1 /*
2 * Copyright 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "jit.h"
18
19 #include <dlfcn.h>
20 #include <sys/resource.h>
21
22 #include "art_method-inl.h"
23 #include "base/file_utils.h"
24 #include "base/logging.h" // For VLOG.
25 #include "base/memfd.h"
26 #include "base/memory_tool.h"
27 #include "base/pointer_size.h"
28 #include "base/runtime_debug.h"
29 #include "base/scoped_flock.h"
30 #include "base/utils.h"
31 #include "class_root-inl.h"
32 #include "compilation_kind.h"
33 #include "debugger.h"
34 #include "dex/type_lookup_table.h"
35 #include "entrypoints/entrypoint_utils-inl.h"
36 #include "entrypoints/runtime_asm_entrypoints.h"
37 #include "gc/space/image_space.h"
38 #include "interpreter/interpreter.h"
39 #include "jit-inl.h"
40 #include "jit_code_cache.h"
41 #include "jit_create.h"
42 #include "jni/java_vm_ext.h"
43 #include "mirror/method_handle_impl.h"
44 #include "mirror/var_handle.h"
45 #include "oat/image-inl.h"
46 #include "oat/oat_file.h"
47 #include "oat/oat_file_manager.h"
48 #include "oat/oat_quick_method_header.h"
49 #include "oat/stack_map.h"
50 #include "profile/profile_boot_info.h"
51 #include "profile/profile_compilation_info.h"
52 #include "profile_saver.h"
53 #include "runtime.h"
54 #include "runtime_options.h"
55 #include "small_pattern_matcher.h"
56 #include "stack.h"
57 #include "thread-inl.h"
58 #include "thread_list.h"
59
60 using android::base::unique_fd;
61
62 namespace art HIDDEN {
63 namespace jit {
64
65 static constexpr bool kEnableOnStackReplacement = true;
66
67 // JIT compiler
68 JitCompilerInterface* Jit::jit_compiler_ = nullptr;
69
DumpInfo(std::ostream & os)70 void Jit::DumpInfo(std::ostream& os) {
71 code_cache_->Dump(os);
72 cumulative_timings_.Dump(os);
73 MutexLock mu(Thread::Current(), lock_);
74 memory_use_.PrintMemoryUse(os);
75 }
76
DumpForSigQuit(std::ostream & os)77 void Jit::DumpForSigQuit(std::ostream& os) {
78 DumpInfo(os);
79 ProfileSaver::DumpInstanceInfo(os);
80 }
81
AddTimingLogger(const TimingLogger & logger)82 void Jit::AddTimingLogger(const TimingLogger& logger) {
83 cumulative_timings_.AddLogger(logger);
84 }
85
Jit(JitCodeCache * code_cache,JitOptions * options)86 Jit::Jit(JitCodeCache* code_cache, JitOptions* options)
87 : code_cache_(code_cache),
88 options_(options),
89 boot_completed_lock_("Jit::boot_completed_lock_"),
90 cumulative_timings_("JIT timings"),
91 memory_use_("Memory used for compilation", 16),
92 lock_("JIT memory use lock"),
93 zygote_mapping_methods_(),
94 fd_methods_(-1),
95 fd_methods_size_(0) {}
96
Create(JitCodeCache * code_cache,JitOptions * options)97 std::unique_ptr<Jit> Jit::Create(JitCodeCache* code_cache, JitOptions* options) {
98 jit_compiler_ = jit_create();
99 std::unique_ptr<Jit> jit(new Jit(code_cache, options));
100
101 // If the code collector is enabled, check if that still holds:
102 // With 'perf', we want a 1-1 mapping between an address and a method.
103 // We aren't able to keep method pointers live during the instrumentation method entry trampoline
104 // so we will just disable jit-gc if we are doing that.
105 // JitAtFirstUse compiles the methods synchronously on mutator threads. While this should work
106 // in theory it is causing deadlocks in some jvmti tests related to Jit GC. Hence, disabling
107 // Jit GC for now (b/147208992).
108 if (code_cache->GetGarbageCollectCode()) {
109 code_cache->SetGarbageCollectCode(!jit_compiler_->GenerateDebugInfo() &&
110 !jit->JitAtFirstUse());
111 }
112
113 VLOG(jit) << "JIT created with initial_capacity="
114 << PrettySize(options->GetCodeCacheInitialCapacity())
115 << ", max_capacity=" << PrettySize(options->GetCodeCacheMaxCapacity())
116 << ", warmup_threshold=" << options->GetWarmupThreshold()
117 << ", optimize_threshold=" << options->GetOptimizeThreshold()
118 << ", profile_saver_options=" << options->GetProfileSaverOptions();
119
120 // We want to know whether the compiler is compiling baseline, as this
121 // affects how we GC ProfilingInfos.
122 for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
123 if (option == "--baseline") {
124 options->SetUseBaselineCompiler();
125 break;
126 }
127 }
128
129 // Notify native debugger about the classes already loaded before the creation of the jit.
130 jit->DumpTypeInfoForLoadedTypes(Runtime::Current()->GetClassLinker());
131
132 return jit;
133 }
134
135
TryPatternMatch(ArtMethod * method_to_compile,CompilationKind compilation_kind)136 bool Jit::TryPatternMatch(ArtMethod* method_to_compile, CompilationKind compilation_kind) {
137 // Try to pattern match the method. Only on arm and arm64 for now as we have
138 // sufficiently similar calling convention between C++ and managed code.
139 if (kRuntimeISA == InstructionSet::kArm || kRuntimeISA == InstructionSet::kArm64) {
140 if (!Runtime::Current()->IsJavaDebuggable() &&
141 compilation_kind == CompilationKind::kBaseline &&
142 !method_to_compile->StillNeedsClinitCheck()) {
143 const void* pattern = SmallPatternMatcher::TryMatch(method_to_compile);
144 if (pattern != nullptr) {
145 VLOG(jit) << "Successfully pattern matched " << method_to_compile->PrettyMethod();
146 Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(method_to_compile, pattern);
147 return true;
148 }
149 }
150 }
151 return false;
152 }
153
CompileMethodInternal(ArtMethod * method,Thread * self,CompilationKind compilation_kind,bool prejit)154 bool Jit::CompileMethodInternal(ArtMethod* method,
155 Thread* self,
156 CompilationKind compilation_kind,
157 bool prejit) {
158 DCHECK(Runtime::Current()->UseJitCompilation());
159 DCHECK(!method->IsRuntimeMethod());
160
161 // If the baseline flag was explicitly passed in the compiler options, change the compilation kind
162 // from optimized to baseline.
163 if (jit_compiler_->IsBaselineCompiler() && compilation_kind == CompilationKind::kOptimized) {
164 compilation_kind = CompilationKind::kBaseline;
165 }
166
167 if (method->IsPreCompiled() && !prejit) {
168 VLOG(jit) << "JIT not compiling " << method->PrettyMethod()
169 << " due to method marked pre-compile,"
170 << " and the compilation request isn't for pre-compilation.";
171 return false;
172 }
173
174 // If we're asked to compile baseline, but we cannot allocate profiling infos,
175 // change the compilation kind to optimized.
176 if ((compilation_kind == CompilationKind::kBaseline) &&
177 !GetCodeCache()->CanAllocateProfilingInfo()) {
178 compilation_kind = CompilationKind::kOptimized;
179 }
180
181 // Don't compile the method if it has breakpoints.
182 if (Runtime::Current()->GetInstrumentation()->IsDeoptimized(method)) {
183 VLOG(jit) << "JIT not compiling " << method->PrettyMethod()
184 << " due to not being safe to jit according to runtime-callbacks. For example, there"
185 << " could be breakpoints in this method.";
186 return false;
187 }
188
189 if (!method->IsCompilable()) {
190 DCHECK(method->GetDeclaringClass()->IsObsoleteObject() ||
191 method->IsProxyMethod()) << method->PrettyMethod();
192 VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to method being made "
193 << "obsolete while waiting for JIT task to run. This probably happened due to "
194 << "concurrent structural class redefinition.";
195 return false;
196 }
197
198 // Don't compile the method if we are supposed to be deoptimized.
199 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
200 if (instrumentation->AreAllMethodsDeoptimized() || instrumentation->IsDeoptimized(method)) {
201 VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to deoptimization";
202 return false;
203 }
204
205 JitMemoryRegion* region = GetCodeCache()->GetCurrentRegion();
206 if ((compilation_kind == CompilationKind::kOsr) && GetCodeCache()->IsSharedRegion(*region)) {
207 VLOG(jit) << "JIT not osr compiling "
208 << method->PrettyMethod()
209 << " due to using shared region";
210 return false;
211 }
212
213 // If we get a request to compile a proxy method, we pass the actual Java method
214 // of that proxy method, as the compiler does not expect a proxy method.
215 ArtMethod* method_to_compile = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
216
217 if (TryPatternMatch(method_to_compile, compilation_kind)) {
218 return true;
219 }
220
221 if (!code_cache_->NotifyCompilationOf(method_to_compile, self, compilation_kind, prejit)) {
222 return false;
223 }
224
225 VLOG(jit) << "Compiling method "
226 << ArtMethod::PrettyMethod(method_to_compile)
227 << " kind=" << compilation_kind;
228 bool success = jit_compiler_->CompileMethod(self, region, method_to_compile, compilation_kind);
229 code_cache_->DoneCompiling(method_to_compile, self);
230 if (!success) {
231 VLOG(jit) << "Failed to compile method "
232 << ArtMethod::PrettyMethod(method_to_compile)
233 << " kind=" << compilation_kind;
234 }
235 if (kIsDebugBuild) {
236 if (self->IsExceptionPending()) {
237 mirror::Throwable* exception = self->GetException();
238 LOG(FATAL) << "No pending exception expected after compiling "
239 << ArtMethod::PrettyMethod(method)
240 << ": "
241 << exception->Dump();
242 }
243 }
244 return success;
245 }
246
WaitForWorkersToBeCreated()247 void Jit::WaitForWorkersToBeCreated() {
248 if (thread_pool_ != nullptr) {
249 thread_pool_->WaitForWorkersToBeCreated();
250 }
251 }
252
DeleteThreadPool()253 void Jit::DeleteThreadPool() {
254 Thread* self = Thread::Current();
255 if (thread_pool_ != nullptr) {
256 std::unique_ptr<JitThreadPool> pool;
257 {
258 ScopedSuspendAll ssa(__FUNCTION__);
259 // Clear thread_pool_ field while the threads are suspended.
