1
2 /*
3 * Copyright (C) 2012 The Android Open Source Project
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 #include "thread_pool.h"
19
20 #include <sys/mman.h>
21 #include <sys/resource.h>
22 #include <sys/time.h>
23
24 #include <pthread.h>
25
26 #include <android-base/logging.h>
27 #include <android-base/stringprintf.h>
28
29 #include "base/bit_utils.h"
30 #include "base/casts.h"
31 #include "base/stl_util.h"
32 #include "base/time_utils.h"
33 #include "base/utils.h"
34 #include "runtime.h"
35 #include "thread-current-inl.h"
36
37 namespace art HIDDEN {
38
39 using android::base::StringPrintf;
40
41 static constexpr bool kMeasureWaitTime = false;
42
43 #if defined(__BIONIC__)
44 static constexpr bool kUseCustomThreadPoolStack = false;
45 #else
46 static constexpr bool kUseCustomThreadPoolStack = true;
47 #endif
48
ThreadPoolWorker(AbstractThreadPool * thread_pool,const std::string & name,size_t stack_size)49 ThreadPoolWorker::ThreadPoolWorker(AbstractThreadPool* thread_pool,
50 const std::string& name,
51 size_t stack_size)
52 : thread_pool_(thread_pool),
53 name_(name) {
54 std::string error_msg;
55 // On Bionic, we know pthreads will give us a big-enough stack with
56 // a guard page, so don't do anything special on Bionic libc.
57 if (kUseCustomThreadPoolStack) {
58 // Add an inaccessible page to catch stack overflow.
59 stack_size += gPageSize;
60 stack_ = MemMap::MapAnonymous(name.c_str(),
61 stack_size,
62 PROT_READ | PROT_WRITE,
63 /*low_4gb=*/ false,
64 &error_msg);
65 CHECK(stack_.IsValid()) << error_msg;
66 CHECK_ALIGNED_PARAM(stack_.Begin(), gPageSize);
67 CheckedCall(mprotect,
68 "mprotect bottom page of thread pool worker stack",
69 stack_.Begin(),
70 gPageSize,
71 PROT_NONE);
72 }
73 const char* reason = "new thread pool worker thread";
74 pthread_attr_t attr;
75 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason);
76 if (kUseCustomThreadPoolStack) {
77 CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_.Begin(), stack_.Size()), reason);
78 } else {
79 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), reason);
80 }
81 CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason);
82 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason);
83 }
84
~ThreadPoolWorker()85 ThreadPoolWorker::~ThreadPoolWorker() {
86 CHECK_PTHREAD_CALL(pthread_join, (pthread_, nullptr), "thread pool worker shutdown");
87 }
88
89 // Set the "nice" priority for tid (0 means self).
SetPriorityForTid(pid_t tid,int priority)90 static void SetPriorityForTid(pid_t tid, int priority) {
91 CHECK_GE(priority, PRIO_MIN);
92 CHECK_LE(priority, PRIO_MAX);
93 int result = setpriority(PRIO_PROCESS, tid, priority);
94 if (result != 0) {
95 #if defined(ART_TARGET_ANDROID)
96 PLOG(WARNING) << "Failed to setpriority to :" << priority;
97 #endif
98 // Setpriority may fail on host due to ulimit issues.
99 }
100 }
101
SetPthreadPriority(int priority)102 void ThreadPoolWorker::SetPthreadPriority(int priority) {
103 #if defined(ART_TARGET_ANDROID)
104 SetPriorityForTid(pthread_gettid_np(pthread_), priority);
105 #else
106 UNUSED(priority);
107 #endif
108 }
109
GetPthreadPriority()110 int ThreadPoolWorker::GetPthreadPriority() {
111 #if defined(ART_TARGET_ANDROID)
112 return getpriority(PRIO_PROCESS, pthread_gettid_np(pthread_));
113 #else
114 return 0;
115 #endif
116 }
117
Run()118 void ThreadPoolWorker::Run() {
119 Thread* self = Thread::Current();
120 Task* task = nullptr;
121 thread_pool_->creation_barier_.Pass(self);
122 while ((task = thread_pool_->GetTask(self)) != nullptr) {
123 task->Run(self);
124 task->Finalize();
125 }
126 }
127
Callback(void * arg)128 void* ThreadPoolWorker::Callback(void* arg) {
129 ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg);
130 Runtime* runtime = Runtime::Current();
131 // Don't run callbacks for ThreadPoolWorkers. These are created for JITThreadPool and
132 // HeapThreadPool and are purely internal threads of the runtime and we don't need to run
133 // callbacks for the thread attach / detach listeners.
