr) {
4705     SetException(pending_exception);
4706   }
4707 
4708   ShadowFrame* shadow_frame = MaybePopDeoptimizedStackedShadowFrame();
4709   // We may not have a shadow frame if we deoptimized at the return of the
4710   // quick_to_interpreter_bridge which got directly called by art_quick_invoke_stub.
4711   if (shadow_frame != nullptr) {
4712     SetTopOfShadowStack(shadow_frame);
4713     interpreter::EnterInterpreterFromDeoptimize(this,
4714                                                 shadow_frame,
4715                                                 result,
4716                                                 from_code,
4717                                                 method_type);
4718   }
4719 }
4720 
SetAsyncException(ObjPtr<mirror::Throwable> new_exception)4721 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
4722   CHECK(new_exception != nullptr);
4723   Runtime::Current()->SetAsyncExceptionsThrown();
4724   if (kIsDebugBuild) {
4725     // Make sure we are in a checkpoint.
4726     MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
4727     CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
4728         << "It doesn't look like this was called in a checkpoint! this: "
4729         << this << " count: " << GetSuspendCount();
4730   }
4731   tlsPtr_.async_exception = new_exception.Ptr();
4732 }
4733 
ObserveAsyncException()4734 bool Thread::ObserveAsyncException() {
4735   DCHECK(this == Thread::Current());
4736   if (tlsPtr_.async_exception != nullptr) {
4737     if (tlsPtr_.exception != nullptr) {
4738       LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
4739                    << tlsPtr_.exception->Dump();
4740       LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
4741     }
4742     tlsPtr_.exception = tlsPtr_.async_exception;
4743     tlsPtr_.async_exception = nullptr;
4744     return true;
4745   } else {
4746     return IsExceptionPending();
4747   }
4748 }
4749 
SetException(ObjPtr<mirror::Throwable> new_exception)4750 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4751   CHECK(new_exception != nullptr);
4752   // TODO: DCHECK(!IsExceptionPending());
4753   tlsPtr_.exception = new_exception.Ptr();
4754 }
4755 
IsAotCompiler()4756 bool Thread::IsAotCompiler() {
4757   return Runtime::Current()->IsAotCompiler();
4758 }
4759 
GetPeerFromOtherThread()4760 mirror::Object* Thread::GetPeerFromOtherThread() {
4761   Thread* self = Thread::Current();
4762   if (this == self) {
4763     // We often call this on every thread, including ourselves.
4764     return GetPeer();
4765   }
4766   // If "this" thread is not suspended, it could disappear.
4767   DCHECK(IsSuspended()) << *this;
4768   DCHECK(tlsPtr_.jpeer == nullptr);
4769   // Some JVMTI code may unfortunately hold thread_list_lock_, but if it does, it should hold the
4770   // mutator lock in exclusive mode, and we should not have a pending flip function.
4771   if (kIsDebugBuild && Locks::thread_list_lock_->IsExclusiveHeld(self)) {
4772     Locks::mutator_lock_->AssertExclusiveHeld(self);
4773     CHECK(!ReadFlag(ThreadFlag::kPendingFlipFunction));
4774   }
4775   // Ensure that opeer is not obsolete.
4776   EnsureFlipFunctionStarted(self, this);
4777   if (ReadFlag(ThreadFlag::kRunningFlipFunction)) {
4778     // Does not release mutator lock. Hence no new flip requests can be issued.
4779     WaitForFlipFunction(self);
4780   }
4781   return tlsPtr_.opeer;
4782 }
4783 
LockedGetPeerFromOtherThread(ThreadExitFlag * tef)4784 mirror::Object* Thread::LockedGetPeerFromOtherThread(ThreadExitFlag* tef) {
4785   DCHECK(tlsPtr_.jpeer == nullptr);
4786   Thread* self = Thread::Current();
4787   Locks::thread_list_lock_->AssertHeld(self);
4788   if (ReadFlag(ThreadFlag::kPendingFlipFunction)) {
4789     // It is unsafe to call EnsureFlipFunctionStarted with thread_list_lock_. Thus we temporarily
4790     // release it, taking care to handle the case in which "this" thread disapppears while we no
4791     // longer hold it.
4792     Locks::thread_list_lock_->Unlock(self);
4793     EnsureFlipFunctionStarted(self, this, StateAndFlags(0), tef);
4794     Locks::thread_list_lock_->Lock(self);
4795     if (tef->HasExited()) {
4796       return nullptr;
4797     }
4798   }
4799   if (ReadFlag(ThreadFlag::kRunningFlipFunction)) {
4800     // Does not release mutator lock. Hence no new flip requests can be issued.