260 // A mutator in the 'AddSamples' method will check against it.
261 pool = std::move(thread_pool_);
262 }
263
264 // When running sanitized, let all tasks finish to not leak. Otherwise just clear the queue.
265 if (!kRunningOnMemoryTool) {
266 pool->StopWorkers(self);
267 pool->RemoveAllTasks(self);
268 }
269 // We could just suspend all threads, but we know those threads
270 // will finish in a short period, so it's not worth adding a suspend logic
271 // here. Besides, this is only done for shutdown.
272 pool->Wait(self, false, false);
273 }
274 }
275
StartProfileSaver(const std::string & profile_filename,const std::vector<std::string> & code_paths,const std::string & ref_profile_filename)276 void Jit::StartProfileSaver(const std::string& profile_filename,
277 const std::vector<std::string>& code_paths,
278 const std::string& ref_profile_filename) {
279 if (options_->GetSaveProfilingInfo()) {
280 ProfileSaver::Start(options_->GetProfileSaverOptions(),
281 profile_filename,
282 code_cache_,
283 code_paths,
284 ref_profile_filename);
285 }
286 }
287
StopProfileSaver()288 void Jit::StopProfileSaver() {
289 if (options_->GetSaveProfilingInfo() && ProfileSaver::IsStarted()) {
290 ProfileSaver::Stop(options_->DumpJitInfoOnShutdown());
291 }
292 }
293
JitAtFirstUse()294 bool Jit::JitAtFirstUse() {
295 return HotMethodThreshold() == 0;
296 }
297
CanInvokeCompiledCode(ArtMethod * method)298 bool Jit::CanInvokeCompiledCode(ArtMethod* method) {
299 return code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode());
300 }
301
~Jit()302 Jit::~Jit() {
303 DCHECK_IMPLIES(options_->GetSaveProfilingInfo(), !ProfileSaver::IsStarted());
304 if (options_->DumpJitInfoOnShutdown()) {
305 DumpInfo(LOG_STREAM(INFO));
306 Runtime::Current()->DumpDeoptimizations(LOG_STREAM(INFO));
307 }
308 DeleteThreadPool();
309 if (jit_compiler_ != nullptr) {
310 delete jit_compiler_;
311 jit_compiler_ = nullptr;
312 }
313 }
314
NewTypeLoadedIfUsingJit(mirror::Class * type)315 void Jit::NewTypeLoadedIfUsingJit(mirror::Class* type) {
316 if (!Runtime::Current()->UseJitCompilation()) {
317 // No need to notify if we only use the JIT to save profiles.
318 return;
319 }
320 jit::Jit* jit = Runtime::Current()->GetJit();
321 if (jit->jit_compiler_->GenerateDebugInfo()) {
322 jit_compiler_->TypesLoaded(&type, 1);
323 }
324 }
325
DumpTypeInfoForLoadedTypes(ClassLinker * linker)326 void Jit::DumpTypeInfoForLoadedTypes(ClassLinker* linker) {
327 struct CollectClasses : public ClassVisitor {
328 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
329 classes_.push_back(klass.Ptr());
330 return true;
331 }
332 std::vector<mirror::Class*> classes_;
333 };
334
335 if (jit_compiler_->GenerateDebugInfo()) {
336 ScopedObjectAccess so(Thread::Current());
337
338 CollectClasses visitor;
339 linker->VisitClasses(&visitor);
340 jit_compiler_->TypesLoaded(visitor.classes_.data(), visitor.classes_.size());
341 }
342 }
343
344 extern "C" void art_quick_osr_stub(void** stack,
345 size_t stack_size_in_bytes,
346 const uint8_t* native_pc,
347 JValue* result,
348 const char* shorty,
349 Thread* self);
350
PrepareForOsr(ArtMethod * method,uint32_t dex_pc,uint32_t * vregs)351 OsrData* Jit::PrepareForOsr(ArtMethod* method, uint32_t dex_pc, uint32_t* vregs) {
352 if (!kEnableOnStackReplacement) {
353 return nullptr;
354 }
355
356 // Cheap check if the method has been compiled already. That's an indicator that we should
357 // osr into it.
358 if (!GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
359 return nullptr;
360 }
361
362 // Fetch some data before looking up for an OSR method. We don't want thread
363 // suspension once we hold an OSR method, as the JIT code cache could delete the OSR
364 // method while we are being suspended.
365 CodeItemDataAccessor accessor(method->DexInstructionData());
366 const size_t number_of_vregs = accessor.RegistersSize();
367 std::string method_name(VLOG_IS_ON(jit) ? method->PrettyMethod() : "");
368 OsrData* osr_data = nullptr;
369
370 {
371 ScopedAssertNoThreadSuspension sts("Holding OSR method");
372 const OatQuickMethodHeader* osr_method = GetCodeCache()->LookupOsrMethodHeader(method);
373 if (osr_method == nullptr) {
374 // No osr method yet, just return to the interpreter.
375 return nullptr;
376 }
377
378 CodeInfo code_info(osr_method);
379
380 // Find stack map starting at the target dex_pc.
381 StackMap stack_map = code_info.GetOsrStackMapForDexPc(dex_pc);
382 if (!stack_map.IsValid()) {
383 // There is no OSR stack map for this dex pc offset. Just return to the interpreter in the
384 // hope that the next branch has one.
385 return nullptr;
386 }
387
388 // We found a stack map, now fill the frame with dex register values from the interpreter's
389 // shadow frame.
390 DexRegisterMap vreg_map = code_info.GetDexRegisterMapOf(stack_map);
391 DCHECK_EQ(vreg_map.size(), number_of_vregs);
392
393 size_t frame_size = osr_method->GetFrameSizeInBytes();
394
395 // Allocate memory to put shadow frame values. The osr stub will copy that memory to
396 // stack.
397 // Note that we could pass the shadow frame to the stub, and let it copy the values there,
398 // but that is engineering complexity not worth the effort for something like OSR.
399 osr_data = reinterpret_cast<OsrData*>(malloc(sizeof(OsrData) + frame_size));
400 if (osr_data == nullptr) {
401 return nullptr;
402 }
403 memset(osr_data, 0, sizeof(OsrData) + frame_size);
404 osr_data->frame_size = frame_size;
405
406 // Art ABI: ArtMethod is at the bottom of the stack.
407 osr_data->memory[0] = method;
408
409 if (vreg_map.empty()) {
410 // If we don't have a dex register map, then there are no live dex registers at
411 // this dex pc.
412 } else {
413 for (uint16_t vreg = 0; vreg < number_of_vregs; ++vreg) {
414 DexRegisterLocation::Kind location = vreg_map[vreg].GetKind();
415 if (location == DexRegisterLocation::Kind::kNone) {
416 // Dex register is dead or uninitialized.
417 continue;
418 }
419
420 if (location == DexRegisterLocation::Kind::kConstant) {
421 // We skip constants because the compiled code knows how to handle them.
422 continue;
423 }
424
425 DCHECK_EQ(location, DexRegisterLocation::Kind::kInStack);
426
427 int32_t vreg_value = vregs[vreg];
428 int32_t slot_offset = vreg_map[vreg].GetStackOffsetInBytes();
429 DCHECK_LT(slot_offset, static_cast<int32_t>(frame_size));
430 DCHECK_GT(slot_offset, 0);
431 (reinterpret_cast<int32_t*>(osr_data->memory))[slot_offset / sizeof(int32_t)] = vreg_value;
432 }
433 }
434
435 osr_data->native_pc = stack_map.GetNativePcOffset(kRuntimeISA) +
436 osr_method->GetEntryPoint();
437 VLOG(jit) << "Jumping to "
438 << method_name
439 << "@"
440 << std::hex << reinterpret_cast<uintptr_t>(osr_data->native_pc);
441 }
442 return osr_data;
443 }
444
MaybeDoOnStackReplacement(Thread * thread,ArtMethod * method,uint32_t dex_pc,int32_t dex_pc_offset,JValue * result)445 bool Jit::MaybeDoOnStackReplacement(Thread* thread,
446 ArtMethod* method,
447 uint32_t dex_pc,
448 int32_t dex_pc_offset,
449 JValue* result) {
450 Jit* jit = Runtime::Current()->GetJit();
451 if (jit == nullptr) {
452 return false;
453 }
454
455 if (UNLIKELY(__builtin_frame_address(0) < thread->GetStackEnd())) {
456 // Don't attempt to do an OSR if we are close to the stack limit. Since
457 // the interpreter frames are still on stack, OSR has the potential
458 // to stack overflow even for a simple loop.
459 // b/27094810.
460 return false;
461 }
462
463 // Get the actual Java method if this method is from a proxy class. The compiler
464 // and the JIT code cache do not expect methods from proxy classes.
465 method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
466
467 // Before allowing the jump, make sure no code is actively inspecting the method to avoid
468 // jumping from interpreter to OSR while e.g. single stepping. Note that we could selectively
469 // disable OSR when single stepping, but that's currently hard to know at this point.
470 // Currently, HaveLocalsChanged is not frame specific. It is possible to make it frame specific
471 // to allow OSR of frames that don't have any locals changed but it isn't worth the additional
472 // complexity.