134 // (b/251163712) Calling callbacks for heap thread pool workers causes deadlocks in some libjdwp
135 // tests. Deadlocks happen when a GC thread is attached while libjdwp holds the event handler
136 // lock for an event that triggers an entrypoint update from deopt manager.
137 CHECK(runtime->AttachCurrentThread(
138 worker->name_.c_str(),
139 true,
140 // Thread-groups are only tracked by the peer j.l.Thread objects. If we aren't creating peers
141 // we don't need to specify the thread group. We want to place these threads in the System
142 // thread group because that thread group is where important threads that debuggers and
143 // similar tools should not mess with are placed. As this is an internal-thread-pool we might
144 // rely on being able to (for example) wait for all threads to finish some task. If debuggers
145 // are suspending these threads that might not be possible.
146 worker->thread_pool_->create_peers_ ? runtime->GetSystemThreadGroup() : nullptr,
147 worker->thread_pool_->create_peers_,
148 /* should_run_callbacks= */ false));
149 worker->thread_ = Thread::Current();
150 // Mark thread pool workers as runtime-threads.
151 worker->thread_->SetIsRuntimeThread(true);
152 // Do work until its time to shut down.
153 worker->Run();
154 runtime->DetachCurrentThread(/* should_run_callbacks= */ false);
155 // On zygote fork, we wait for this thread to exit completely. Set to highest Java priority
156 // to speed that up.
157 constexpr int kJavaMaxPrioNiceness = -8;
158 SetPriorityForTid(0 /* this thread */, kJavaMaxPrioNiceness);
159 return nullptr;
160 }
161
AddTask(Thread * self,Task * task)162 void ThreadPool::AddTask(Thread* self, Task* task) {
163 MutexLock mu(self, task_queue_lock_);
164 tasks_.push_back(task);
165 // If we have any waiters, signal one.
166 if (started_ && waiting_count_ != 0) {
167 task_queue_condition_.Signal(self);
168 }
169 }
170
RemoveAllTasks(Thread * self)171 void ThreadPool::RemoveAllTasks(Thread* self) {
172 // The ThreadPool is responsible for calling Finalize (which usually delete
173 // the task memory) on all the tasks.
174 Task* task = nullptr;
175 do {
176 {
177 MutexLock mu(self, task_queue_lock_);
178 if (tasks_.empty()) {
179 return;
180 }
181 task = tasks_.front();
182 tasks_.pop_front();
183 }
184 task->Finalize();
185 } while (true);
186 }
187
~ThreadPool()188 ThreadPool::~ThreadPool() {
189 DeleteThreads();
190 RemoveAllTasks(Thread::Current());
191 }
192
AbstractThreadPool(const char * name,size_t num_threads,bool create_peers,size_t worker_stack_size)193 AbstractThreadPool::AbstractThreadPool(const char* name,
194 size_t num_threads,
195 bool create_peers,
196 size_t worker_stack_size)
197 : name_(name),
198 task_queue_lock_("task queue lock", kGenericBottomLock),
199 task_queue_condition_("task queue condition", task_queue_lock_),
200 completion_condition_("task completion condition", task_queue_lock_),
201 started_(false),
202 shutting_down_(false),
203 waiting_count_(0),
204 start_time_(0),
205 total_wait_time_(0),
206 creation_barier_(0),
207 max_active_workers_(num_threads),
208 create_peers_(create_peers),
209 worker_stack_size_(worker_stack_size) {}
210
CreateThreads()211 void AbstractThreadPool::CreateThreads() {
212 CHECK(threads_.empty());
213 Thread* self = Thread::Current();
214 {
215 MutexLock mu(self, task_queue_lock_);
216 shutting_down_ = false;
217 // Add one since the caller of constructor waits on the barrier too.
218 creation_barier_.Init(self, max_active_workers_);
219 while (GetThreadCount() < max_active_workers_) {
220 const std::string worker_name = StringPrintf("%s worker thread %zu", name_.c_str(),
221 GetThreadCount());
222 threads_.push_back(
223 new ThreadPoolWorker(this, worker_name, worker_stack_size_));
224 }
225 }
226 }
227
WaitForWorkersToBeCreated()228 void AbstractThreadPool::WaitForWorkersToBeCreated() {
229 creation_barier_.Increment(Thread::Current(), 0);
230 }
231
GetWorkers()232 const std::vector<ThreadPoolWorker*>& AbstractThreadPool::GetWorkers() {
233 // Wait for all the workers to be created before returning them.
234 WaitForWorkersToBeCreated();
235 return threads_;
236 }
237
DeleteThreads()238 void AbstractThreadPool::DeleteThreads() {
239 {
240 Thread* self = Thread::Current();
241 MutexLock mu(self, task_queue_lock_);
242 // Tell any remaining workers to shut down.