4801     WaitForFlipFunction(self);
4802   }
4803   return tlsPtr_.opeer;
4804 }
4805 
SetReadBarrierEntrypoints()4806 void Thread::SetReadBarrierEntrypoints() {
4807   // Make sure entrypoints aren't null.
4808   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true);
4809 }
4810 
ClearAllInterpreterCaches()4811 void Thread::ClearAllInterpreterCaches() {
4812   static struct ClearInterpreterCacheClosure : Closure {
4813     void Run(Thread* thread) override {
4814       thread->GetInterpreterCache()->Clear(thread);
4815     }
4816   } closure;
4817   Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
4818 }
4819 
4820 
ReleaseLongJumpContextInternal()4821 void Thread::ReleaseLongJumpContextInternal() {
4822   // Each QuickExceptionHandler gets a long jump context and uses
4823   // it for doing the long jump, after finding catch blocks/doing deoptimization.
4824   // Both finding catch blocks and deoptimization can trigger another
4825   // exception such as a result of class loading. So there can be nested
4826   // cases of exception handling and multiple contexts being used.
4827   // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context
4828   // for reuse so there is no need to always allocate a new one each time when
4829   // getting a context. Since we only keep one context for reuse, delete the
4830   // existing one since the passed in context is yet to be used for longjump.
4831   delete tlsPtr_.long_jump_context;
4832 }
4833 
SetNativePriority(int new_priority)4834 void Thread::SetNativePriority(int new_priority) {
4835   palette_status_t status = PaletteSchedSetPriority(GetTid(), new_priority);
4836   CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
4837 }
4838 
GetNativePriority() const4839 int Thread::GetNativePriority() const {
4840   int priority = 0;
4841   palette_status_t status = PaletteSchedGetPriority(GetTid(), &priority);
4842   CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
4843   return priority;
4844 }
4845 
AbortInThis(const std::string & message)4846 void Thread::AbortInThis(const std::string& message) {
4847   std::string thread_name;
4848   Thread::Current()->GetThreadName(thread_name);
4849   LOG(ERROR) << message;
4850   LOG(ERROR) << "Aborting culprit thread";
4851   Runtime::Current()->SetAbortMessage(("Caused " + thread_name + " failure : " + message).c_str());
4852   // Unlike Runtime::Abort() we do not fflush(nullptr), since we want to send the signal with as
4853   // little delay as possible.
4854   int res = pthread_kill(tlsPtr_.pthread_self, SIGABRT);
4855   if (res != 0) {
4856     LOG(ERROR) << "pthread_kill failed with " << res << " " << strerror(res) << " target was "
4857                << tls32_.tid;
4858   } else {
4859     // Wait for our process to be aborted.
4860     sleep(10 /* seconds */);
4861   }
4862   // The process should have died long before we got here. Never return.
4863   LOG(FATAL) << "Failed to abort in culprit thread: " << message;
4864   UNREACHABLE();
4865 }
4866 
IsSystemDaemon() const4867 bool Thread::IsSystemDaemon() const {
4868   if (GetPeer() == nullptr) {
4869     return false;
4870   }
4871   return WellKnownClasses::java_lang_Thread_systemDaemon->GetBoolean(GetPeer());
4872 }
4873 
StateAndFlagsAsHexString() const4874 std::string Thread::StateAndFlagsAsHexString() const {
4875   std::stringstream result_stream;
4876   result_stream << std::hex << GetStateAndFlags(std::memory_order_relaxed).GetValue();
4877   return result_stream.str();
4878 }
4879 
ScopedExceptionStorage(art::Thread * self)4880 ScopedExceptionStorage::ScopedExceptionStorage(art::Thread* self)
4881     : self_(self), hs_(self_), excp_(hs_.NewHandle<art::mirror::Throwable>(self_->GetException())) {
4882   self_->ClearException();
4883 }
4884 
SuppressOldException(const char * message)4885 void ScopedExceptionStorage::SuppressOldException(const char* message) {
4886   CHECK(self_->IsExceptionPending()) << *self_;
4887   ObjPtr<mirror::Throwable> old_suppressed(excp_.Get());
4888   excp_.Assign(self_->GetException());
4889   if (old_suppressed != nullptr) {
4890     LOG(WARNING) << message << "Suppressing old exception: " << old_suppressed->Dump();
4891   }
4892   self_->ClearException();
4893 }
4894 
~ScopedExceptionStorage()4895 ScopedExceptionStorage::~ScopedExceptionStorage() {
4896   CHECK(!self_->IsExceptionPending()) << *self_;
4897   if (!excp_.IsNull()) {
4898     self_->SetException(excp_.Get());
4899   }
4900 }
4901 
4902 }  // namespace art
4903 
4904 #pragma clang diagnostic pop  // -Wconversion
4905