473 if (Runtime::Current()->GetInstrumentation()->NeedsSlowInterpreterForMethod(thread, method) ||
474 Runtime::Current()->GetRuntimeCallbacks()->HaveLocalsChanged()) {
475 return false;
476 }
477
478 ShadowFrame* shadow_frame = thread->GetManagedStack()->GetTopShadowFrame();
479 OsrData* osr_data = jit->PrepareForOsr(method,
480 dex_pc + dex_pc_offset,
481 shadow_frame->GetVRegArgs(0));
482
483 if (osr_data == nullptr) {
484 return false;
485 }
486
487 {
488 thread->PopShadowFrame();
489 ManagedStack fragment;
490 thread->PushManagedStackFragment(&fragment);
491 (*art_quick_osr_stub)(osr_data->memory,
492 osr_data->frame_size,
493 osr_data->native_pc,
494 result,
495 method->GetShorty(),
496 thread);
497
498 if (UNLIKELY(thread->GetException() == Thread::GetDeoptimizationException())) {
499 thread->DeoptimizeWithDeoptimizationException(result);
500 }
501 thread->PopManagedStackFragment(fragment);
502 }
503 free(osr_data);
504 thread->PushShadowFrame(shadow_frame);
505 VLOG(jit) << "Done running OSR code for " << method->PrettyMethod();
506 return true;
507 }
508
AddMemoryUsage(ArtMethod * method,size_t bytes)509 void Jit::AddMemoryUsage(ArtMethod* method, size_t bytes) {
510 if (bytes > 4 * MB) {
511 LOG(INFO) << "Compiler allocated "
512 << PrettySize(bytes)
513 << " to compile "
514 << ArtMethod::PrettyMethod(method);
515 }
516 MutexLock mu(Thread::Current(), lock_);
517 memory_use_.AddValue(bytes);
518 }
519
NotifyZygoteCompilationDone()520 void Jit::NotifyZygoteCompilationDone() {
521 if (fd_methods_ == -1) {
522 return;
523 }
524
525 size_t offset = 0;
526 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
527 const ImageHeader& header = space->GetImageHeader();
528 const ImageSection& section = header.GetMethodsSection();
529 // Because mremap works at page boundaries, we can only handle methods
530 // within a page range. For methods that falls above or below the range,
531 // the child processes will copy their contents to their private mapping
532 // in `child_mapping_methods`. See `MapBootImageMethods`.
533 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), gPageSize);
534 uint8_t* page_end =
535 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), gPageSize);
536 if (page_end > page_start) {
537 uint64_t capacity = page_end - page_start;
538 memcpy(zygote_mapping_methods_.Begin() + offset, page_start, capacity);
539 offset += capacity;
540 }
541 }
542
543 // Do an msync to ensure we are not affected by writes still being in caches.
544 if (msync(zygote_mapping_methods_.Begin(), fd_methods_size_, MS_SYNC) != 0) {
545 PLOG(WARNING) << "Failed to sync boot image methods memory";
546 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure);
547 return;
548 }
549
550 // We don't need the shared mapping anymore, and we need to drop it in case
551 // the file hasn't been sealed writable.
552 zygote_mapping_methods_ = MemMap::Invalid();
553
554 // Seal writes now. Zygote and children will map the memory private in order
555 // to write to it.
556 if (fcntl(fd_methods_, F_ADD_SEALS, F_SEAL_SEAL | F_SEAL_WRITE) == -1) {
557 PLOG(WARNING) << "Failed to seal boot image methods file descriptor";
558 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure);
559 return;
560 }
561
562 std::string error_str;
563 MemMap child_mapping_methods = MemMap::MapFile(
564 fd_methods_size_,
565 PROT_READ | PROT_WRITE,
566 MAP_PRIVATE,
567 fd_methods_,
568 /* start= */ 0,
569 /* low_4gb= */ false,
570 "boot-image-methods",
571 &error_str);
572
573 if (!child_mapping_methods.IsValid()) {
574 LOG(WARNING) << "Failed to create child mapping of boot image methods: " << error_str;
575 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure);
576 return;
577 }
578
579 // Ensure the contents are the same as before: there was a window between
580 // the memcpy and the sealing where other processes could have changed the
581 // contents.
582 // Note this would not be needed if we could have used F_SEAL_FUTURE_WRITE,
583 // see b/143833776.
584 offset = 0;
585 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
586 const ImageHeader& header = space->GetImageHeader();
587 const ImageSection& section = header.GetMethodsSection();
588 // Because mremap works at page boundaries, we can only handle methods
589 // within a page range. For methods that falls above or below the range,
590 // the child processes will copy their contents to their private mapping
591 // in `child_mapping_methods`. See `MapBootImageMethods`.
592 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), gPageSize);
593 uint8_t* page_end =
594 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), gPageSize);
595 if (page_end > page_start) {
596 uint64_t capacity = page_end - page_start;
597 if (memcmp(child_mapping_methods.Begin() + offset, page_start, capacity) != 0) {
598 LOG(WARNING) << "Contents differ in boot image methods data";
599 code_cache_->GetZygoteMap()->SetCompilationState(
600 ZygoteCompilationState::kNotifiedFailure);
601 return;
602 }
603 offset += capacity;
604 }
605 }
606
607 // Future spawned processes don't need the fd anymore.
608 fd_methods_.reset();
609
610 // In order to have the zygote and children share the memory, we also remap
611 // the memory into the zygote process.
612 offset = 0;
613 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
614 const ImageHeader& header = space->GetImageHeader();
615 const ImageSection& section = header.GetMethodsSection();
616 // Because mremap works at page boundaries, we can only handle methods
617 // within a page range. For methods that falls above or below the range,
618 // the child processes will copy their contents to their private mapping
619 // in `child_mapping_methods`. See `MapBootImageMethods`.
620 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), gPageSize);
621 uint8_t* page_end =
622 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), gPageSize);
623 if (page_end > page_start) {
624 uint64_t capacity = page_end - page_start;
625 if (mremap(child_mapping_methods.Begin() + offset,
626 capacity,
627 capacity,
628 MREMAP_FIXED | MREMAP_MAYMOVE,
629 page_start) == MAP_FAILED) {
630 // Failing to remap is safe as the process will just use the old
631 // contents.
632 PLOG(WARNING) << "Failed mremap of boot image methods of " << space->GetImageFilename();
633 }
634 offset += capacity;
635 }
636 }
637
638 LOG(INFO) << "Successfully notified child processes on sharing boot image methods";
639
640 // Mark that compilation of boot classpath is done, and memory can now be
641 // shared. Other processes will pick up this information.
642 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedOk);
643
644 // The private mapping created for this process has been mremaped. We can
645 // reset it.
646 child_mapping_methods.Reset();
647 }
648
649 class JitCompileTask final : public Task {
650 public:
651 enum class TaskKind {
652 kCompile,
653 kPreCompile,
654 };
655
JitCompileTask(ArtMethod * method,TaskKind task_kind,CompilationKind compilation_kind)656 JitCompileTask(ArtMethod* method,
657 TaskKind task_kind,
658 CompilationKind compilation_kind)
659 : method_(method),
660 kind_(task_kind),
661 compilation_kind_(compilation_kind) {
662 }
663
Run(Thread * self)664 void Run(Thread* self) override {
665 {
666 ScopedObjectAccess soa(self);
667 switch (kind_) {
668 case TaskKind::kCompile:
669 case TaskKind::kPreCompile: {
670 Runtime::Current()->GetJit()->CompileMethodInternal(
671 method_,
672 self,
673 compilation_kind_,
674 /* prejit= */ (kind_ == TaskKind::kPreCompile));
675 break;
676 }
677 }
678 }
679 ProfileSaver::NotifyJitActivity();
680 }
681
Finalize()682 void Finalize() override {
683 JitThreadPool* thread_pool = Runtime::Current()->GetJit()->GetThreadPool();
684 if (thread_pool != nullptr) {
685 thread_pool->Remove(this);
686 }
687 delete this;
688 }
689
GetArtMethod() const690 ArtMethod* GetArtMethod() const {
691 return method_;
692 }
693
GetCompilationKind() const694 CompilationKind GetCompilationKind() const {
695 return compilation_kind_;
696 }
697
698 private:
699 ArtMethod* const method_;
700 const TaskKind kind_;
701 const CompilationKind compilation_kind_;
702
703 DISALLOW_IMPLICIT_CONSTRUCTORS(JitCompileTask);
704 };
705
GetProfileFile(const std::string & dex_location)706 static std::string GetProfileFile(const std::string& dex_location) {
707 // Hardcoded assumption where the profile file is.
708 // TODO(ngeoffray): this is brittle and we would need to change change if we
709 // wanted to do more eager JITting of methods in a profile. This is
710 // currently only for system server.
711 return dex_location + ".prof";
712 }
713
GetBootProfileFile(const std::string & profile)714 static std::string GetBootProfileFile(const std::string& profile) {
715 // The boot profile can be found next to the compilation profile, with a
716 // different extension.
717 return ReplaceFileExtension(profile, "bprof");
718 }
719
720 // Return whether the address is guaranteed to be backed by a file or is shared.
721 // This information can be used to know whether MADV_DONTNEED will make
722 // following accesses repopulate the memory or return zero.
IsAddressKnownBackedByFileOrShared(const void * addr)723 static bool IsAddressKnownBackedByFileOrShared(const void* addr) {
724 // We use the Linux pagemap interface for knowing if an address is backed
725 // by a file or is shared. See:
726 // https://www.kernel.org/doc/Documentation/vm/pagemap.txt
727 const size_t page_size = MemMap::GetPageSize();
728 uintptr_t vmstart = reinterpret_cast<uintptr_t>(AlignDown(addr, page_size));
729 off_t index = (vmstart / page_size) * sizeof(uint64_t);
730 android::base::unique_fd pagemap(open("/proc/self/pagemap", O_RDONLY | O_CLOEXEC));
731 if (pagemap == -1) {
732 return false;
733 }
734 if (lseek(pagemap, index, SEEK_SET) != index) {
735 return false;
736 }
737 uint64_t flags;
738 if (read(pagemap, &flags, sizeof(uint64_t)) != sizeof(uint64_t)) {
739 return false;
740 }
741 // From https://www.kernel.org/doc/Documentation/vm/pagemap.txt:
742 // * Bit 61 page is file-page or shared-anon (since 3.5)
743 return (flags & (1LL << 61)) != 0;
744 }
745
746 /**
747 * A JIT task to run after all profile compilation is done.