243 shutting_down_ = true;
244 // Broadcast to everyone waiting.
245 task_queue_condition_.Broadcast(self);
246 completion_condition_.Broadcast(self);
247 }
248 // Wait for the threads to finish. We expect the user of the pool
249 // not to run multi-threaded calls to `CreateThreads` and `DeleteThreads`,
250 // so we don't guard the field here.
251 STLDeleteElements(&threads_);
252 }
253
SetMaxActiveWorkers(size_t max_workers)254 void AbstractThreadPool::SetMaxActiveWorkers(size_t max_workers) {
255 MutexLock mu(Thread::Current(), task_queue_lock_);
256 CHECK_LE(max_workers, GetThreadCount());
257 max_active_workers_ = max_workers;
258 }
259
StartWorkers(Thread * self)260 void AbstractThreadPool::StartWorkers(Thread* self) {
261 MutexLock mu(self, task_queue_lock_);
262 started_ = true;
263 task_queue_condition_.Broadcast(self);
264 start_time_ = NanoTime();
265 total_wait_time_ = 0;
266 }
267
StopWorkers(Thread * self)268 void AbstractThreadPool::StopWorkers(Thread* self) {
269 MutexLock mu(self, task_queue_lock_);
270 started_ = false;
271 }
272
HasStarted(Thread * self)273 bool AbstractThreadPool::HasStarted(Thread* self) {
274 MutexLock mu(self, task_queue_lock_);
275 return started_;
276 }
277
GetTask(Thread * self)278 Task* AbstractThreadPool::GetTask(Thread* self) {
279 MutexLock mu(self, task_queue_lock_);
280 while (!IsShuttingDown()) {
281 const size_t thread_count = GetThreadCount();
282 // Ensure that we don't use more threads than the maximum active workers.
283 const size_t active_threads = thread_count - waiting_count_;
284 // <= since self is considered an active worker.
285 if (active_threads <= max_active_workers_) {
286 Task* task = TryGetTaskLocked();
287 if (task != nullptr) {
288 return task;
289 }
290 }
291
292 ++waiting_count_;
293 if (waiting_count_ == GetThreadCount() && !HasOutstandingTasks()) {
294 // We may be done, lets broadcast to the completion condition.
295 completion_condition_.Broadcast(self);
296 }
297 const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0;
298 task_queue_condition_.Wait(self);
299 if (kMeasureWaitTime) {
300 const uint64_t wait_end = NanoTime();
301 total_wait_time_ += wait_end - std::max(wait_start, start_time_);
302 }
303 --waiting_count_;
304 }
305
306 // We are shutting down, return null to tell the worker thread to stop looping.
307 return nullptr;
308 }
309
TryGetTask(Thread * self)310 Task* AbstractThreadPool::TryGetTask(Thread* self) {
311 MutexLock mu(self, task_queue_lock_);
312 return TryGetTaskLocked();
313 }
314
TryGetTaskLocked()315 Task* ThreadPool::TryGetTaskLocked() {
316 if (HasOutstandingTasks()) {
317 Task* task = tasks_.front();
318 tasks_.pop_front();
319 return task;
320 }
321 return nullptr;
322 }
323
Wait(Thread * self,bool do_work,bool may_hold_locks)324 void AbstractThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) {
325 if (do_work) {
326 CHECK(!create_peers_);
327 Task* task = nullptr;
328 while ((task = TryGetTask(self)) != nullptr) {
329 task->Run(self);
330 task->Finalize();
331 }
332 }
333 // Wait until each thread is waiting and the task list is empty.
334 MutexLock mu(self, task_queue_lock_);
335 while (!shutting_down_ && (waiting_count_ != GetThreadCount() || HasOutstandingTasks())) {
336 if (!may_hold_locks) {
337 completion_condition_.Wait(self);
338 } else {
339 completion_condition_.WaitHoldingLocks(self);
340 }
341 }
342 }
343
GetTaskCount(Thread * self)344 size_t ThreadPool::GetTaskCount(Thread* self) {
345 MutexLock mu(self, task_queue_lock_);
346 return tasks_.size();
347 }
348
SetPthreadPriority(int priority)349 void AbstractThreadPool::SetPthreadPriority(int priority) {
350 for (ThreadPoolWorker* worker : threads_) {
351 worker->SetPthreadPriority(priority);
352 }
353 }
354
CheckPthreadPriority(int priority)355 void AbstractThreadPool::CheckPthreadPriority(int priority) {
356 #if defined(ART_TARGET_ANDROID)
357 for (ThreadPoolWorker* worker : threads_) {
358 CHECK_EQ(worker->GetPthreadPriority(), priority);
359 }
360 #else
361 UNUSED(priority);
362 #endif
363 }
364
365 } // namespace art
366