748 */
749 class JitDoneCompilingProfileTask final : public SelfDeletingTask {
750 public:
JitDoneCompilingProfileTask(const std::vector<const DexFile * > & dex_files)751 explicit JitDoneCompilingProfileTask(const std::vector<const DexFile*>& dex_files)
752 : dex_files_(dex_files) {}
753
Run(Thread * self)754 void Run([[maybe_unused]] Thread* self) override {
755 // Madvise DONTNEED dex files now that we're done compiling methods.
756 for (const DexFile* dex_file : dex_files_) {
757 if (IsAddressKnownBackedByFileOrShared(dex_file->Begin())) {
758 int result = madvise(const_cast<uint8_t*>(AlignDown(dex_file->Begin(), gPageSize)),
759 RoundUp(dex_file->Size(), gPageSize),
760 MADV_DONTNEED);
761 if (result == -1) {
762 PLOG(WARNING) << "Madvise failed";
763 }
764 }
765 }
766 }
767
768 private:
769 std::vector<const DexFile*> dex_files_;
770
771 DISALLOW_COPY_AND_ASSIGN(JitDoneCompilingProfileTask);
772 };
773
774 class JitZygoteDoneCompilingTask final : public SelfDeletingTask {
775 public:
JitZygoteDoneCompilingTask()776 JitZygoteDoneCompilingTask() {}
777
Run(Thread * self)778 void Run([[maybe_unused]] Thread* self) override {
779 DCHECK(Runtime::Current()->IsZygote());
780 Runtime::Current()->GetJit()->GetCodeCache()->GetZygoteMap()->SetCompilationState(
781 ZygoteCompilationState::kDone);
782 }
783
784 private:
785 DISALLOW_COPY_AND_ASSIGN(JitZygoteDoneCompilingTask);
786 };
787
788 /**
789 * A JIT task to run Java verification of boot classpath classes that were not
790 * verified at compile-time.
791 */
792 class ZygoteVerificationTask final : public Task {
793 public:
ZygoteVerificationTask()794 ZygoteVerificationTask() {}
795
Run(Thread * self)796 void Run(Thread* self) override {
797 // We are going to load class and run verification, which may also need to load
798 // classes. If the thread cannot load classes (typically when the runtime is
799 // debuggable), then just return.
800 if (!self->CanLoadClasses()) {
801 return;
802 }
803 Runtime* runtime = Runtime::Current();
804 ClassLinker* linker = runtime->GetClassLinker();
805 const std::vector<const DexFile*>& boot_class_path =
806 runtime->GetClassLinker()->GetBootClassPath();
807 ScopedObjectAccess soa(self);
808 StackHandleScope<1> hs(self);
809 MutableHandle<mirror::Class> klass = hs.NewHandle<mirror::Class>(nullptr);
810 uint64_t start_ns = ThreadCpuNanoTime();
811 uint64_t number_of_classes = 0;
812 for (const DexFile* dex_file : boot_class_path) {
813 for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) {
814 const dex::ClassDef& class_def = dex_file->GetClassDef(i);
815 const char* descriptor = dex_file->GetClassDescriptor(class_def);
816 klass.Assign(linker->LookupResolvedType(descriptor, /* class_loader= */ nullptr));
817 if (klass == nullptr) {
818 // Class not loaded yet.
819 DCHECK(!self->IsExceptionPending());
820 continue;
821 }
822 if (klass->IsVerified()) {
823 continue;
824 }
825 if (linker->VerifyClass(self, /* verifier_deps= */ nullptr, klass) ==
826 verifier::FailureKind::kHardFailure) {
827 CHECK(self->IsExceptionPending());
828 LOG(WARNING) << "Methods in the boot classpath failed to verify: "
829 << self->GetException()->Dump();
830 self->ClearException();
831 } else {
832 ++number_of_classes;
833 }
834 CHECK(!self->IsExceptionPending());
835 }
836 }
837 LOG(INFO) << "Background verification of "
838 << number_of_classes
839 << " classes from boot classpath took "
840 << PrettyDuration(ThreadCpuNanoTime() - start_ns);
841 }
842 };
843
844 class ZygoteTask final : public Task {
845 public:
ZygoteTask()846 ZygoteTask() {}
847
Run(Thread * self)848 void Run(Thread* self) override {
849 Runtime* runtime = Runtime::Current();
850 uint32_t added_to_queue = 0;
851 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
852 const std::vector<const DexFile*>& boot_class_path =
853 runtime->GetClassLinker()->GetBootClassPath();
854 ScopedNullHandle<mirror::ClassLoader> null_handle;
855 // We avoid doing compilation at boot for the secondary zygote, as apps forked from it are not
856 // critical for boot.
857 if (Runtime::Current()->IsPrimaryZygote()) {
858 for (const std::string& profile_file : space->GetProfileFiles()) {
859 std::string boot_profile = GetBootProfileFile(profile_file);
860 LOG(INFO) << "JIT Zygote looking at boot profile " << boot_profile;
861
862 // We add to the queue for zygote so that we can fork processes in-between compilations.
863 added_to_queue += runtime->GetJit()->CompileMethodsFromBootProfile(
864 self, boot_class_path, boot_profile, null_handle, /* add_to_queue= */ true);
865 }
866 }
867 for (const std::string& profile_file : space->GetProfileFiles()) {
868 LOG(INFO) << "JIT Zygote looking at profile " << profile_file;
869
870 added_to_queue += runtime->GetJit()->CompileMethodsFromProfile(
871 self, boot_class_path, profile_file, null_handle, /* add_to_queue= */ true);
872 }
873 }
874 DCHECK(runtime->GetJit()->InZygoteUsingJit());
875 runtime->GetJit()->AddPostBootTask(self, new JitZygoteDoneCompilingTask());
876
877 JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache();
878 code_cache->GetZygoteMap()->Initialize(added_to_queue);
879 }
880
Finalize()881 void Finalize() override {
882 delete this;
883 }
884
885 private:
886 DISALLOW_COPY_AND_ASSIGN(ZygoteTask);
887 };
888
889 class JitProfileTask final : public Task {
890 public:
JitProfileTask(const std::vector<std::unique_ptr<const DexFile>> & dex_files,jobject class_loader)891 JitProfileTask(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
892 jobject class_loader) {
893 ScopedObjectAccess soa(Thread::Current());
894 StackHandleScope<1> hs(soa.Self());
895 Handle<mirror::ClassLoader> h_loader(hs.NewHandle(
896 soa.Decode<mirror::ClassLoader>(class_loader)));
897 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
898 for (const auto& dex_file : dex_files) {
899 dex_files_.push_back(dex_file.get());
900 // Register the dex file so that we can guarantee it doesn't get deleted
901 // while reading it during the task.
902 class_linker->RegisterDexFile(*dex_file.get(), h_loader.Get());
903 }
904 // We also create our own global ref to use this class loader later.
905 class_loader_ = soa.Vm()->AddGlobalRef(soa.Self(), h_loader.Get());
906 }
907
Run(Thread * self)908 void Run(Thread* self) override {
909 ScopedObjectAccess soa(self);
910 StackHandleScope<1> hs(self);
911 Handle<mirror::ClassLoader> loader = hs.NewHandle<mirror::ClassLoader>(
912 soa.Decode<mirror::ClassLoader>(class_loader_));
913
914 std::string profile = GetProfileFile(dex_files_[0]->GetLocation());
915 std::string boot_profile = GetBootProfileFile(profile);
916
917 Jit* jit = Runtime::Current()->GetJit();
918
919 jit->CompileMethodsFromBootProfile(
920 self,
921 dex_files_,
922 boot_profile,
923 loader,
924 /* add_to_queue= */ false);
925
926 jit->CompileMethodsFromProfile(
927 self,
928 dex_files_,
929 profile,
930 loader,
931 /* add_to_queue= */ true);
932 }
933
Finalize()934 void Finalize() override {
935 delete this;
936 }
937
~JitProfileTask()938 ~JitProfileTask() {
939 ScopedObjectAccess soa(Thread::Current());
940 soa.Vm()->DeleteGlobalRef(soa.Self(), class_loader_);
941 }
942
943 private:
944 std::vector<const DexFile*> dex_files_;
945 jobject class_loader_;
946
947 DISALLOW_COPY_AND_ASSIGN(JitProfileTask);
948 };
949
CopyIfDifferent(void * s1,const void * s2,size_t n)950 static void CopyIfDifferent(void* s1, const void* s2, size_t n) {
951 if (memcmp(s1, s2, n) != 0) {
952 memcpy(s1, s2, n);
953 }
954 }
955
MapBootImageMethods()956 void Jit::MapBootImageMethods() {
957 if (Runtime::Current()->IsJavaDebuggable()) {
958 LOG(INFO) << "Not mapping boot image methods due to process being debuggable";
959 return;
960 }
961 CHECK_NE(fd_methods_.get(), -1);
962 if (!code_cache_->GetZygoteMap()->CanMapBootImageMethods()) {
963 LOG(WARNING) << "Not mapping boot image methods due to error from zygote";
964 // We don't need the fd anymore.
965 fd_methods_.reset();
966 return;
967 }
968
969 std::string error_str;
970 MemMap child_mapping_methods = MemMap::MapFile(
971 fd_methods_size_,
972 PROT_READ | PROT_WRITE,
973 MAP_PRIVATE,
974 fd_methods_,
975 /* start= */ 0,
976 /* low_4gb= */ false,
977 "boot-image-methods",
978 &error_str);
979
980 // We don't need the fd anymore.
981 fd_methods_.reset();
982
983 if (!child_mapping_methods.IsValid()) {
984 LOG(WARNING) << "Failed to create child mapping of boot image methods: " << error_str;
985 return;
986 }
987 // We are going to mremap the child mapping into the image:
988 //
989 // ImageSection ChildMappingMethods
990 //
991 // section start --> -----------
992 // | |
993 // | |
994 // page_start --> | | <----- -----------
995 // | | | |
996 // | | | |
997 // | | | |
998 // | | | |
999 // | | | |
1000 // | | | |
1001 // | | | |
1002 // page_end --> | | <----- -----------
1003 // | |
1004 // section end --> -----------
1005 //
1006 size_t offset = 0;
1007 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
1008 const ImageHeader& header = space->GetImageHeader();
1009 const ImageSection& section = header.GetMethodsSection();
1010 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), gPageSize);
1011 uint8_t* page_end =
1012 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), gPageSize);
1013 if (page_end <= page_start) {
1014 // Section doesn't contain one aligned entire page.
1015 continue;
1016 }
1017 uint64_t capacity = page_end - page_start;
1018 // Walk over methods in the boot image, and check for:
1019 // 1) methods whose class is not initialized in the process, but are in the
1020 // zygote process. For such methods, we need their entrypoints to be stubs
1021 // that do the initialization check.
1022 // 2) native methods whose data pointer is different than the one in the
1023 // zygote. Such methods may have had custom native implementation provided
1024 // by JNI RegisterNatives.
1025 header.VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1026 // Methods in the boot image should never have their single
1027 // implementation flag set (and therefore never have a `data_` pointing
1028 // to an ArtMethod for single implementation).
1029 CHECK(method.IsIntrinsic() || !method.HasSingleImplementationFlag());
1030 if (method.IsRuntimeMethod()) {
1031 return;
1032 }
1033
1034 // Pointer to the method we're currently using.
1035 uint8_t* pointer = reinterpret_cast<uint8_t*>(&method);
1036 // The data pointer of that method that we want to keep.
1037 uint8_t* data_pointer = pointer + ArtMethod::DataOffset(kRuntimePointerSize).Int32Value();
1038 if (method.IsNative() && data_pointer >= page_start && data_pointer < page_end) {
1039 // The data pointer of the ArtMethod in the shared memory we are going to remap into our
1040 // own mapping. This is the data that we will see after the remap.
1041 uint8_t* new_data_pointer =
1042 child_mapping_methods.Begin() + offset + (data_pointer - page_start);
1043 CopyIfDifferent(new_data_pointer, data_pointer, sizeof(void*));
1044 }
1045
1046 // The entrypoint of the method we're currently using and that we want to
1047 // keep.
1048 uint8_t* entry_point_pointer = pointer +
1049 ArtMethod::EntryPointFromQuickCompiledCodeOffset(kRuntimePointerSize).Int32Value();
1050 if (!method.GetDeclaringClassUnchecked()->IsVisiblyInitialized() &&
1051 method.IsStatic() &&
1052 !method.IsConstructor() &&
1053 entry_point_pointer >= page_start &&
1054 entry_point_pointer < page_end) {
1055 // The entry point of the ArtMethod in the shared memory we are going to remap into our
1056 // own mapping. This is the entrypoint that we will see after the remap.
1057 uint8_t* new_entry_point_pointer =
1058 child_mapping_methods.Begin() + offset + (entry_point_pointer - page_start);
1059 CopyIfDifferent(new_entry_point_pointer, entry_point_pointer, sizeof(void*));
1060 }
1061 }, space->Begin(), kRuntimePointerSize);
1062
1063 // Map the memory in the boot image range.
1064 if (mremap(child_mapping_methods.Begin() + offset,
1065 capacity,
1066 capacity,
1067 MREMAP_FIXED | MREMAP_MAYMOVE,
1068 page_start) == MAP_FAILED) {
1069 PLOG(WARNING) << "Fail to mremap boot image methods for " << space->GetImageFilename();
1070 }
1071 offset += capacity;
1072 }
1073
1074 // The private mapping created for this process has been mremaped. We can
1075 // reset it.
1076 child_mapping_methods.Reset();
1077 LOG(INFO) << "Successfully mapped boot image methods";
1078 }
1079
InZygoteUsingJit()1080 bool Jit::InZygoteUsingJit() {
1081 Runtime* runtime = Runtime::Current();
1082 return runtime->IsZygote() && runtime->HasImageWithProfile() && runtime->UseJitCompilation();
1083 }
1084
CreateThreadPool()1085 void Jit::CreateThreadPool() {
1086 // There is a DCHECK in the 'AddSamples' method to ensure the tread pool
1087 // is not null when we instrument.
1088
1089 thread_pool_.reset(JitThreadPool::Create("Jit thread pool", 1));
1090
1091 Runtime* runtime = Runtime::Current();
1092 thread_pool_->SetPthreadPriority(
1093 runtime->IsZygote()
1094 ? options_->GetZygoteThreadPoolPthreadPriority()
1095 : options_->GetThreadPoolPthreadPriority());
1096 Start();
1097
1098 if (runtime->IsZygote()) {
1099 // To speed up class lookups, generate a type lookup table for
1100 // dex files not backed by oat file.
1101 for (const DexFile* dex_file : runtime->GetClassLinker()->GetBootClassPath()) {
1102 if (dex_file->GetOatDexFile() == nullptr) {
1103 TypeLookupTable type_lookup_table = TypeLookupTable::Create(*dex_file);
1104 type_lookup_tables_.push_back(
1105 std::make_unique<art::OatDexFile>(std::move(type_lookup_table)));
1106 dex_file->SetOatDexFile(type_lookup_tables_.back().get());
1107 }
1108 }
1109
1110 // Add a task that will verify boot classpath jars that were not
1111 // pre-compiled.
1112 thread_pool_->AddTask(Thread::Current(), new ZygoteVerificationTask());
1113 }
1114
1115 if (InZygoteUsingJit()) {
1116 // If we have an image with a profile, request a JIT task to
1117 // compile all methods in that profile.
1118 thread_pool_->AddTask(Thread::Current(), new ZygoteTask());
1119
1120 // And create mappings to share boot image methods memory from the zygote to
1121 // child processes.
1122
1123 // Compute the total capacity required for the boot image methods.
1124 uint64_t total_capacity = 0;
1125 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
1126 const ImageHeader& header = space->GetImageHeader();
1127 const ImageSection& section = header.GetMethodsSection();
1128 // Mappings need to be at the page level.
1129 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), gPageSize);
1130 uint8_t* page_end =
1131 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), gPageSize);
1132 if (page_end > page_start) {
1133 total_capacity += (page_end - page_start);
1134 }
1135 }
1136
1137 // Create the child and zygote mappings to the boot image methods.
1138 if (total_capacity > 0) {
1139 // Start with '/boot' and end with '.art' to match the pattern recognized
1140 // by android_os_Debug.cpp for boot images.
1141 const char* name = "/boot-image-methods.art";
1142 unique_fd mem_fd =
1143 unique_fd(art::memfd_create(name, /* flags= */ MFD_ALLOW_SEALING | MFD_CLOEXEC));
1144 if (mem_fd.get() == -1) {
1145 PLOG(WARNING) << "Could not create boot image methods file descriptor";
1146 return;
1147 }
1148 if (ftruncate(mem_fd.get(), total_capacity) != 0) {
1149 PLOG(WARNING) << "Failed to truncate boot image methods file to " << total_capacity;
1150 return;
1151 }
1152 std::string error_str;
1153
1154 // Create the shared mapping eagerly, as this prevents other processes
1155 // from adding the writable seal.
1156 zygote_mapping_methods_ = MemMap::MapFile(
1157 total_capacity,
1158 PROT_READ | PROT_WRITE,
1159 MAP_SHARED,
1160 mem_fd,
1161 /* start= */ 0,
1162 /* low_4gb= */ false,
1163 "boot-image-methods",
1164 &error_str);
1165
1166 if (!zygote_mapping_methods_.IsValid()) {
1167 LOG(WARNING) << "Failed to create zygote mapping of boot image methods: " << error_str;
1168 return;
1169 }
1170 if (zygote_mapping_methods_.MadviseDontFork() != 0) {
1171 LOG(WARNING) << "Failed to madvise dont fork boot image methods";
1172 zygote_mapping_methods_ = MemMap();
1173 return;
1174 }
1175
1176 // We should use the F_SEAL_FUTURE_WRITE flag, but this has unexpected
1177 // behavior on private mappings after fork (the mapping becomes shared between
1178 // parent and children), see b/143833776.
1179 // We will seal the write once we are done writing to the shared mapping.
1180 if (fcntl(mem_fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW) == -1) {
1181 PLOG(WARNING) << "Failed to seal boot image methods file descriptor";
1182 zygote_mapping_methods_ = MemMap();
1183 return;
1184 }
1185 fd_methods_ = unique_fd(mem_fd.release());
1186 fd_methods_size_ = total_capacity;
1187 }
1188 }
1189 }
1190
RegisterDexFiles(const std::vector<std::unique_ptr<const DexFile>> & dex_files,jobject class_loader)1191 void Jit::RegisterDexFiles(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
1192 jobject class_loader) {
1193 if (dex_files.empty()) {
1194 return;
1195 }
1196 Runtime* runtime = Runtime::Current();
1197 // If the runtime is debuggable, don't bother precompiling methods.
1198 // If system server is being profiled, don't precompile as we are going to use
1199 // the JIT to count hotness. Note that --count-hotness-in-compiled-code is
1200 // only forced when we also profile the boot classpath, see
1201 // AndroidRuntime.cpp.
1202 if (runtime->IsSystemServer() &&
1203 UseJitCompilation() &&
1204 options_->UseProfiledJitCompilation() &&
1205 runtime->HasImageWithProfile() &&
1206 !runtime->IsSystemServerProfiled() &&
1207 !runtime->IsJavaDebuggable()) {
1208 // Note: this precompilation is currently not running in production because:
1209 // - UseProfiledJitCompilation() is not set by default.
1210 // - System server dex files are registered *before* we set the runtime as
1211 // system server (though we are in the system server process).
1212 thread_pool_->AddTask(Thread::Current(), new JitProfileTask(dex_files, class_loader));
1213 }
1214 }
1215
AddCompileTask(Thread * self,ArtMethod * method,CompilationKind compilation_kind)1216 void Jit::AddCompileTask(Thread* self,
1217 ArtMethod* method,
1218 CompilationKind compilation_kind) {
1219 thread_pool_->AddTask(self, method, compilation_kind);
1220 }
1221
CompileMethodFromProfile(Thread * self,ClassLinker * class_linker,uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,bool add_to_queue,bool compile_after_boot)1222 bool Jit::CompileMethodFromProfile(Thread* self,
1223 ClassLinker* class_linker,
1224 uint32_t method_idx,
1225 Handle<mirror::DexCache> dex_cache,
1226 Handle<mirror::ClassLoader> class_loader,
1227 bool add_to_queue,
1228 bool compile_after_boot) {
1229 ArtMethod* method = class_linker->ResolveMethodWithoutInvokeType(
1230 method_idx, dex_cache, class_loader);
1231 if (method == nullptr) {
1232 self->ClearException();
1233 return false;
1234 }
1235 if (!method->IsCompilable() || !method->IsInvokable()) {
1236 return false;
1237 }
1238 if (method->IsPreCompiled()) {
1239 // Already seen by another profile.
1240 return false;
1241 }
1242 CompilationKind compilation_kind = CompilationKind::kOptimized;
1243 const void* entry_point = method->GetEntryPointFromQuickCompiledCode();
1244 if (class_linker->IsQuickToInterpreterBridge(entry_point) ||
1245 class_linker->IsQuickGenericJniStub(entry_point) ||
1246 class_linker->IsNterpEntryPoint(entry_point) ||
1247 // We explicitly check for the resolution stub, and not the resolution trampoline.
1248 // The trampoline is for methods backed by a .oat file that has a compiled version of
1249 // the method.
1250 (entry_point == GetQuickResolutionStub())) {
1251 VLOG(jit) << "JIT Zygote processing method " << ArtMethod::PrettyMethod(method)
1252 << " from profile";
1253 method->SetPreCompiled();
1254 if (!add_to_queue) {
1255 CompileMethodInternal(method, self, compilation_kind, /* prejit= */ true);
1256 } else {
1257 Task* task = new JitCompileTask(
1258 method, JitCompileTask::TaskKind::kPreCompile, compilation_kind);
1259 if (compile_after_boot) {
1260 AddPostBootTask(self, task);
1261 } else {
1262 thread_pool_->AddTask(self, task);
1263 }
1264 return true;
1265 }
1266 }
1267 return false;
1268 }
1269
CompileMethodsFromBootProfile(Thread * self,const std::vector<const DexFile * > & dex_files,const std::string & profile_file,Handle<mirror::ClassLoader> class_loader,bool add_to_queue)1270 uint32_t Jit::CompileMethodsFromBootProfile(
1271 Thread* self,
1272 const std::vector<const DexFile*>& dex_files,
1273 const std::string& profile_file,
1274 Handle<mirror::ClassLoader> class_loader,
1275 bool add_to_queue) {
1276 unix_file::FdFile profile(profile_file, O_RDONLY, true);
1277
1278 if (profile.Fd() == -1) {
1279 PLOG(WARNING) << "No boot profile: " << profile_file;
1280 return 0u;
1281 }
1282
1283 ProfileBootInfo profile_info;
1284 if (!profile_info.Load(profile.Fd(), dex_files)) {
1285 LOG(ERROR) << "Could not load profile file: " << profile_file;
1286 return 0u;
1287 }
1288
1289 ScopedObjectAccess soa(self);
1290 VariableSizedHandleScope handles(self);
1291 std::vector<Handle<mirror::DexCache>> dex_caches;
1292 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1293 for (const DexFile* dex_file : profile_info.GetDexFiles()) {
1294 dex_caches.push_back(handles.NewHandle(class_linker->FindDexCache(self, *dex_file)));
1295 }
1296
1297 uint32_t added_to_queue = 0;
1298 for (const std::pair<uint32_t, uint32_t>& pair : profile_info.GetMethods()) {
1299 if (CompileMethodFromProfile(self,
1300 class_linker,
1301 pair.second,
1302 dex_caches[pair.first],
1303 class_loader,
1304 add_to_queue,
1305 /*compile_after_boot=*/false)) {
1306 ++added_to_queue;
1307 }
1308 }
1309 return added_to_queue;
1310 }
1311
CompileMethodsFromProfile(Thread * self,const std::vector<const DexFile * > & dex_files,const std::string & profile_file,Handle<mirror::ClassLoader> class_loader,bool add_to_queue)1312 uint32_t Jit::CompileMethodsFromProfile(
1313 Thread* self,
1314 const std::vector<const DexFile*>& dex_files,
1315 const std::string& profile_file,
1316 Handle<mirror::ClassLoader> class_loader,
1317 bool add_to_queue) {
1318
1319 if (profile_file.empty()) {
1320 LOG(WARNING) << "Expected a profile file in JIT zygote mode";
1321 return 0u;
1322 }
1323
1324 // We don't generate boot profiles on device, therefore we don't
1325 // need to lock the file.
1326 unix_file::FdFile profile(profile_file, O_RDONLY, true);
1327
1328 if (profile.Fd() == -1) {
1329 PLOG(WARNING) << "No profile: " << profile_file;
1330 return 0u;
1331 }
1332
1333 ProfileCompilationInfo profile_info(/* for_boot_image= */ class_loader.IsNull());
1334 if (!profile_info.Load(profile.Fd())) {
1335 LOG(ERROR) << "Could not load profile file";
1336 return 0u;
1337 }
1338 ScopedObjectAccess soa(self);
1339 StackHandleScope<1> hs(self);
1340 MutableHandle<mirror::DexCache> dex_cache = hs.NewHandle<mirror::DexCache>(nullptr);
1341 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1342 uint32_t added_to_queue = 0u;
1343 for (const DexFile* dex_file : dex_files) {
1344 std::set<dex::TypeIndex> class_types;
1345 std::set<uint16_t> all_methods;
1346 if (!profile_info.GetClassesAndMethods(*dex_file,
1347 &class_types,
1348 &all_methods,
1349 &all_methods,
1350 &all_methods)) {
1351 // This means the profile file did not reference the dex file, which is the case
1352 // if there's no classes and methods of that dex file in the profile.
1353 continue;
1354 }
1355 dex_cache.Assign(class_linker->FindDexCache(self, *dex_file));
1356 CHECK(dex_cache != nullptr) << "Could not find dex cache for " << dex_file->GetLocation();
1357
1358 for (uint16_t method_idx : all_methods) {
1359 if (CompileMethodFromProfile(self,
1360 class_linker,
1361 method_idx,
1362 dex_cache,
1363 class_loader,
1364 add_to_queue,
1365 /*compile_after_boot=*/true)) {
1366 ++added_to_queue;
1367 }
1368 }
1369 }
1370
1371 // Add a task to run when all compilation is done.
1372 AddPostBootTask(self, new JitDoneCompilingProfileTask(dex_files));
1373 return added_to_queue;
1374 }
1375
IgnoreSamplesForMethod(ArtMethod * method)1376 bool Jit::IgnoreSamplesForMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
1377 if (method->IsClassInitializer() || !method->IsCompilable()) {
1378 // We do not want to compile such methods.
1379 return true;
1380 }
1381 if (method->IsNative()) {
1382 ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
1383 if (klass == GetClassRoot<mirror::MethodHandle>() ||
1384 klass == GetClassRoot<mirror::VarHandle>()) {
1385 // MethodHandle and VarHandle invocation methods are required to throw an
1386 // UnsupportedOperationException if invoked reflectively. We achieve this by having native
1387 // implementations that raise the exception. We need to disable JIT compilation of these JNI
1388 // methods as it can lead to transitioning between JIT compiled JNI stubs and generic JNI
1389 // stubs. Since these stubs have different stack representations we can then crash in stack
1390 // walking (b/78151261).
1391 return true;
1392 }
1393 }
1394 return false;
1395 }
1396
EnqueueOptimizedCompilation(ArtMethod * method,Thread * self)1397 void Jit::EnqueueOptimizedCompilation(ArtMethod* method, Thread* self) {
1398 // Note the hotness counter will be reset by the compiled code.
1399
1400 if (thread_pool_ == nullptr) {
1401 return;
1402 }
1403
1404 // We arrive here after a baseline compiled code has reached its baseline
1405 // hotness threshold. If we're not only using the baseline compiler, enqueue a compilation
1406 // task that will compile optimize the method.
1407 if (!options_->UseBaselineCompiler()) {
1408 AddCompileTask(self, method, CompilationKind::kOptimized);
1409 }
1410 }
1411
1412 class ScopedSetRuntimeThread {
1413 public:
ScopedSetRuntimeThread(Thread * self)1414 explicit ScopedSetRuntimeThread(Thread* self)
1415 : self_(self), was_runtime_thread_(self_->IsRuntimeThread()) {
1416 self_->SetIsRuntimeThread(true);
1417 }
1418
~ScopedSetRuntimeThread()1419 ~ScopedSetRuntimeThread() {
1420 self_->SetIsRuntimeThread(was_runtime_thread_);
1421 }
1422
1423 private:
1424 Thread* self_;
1425 bool was_runtime_thread_;
1426 };
1427
MethodEntered(Thread * self,ArtMethod * method)1428 void Jit::MethodEntered(Thread* self, ArtMethod* method) {
1429 Runtime* runtime = Runtime::Current();
1430 if (UNLIKELY(runtime->UseJitCompilation() && JitAtFirstUse())) {
1431 ArtMethod* np_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1432 if (np_method->IsCompilable()) {
1433 CompileMethod(method, self, CompilationKind::kOptimized, /* prejit= */ false);
1434 }
1435 return;
1436 }
1437
1438 AddSamples(self, method);
1439 }
1440
WaitForCompilationToFinish(Thread * self)1441 void Jit::WaitForCompilationToFinish(Thread* self) {
1442 if (thread_pool_ != nullptr) {
1443 thread_pool_->Wait(self, false, false);
1444 }
1445 }
1446
Stop()1447 void Jit::Stop() {
1448 Thread* self = Thread::Current();
1449 // TODO(ngeoffray): change API to not require calling WaitForCompilationToFinish twice.
1450 WaitForCompilationToFinish(self);
1451 GetThreadPool()->StopWorkers(self);
1452 WaitForCompilationToFinish(self);
1453 }
1454
Start()1455 void Jit::Start() {
1456 GetThreadPool()->StartWorkers(Thread::Current());
1457 }
1458
ScopedJitSuspend()1459 ScopedJitSuspend::ScopedJitSuspend() {
1460 jit::Jit* jit = Runtime::Current()->GetJit();
1461 was_on_ = (jit != nullptr) && (jit->GetThreadPool() != nullptr);
1462 if (was_on_) {
1463 jit->Stop();
1464 }
1465 }
1466
~ScopedJitSuspend()1467 ScopedJitSuspend::~ScopedJitSuspend() {
1468 if (was_on_) {
1469 DCHECK(Runtime::Current()->GetJit() != nullptr);
1470 DCHECK(Runtime::Current()->GetJit()->GetThreadPool() != nullptr);
1471 Runtime::Current()->GetJit()->Start();
1472 }
1473 }
1474
RunPollingThread(void * arg)1475 static void* RunPollingThread(void* arg) {
1476 Jit* jit = reinterpret_cast<Jit*>(arg);
1477 do {
1478 sleep(10);
1479 } while (!jit->GetCodeCache()->GetZygoteMap()->IsCompilationNotified());
1480
1481 // We will suspend other threads: we can only do that if we're attached to the
1482 // runtime.
1483 Runtime* runtime = Runtime::Current();
1484 bool thread_attached = runtime->AttachCurrentThread(
1485 "BootImagePollingThread",
1486 /* as_daemon= */ true,
1487 /* thread_group= */ nullptr,
1488 /* create_peer= */ false);
1489 CHECK(thread_attached);
1490
1491 if (getpriority(PRIO_PROCESS, 0 /* this thread */) == 0) {
1492 // Slightly reduce thread priority, mostly so the suspend logic notices that we're
1493 // not a high priority thread, and can time out more slowly. May fail on host.
1494 (void)setpriority(PRIO_PROCESS, 0 /* this thread */, 1);
1495 } else {
1496 PLOG(ERROR) << "Unexpected BootImagePollingThread priority: " << getpriority(PRIO_PROCESS, 0);
1497 }
1498 {
1499 // Prevent other threads from running while we are remapping the boot image
1500 // ArtMethod's. Native threads might still be running, but they cannot
1501 // change the contents of ArtMethod's.
1502 ScopedSuspendAll ssa(__FUNCTION__);
1503 runtime->GetJit()->MapBootImageMethods();
1504 }
1505
1506 Runtime::Current()->DetachCurrentThread();
1507 return nullptr;
1508 }
1509
PostForkChildAction(bool is_system_server,bool is_zygote)1510 void Jit::PostForkChildAction(bool is_system_server, bool is_zygote) {
1511 // Clear the potential boot tasks inherited from the zygote.
1512 {
1513 MutexLock mu(Thread::Current(), boot_completed_lock_);
1514 tasks_after_boot_.clear();
1515 }
1516
1517 Runtime* const runtime = Runtime::Current();
1518 // Check if we'll need to remap the boot image methods.
1519 if (!is_zygote && fd_methods_ != -1) {
1520 // Create a thread that will poll the status of zygote compilation, and map
1521 // the private mapping of boot image methods.
1522 // For child zygote, we instead query IsCompilationNotified() post zygote fork.
1523 zygote_mapping_methods_.ResetInForkedProcess();
1524 pthread_t polling_thread;
1525 pthread_attr_t attr;
1526 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
1527 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
1528 "PTHREAD_CREATE_DETACHED");
1529 CHECK_PTHREAD_CALL(
1530 pthread_create,
1531 (&polling_thread, &attr, RunPollingThread, reinterpret_cast<void*>(this)),
1532 "Methods maps thread");
1533 }
1534
1535 if (is_zygote || runtime->IsSafeMode()) {
1536 // Delete the thread pool, we are not going to JIT.
1537 thread_pool_.reset(nullptr);
1538 return;
1539 }
1540 // At this point, the compiler options have been adjusted to the particular configuration
1541 // of the forked child. Parse them again.
1542 jit_compiler_->ParseCompilerOptions();
1543
1544 // Adjust the status of code cache collection: the status from zygote was to not collect.
1545 // JitAtFirstUse compiles the methods synchronously on mutator threads. While this should work
1546 // in theory it is causing deadlocks in some jvmti tests related to Jit GC. Hence, disabling
1547 // Jit GC for now (b/147208992).
1548 code_cache_->SetGarbageCollectCode(
1549 !jit_compiler_->GenerateDebugInfo() &&
1550 !JitAtFirstUse());
1551
1552 if (is_system_server && runtime->HasImageWithProfile()) {
1553 // Disable garbage collection: we don't want it to delete methods we're compiling
1554 // through boot and system server profiles.
1555 // TODO(ngeoffray): Fix this so we still collect deoptimized and unused code.
1556 code_cache_->SetGarbageCollectCode(false);
1557 }
1558
1559 // We do this here instead of PostZygoteFork, as NativeDebugInfoPostFork only
1560 // applies to a child.
1561 NativeDebugInfoPostFork();
1562 }
1563
PreZygoteFork()1564 void Jit::PreZygoteFork() {
1565 if (thread_pool_ == nullptr) {
1566 return;
1567 }
1568 thread_pool_->DeleteThreads();
1569
1570 NativeDebugInfoPreFork();
1571 }
1572
1573 // Returns the number of threads running.
GetTaskCount()1574 static int GetTaskCount() {
1575 DIR* directory = opendir("/proc/self/task");
1576 if (directory == nullptr) {
1577 return -1;
1578 }
1579
1580 uint32_t count = 0;
1581 struct dirent* entry = nullptr;
1582 while ((entry = readdir(directory)) != nullptr) {
1583 if ((strcmp(entry->d_name, ".") == 0) || (strcmp(entry->d_name, "..") == 0)) {
1584 continue;
1585 }
1586 ++count;
1587 }
1588 closedir(directory);
1589 return count;
1590 }
1591
PostZygoteFork()1592 void Jit::PostZygoteFork() {
1593 Runtime* runtime = Runtime::Current();
1594 if (thread_pool_ == nullptr) {
1595 // If this is a child zygote, check if we need to remap the boot image
1596 // methods.
1597 if (runtime->IsZygote() &&
1598 fd_methods_ != -1 &&
1599 code_cache_->GetZygoteMap()->IsCompilationNotified()) {
1600 ScopedSuspendAll ssa(__FUNCTION__);
1601 MapBootImageMethods();
1602 }
1603 return;
1604 }
1605 if (runtime->IsZygote() && code_cache_->GetZygoteMap()->IsCompilationDoneButNotNotified()) {
1606 // Copy the boot image methods data to the mappings we created to share
1607 // with the children. We do this here as we are the only thread running and
1608 // we don't risk other threads concurrently updating the ArtMethod's.
1609 CHECK_EQ(GetTaskCount(), 1);
1610 NotifyZygoteCompilationDone();
1611 CHECK(code_cache_->GetZygoteMap()->IsCompilationNotified());
1612 }
1613 thread_pool_->CreateThreads();
1614 thread_pool_->SetPthreadPriority(
1615 runtime->IsZygote()
1616 ? options_->GetZygoteThreadPoolPthreadPriority()
1617 : options_->GetThreadPoolPthreadPriority());
1618 }
1619
AddPostBootTask(Thread * self,Task * task)1620 void Jit::AddPostBootTask(Thread* self, Task* task) {
1621 MutexLock mu(self, boot_completed_lock_);
1622 if (boot_completed_) {
1623 thread_pool_->AddTask(self, task);
1624 } else {
1625 tasks_after_boot_.push_back(task);
1626 }
1627 }
1628
BootCompleted()1629 void Jit::BootCompleted() {
1630 Thread* self = Thread::Current();
1631 std::deque<Task*> tasks;
1632 {
1633 MutexLock mu(self, boot_completed_lock_);
1634 tasks = std::move(tasks_after_boot_);
1635 boot_completed_ = true;
1636 }
1637 for (Task* task : tasks) {
1638 thread_pool_->AddTask(self, task);
1639 }
1640 }
1641
CanEncodeMethod(ArtMethod * method,bool is_for_shared_region) const1642 bool Jit::CanEncodeMethod(ArtMethod* method, bool is_for_shared_region) const {
1643 return !is_for_shared_region ||
1644 Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(method->GetDeclaringClass());
1645 }
1646
CanEncodeClass(ObjPtr<mirror::Class> cls,bool is_for_shared_region) const1647 bool Jit::CanEncodeClass(ObjPtr<mirror::Class> cls, bool is_for_shared_region) const {
1648 return !is_for_shared_region || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls);
1649 }
1650
CanEncodeString(ObjPtr<mirror::String> string,bool is_for_shared_region) const1651 bool Jit::CanEncodeString(ObjPtr<mirror::String> string, bool is_for_shared_region) const {
1652 return !is_for_shared_region || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(string);
1653 }
1654
CanAssumeInitialized(ObjPtr<mirror::Class> cls,bool is_for_shared_region) const1655 bool Jit::CanAssumeInitialized(ObjPtr<mirror::Class> cls, bool is_for_shared_region) const {
1656 if (!is_for_shared_region) {
1657 return cls->IsInitialized();
1658 } else {
1659 // Look up the class status in the oat file.
1660 const DexFile& dex_file = *cls->GetDexCache()->GetDexFile();
1661 const OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
1662 // In case we run without an image there won't be a backing oat file.
1663 if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) {
1664 return false;
1665 }
1666 uint16_t class_def_index = cls->GetDexClassDefIndex();
1667 return oat_dex_file->GetOatClass(class_def_index).GetStatus() >= ClassStatus::kInitialized;
1668 }
1669 }
1670
MaybeEnqueueCompilation(ArtMethod * method,Thread * self)1671 void Jit::MaybeEnqueueCompilation(ArtMethod* method, Thread* self) {
1672 if (thread_pool_ == nullptr) {
1673 return;
1674 }
1675
1676 if (JitAtFirstUse()) {
1677 // Tests might request JIT on first use (compiled synchronously in the interpreter).
1678 return;
1679 }
1680
1681 if (!UseJitCompilation()) {
1682 return;
1683 }
1684
1685 if (IgnoreSamplesForMethod(method)) {
1686 return;
1687 }
1688
1689 if (GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
1690 if (!method->IsNative() && !code_cache_->IsOsrCompiled(method)) {
1691 // If we already have compiled code for it, nterp may be stuck in a loop.
1692 // Compile OSR.
1693 AddCompileTask(self, method, CompilationKind::kOsr);
1694 }
1695 return;
1696 }
1697
1698 // Check if we have precompiled this method.
1699 if (UNLIKELY(method->IsPreCompiled())) {
1700 if (!method->StillNeedsClinitCheck()) {
1701 const void* entry_point = code_cache_->GetSavedEntryPointOfPreCompiledMethod(method);
1702 if (entry_point != nullptr) {
1703 Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(method, entry_point);
1704 }
1705 }
1706 return;
1707 }
1708
1709 static constexpr size_t kIndividualSharedMethodHotnessThreshold = 0x3f;
1710 if (method->IsMemorySharedMethod()) {
1711 MutexLock mu(self, lock_);
1712 auto it = shared_method_counters_.find(method);
1713 if (it == shared_method_counters_.end()) {
1714 shared_method_counters_[method] = kIndividualSharedMethodHotnessThreshold;
1715 return;
1716 } else if (it->second != 0) {
1717 DCHECK_LE(it->second, kIndividualSharedMethodHotnessThreshold);
1718 shared_method_counters_[method] = it->second - 1;
1719 return;
1720 } else {
1721 shared_method_counters_[method] = kIndividualSharedMethodHotnessThreshold;
1722 }
1723 }
1724
1725 if (!method->IsNative() && GetCodeCache()->CanAllocateProfilingInfo()) {
1726 AddCompileTask(self, method, CompilationKind::kBaseline);
1727 } else {
1728 AddCompileTask(self, method, CompilationKind::kOptimized);
1729 }
1730 }
1731
CompileMethod(ArtMethod * method,Thread * self,CompilationKind compilation_kind,bool prejit)1732 bool Jit::CompileMethod(ArtMethod* method,
1733 Thread* self,
1734 CompilationKind compilation_kind,
1735 bool prejit) {
1736 // Fake being in a runtime thread so that class-load behavior will be the same as normal jit.
1737 ScopedSetRuntimeThread ssrt(self);
1738 // TODO(ngeoffray): For JIT at first use, use kPreCompile. Currently we don't due to
1739 // conflicts with jitzygote optimizations.
1740 return CompileMethodInternal(method, self, compilation_kind, prejit);
1741 }
1742
GetTaskCount(Thread * self)1743 size_t JitThreadPool::GetTaskCount(Thread* self) {
1744 MutexLock mu(self, task_queue_lock_);
1745 return generic_queue_.size() +
1746 baseline_queue_.size() +
1747 optimized_queue_.size() +
1748 osr_queue_.size();
1749 }
1750
RemoveAllTasks(Thread * self)1751 void JitThreadPool::RemoveAllTasks(Thread* self) {
1752 // The ThreadPool is responsible for calling Finalize (which usually deletes
1753 // the task memory) on all the tasks.
1754 Task* task = nullptr;
1755 do {
1756 {
1757 MutexLock mu(self, task_queue_lock_);
1758 if (generic_queue_.empty()) {
1759 break;
1760 }
1761 task = generic_queue_.front();
1762 generic_queue_.pop_front();
1763 }
1764 task->Finalize();
1765 } while (true);
1766
1767 MutexLock mu(self, task_queue_lock_);
1768 baseline_queue_.clear();
1769 optimized_queue_.clear();
1770 osr_queue_.clear();
1771 }
1772
~JitThreadPool()1773 JitThreadPool::~JitThreadPool() {
1774 DeleteThreads();
1775 RemoveAllTasks(Thread::Current());
1776 }
1777
AddTask(Thread * self,Task * task)1778 void JitThreadPool::AddTask(Thread* self, Task* task) {
1779 MutexLock mu(self, task_queue_lock_);
1780 // We don't want to enqueue any new tasks when thread pool has stopped. This simplifies
1781 // the implementation of redefinition feature in jvmti.
1782 if (!started_) {
1783 task->Finalize();
1784 return;
1785 }
1786 generic_queue_.push_back(task);
1787 // If we have any waiters, signal one.
1788 if (waiting_count_ != 0) {
1789 task_queue_condition_.Signal(self);
1790 }
1791 }
1792
AddTask(Thread * self,ArtMethod * method,CompilationKind kind)1793 void JitThreadPool::AddTask(Thread* self, ArtMethod* method, CompilationKind kind) {
1794 MutexLock mu(self, task_queue_lock_);
1795 // We don't want to enqueue any new tasks when thread pool has stopped. This simplifies
1796 // the implementation of redefinition feature in jvmti.
1797 if (!started_) {
1798 return;
1799 }
1800 switch (kind) {
1801 case CompilationKind::kOsr:
1802 if (ContainsElement(osr_enqueued_methods_, method)) {
1803 return;
1804 }
1805 osr_enqueued_methods_.insert(method);
1806 osr_queue_.push_back(method);
1807 break;
1808 case CompilationKind::kBaseline:
1809 if (ContainsElement(baseline_enqueued_methods_, method)) {
1810 return;
1811 }
1812 baseline_enqueued_methods_.insert(method);
1813 baseline_queue_.push_back(method);
1814 break;
1815 case CompilationKind::kOptimized:
1816 if (ContainsElement(optimized_enqueued_methods_, method)) {
1817 return;
1818 }
1819 optimized_enqueued_methods_.insert(method);
1820 optimized_queue_.push_back(method);
1821 break;
1822 }
1823 // If we have any waiters, signal one.
1824 if (waiting_count_ != 0) {
1825 task_queue_condition_.Signal(self);
1826 }
1827 }
1828
TryGetTaskLocked()1829 Task* JitThreadPool::TryGetTaskLocked() {
1830 if (!started_) {
1831 return nullptr;
1832 }
1833
1834 // Fetch generic tasks first.
1835 if (!generic_queue_.empty()) {
1836 Task* task = generic_queue_.front();
1837 generic_queue_.pop_front();
1838 return task;
1839 }
1840
1841 // OSR requests second, then baseline and finally optimized.
1842 Task* task = FetchFrom(osr_queue_, CompilationKind::kOsr);
1843 if (task == nullptr) {
1844 task = FetchFrom(baseline_queue_, CompilationKind::kBaseline);
1845 if (task == nullptr) {
1846 task = FetchFrom(optimized_queue_, CompilationKind::kOptimized);
1847 }
1848 }
1849 return task;
1850 }
1851
FetchFrom(std::deque<ArtMethod * > & methods,CompilationKind kind)1852 Task* JitThreadPool::FetchFrom(std::deque<ArtMethod*>& methods, CompilationKind kind) {
1853 if (!methods.empty()) {
1854 ArtMethod* method = methods.front();
1855 methods.pop_front();
1856 JitCompileTask* task = new JitCompileTask(method, JitCompileTask::TaskKind::kCompile, kind);
1857 current_compilations_.insert(task);
1858 return task;
1859 }
1860 return nullptr;
1861 }
1862
Remove(JitCompileTask * task)1863 void JitThreadPool::Remove(JitCompileTask* task) {
1864 MutexLock mu(Thread::Current(), task_queue_lock_);
1865 current_compilations_.erase(task);
1866 switch (task->GetCompilationKind()) {
1867 case CompilationKind::kOsr: {
1868 osr_enqueued_methods_.erase(task->GetArtMethod());
1869 break;
1870 }
1871 case CompilationKind::kBaseline: {
1872 baseline_enqueued_methods_.erase(task->GetArtMethod());
1873 break;
1874 }
1875 case CompilationKind::kOptimized: {
1876 optimized_enqueued_methods_.erase(task->GetArtMethod());
1877 break;
1878 }
1879 }
1880 }
1881
VisitRoots(RootVisitor * visitor)1882 void Jit::VisitRoots(RootVisitor* visitor) {
1883 if (thread_pool_ != nullptr) {
1884 thread_pool_->VisitRoots(visitor);
1885 }
1886 }
1887
VisitRoots(RootVisitor * visitor)1888 void JitThreadPool::VisitRoots(RootVisitor* visitor) {
1889 if (Runtime::Current()->GetHeap()->IsPerformingUffdCompaction()) {
1890 // In case of userfaultfd compaction, ArtMethods are updated concurrently
1891 // via linear-alloc.
1892 return;
1893 }
1894 // Fetch all ArtMethod first, to avoid holding `task_queue_lock_` for too
1895 // long.
1896 std::vector<ArtMethod*> methods;
1897 {
1898 MutexLock mu(Thread::Current(), task_queue_lock_);
1899 // We don't look at `generic_queue_` because it contains:
1900 // - Generic tasks like `ZygoteVerificationTask` which don't hold any root.
1901 // - `JitCompileTask` for precompiled methods, which we know are live, being
1902 // part of the boot classpath or system server classpath.
1903 methods.insert(methods.end(), osr_queue_.begin(), osr_queue_.end());
1904 methods.insert(methods.end(), baseline_queue_.begin(), baseline_queue_.end());
1905 methods.insert(methods.end(), optimized_queue_.begin(), optimized_queue_.end());
1906 for (JitCompileTask* task : current_compilations_) {
1907 methods.push_back(task->GetArtMethod());
1908 }
1909 }
1910 UnbufferedRootVisitor root_visitor(visitor, RootInfo(kRootStickyClass));
1911 for (ArtMethod* method : methods) {
1912 method->VisitRoots(root_visitor, kRuntimePointerSize);
1913 }
1914 }
1915
1916 } // namespace jit
1917 } // namespace art
1918