• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2020 Google LLC
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *     https://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 // Generated by the protocol buffer compiler.  DO NOT EDIT!
17 // source: google/cloud/automl/v1beta1/tables.proto
18 
19 package com.google.cloud.automl.v1beta1;
20 
21 public interface TablesModelMetadataOrBuilder
22     extends
23     // @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.TablesModelMetadata)
24     com.google.protobuf.MessageOrBuilder {
25 
26   /**
27    *
28    *
29    * <pre>
30    * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
31    * Must be between 0 and 1, inclusive.
32    * </pre>
33    *
34    * <code>float optimization_objective_recall_value = 17;</code>
35    *
36    * @return Whether the optimizationObjectiveRecallValue field is set.
37    */
hasOptimizationObjectiveRecallValue()38   boolean hasOptimizationObjectiveRecallValue();
39   /**
40    *
41    *
42    * <pre>
43    * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
44    * Must be between 0 and 1, inclusive.
45    * </pre>
46    *
47    * <code>float optimization_objective_recall_value = 17;</code>
48    *
49    * @return The optimizationObjectiveRecallValue.
50    */
getOptimizationObjectiveRecallValue()51   float getOptimizationObjectiveRecallValue();
52 
53   /**
54    *
55    *
56    * <pre>
57    * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
58    * Must be between 0 and 1, inclusive.
59    * </pre>
60    *
61    * <code>float optimization_objective_precision_value = 18;</code>
62    *
63    * @return Whether the optimizationObjectivePrecisionValue field is set.
64    */
hasOptimizationObjectivePrecisionValue()65   boolean hasOptimizationObjectivePrecisionValue();
66   /**
67    *
68    *
69    * <pre>
70    * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
71    * Must be between 0 and 1, inclusive.
72    * </pre>
73    *
74    * <code>float optimization_objective_precision_value = 18;</code>
75    *
76    * @return The optimizationObjectivePrecisionValue.
77    */
getOptimizationObjectivePrecisionValue()78   float getOptimizationObjectivePrecisionValue();
79 
80   /**
81    *
82    *
83    * <pre>
84    * Column spec of the dataset's primary table's column the model is
85    * predicting. Snapshotted when model creation started.
86    * Only 3 fields are used:
87    * name - May be set on CreateModel, if it's not then the ColumnSpec
88    *        corresponding to the current target_column_spec_id of the dataset
89    *        the model is trained from is used.
90    *        If neither is set, CreateModel will error.
91    * display_name - Output only.
92    * data_type - Output only.
93    * </pre>
94    *
95    * <code>.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;</code>
96    *
97    * @return Whether the targetColumnSpec field is set.
98    */
hasTargetColumnSpec()99   boolean hasTargetColumnSpec();
100   /**
101    *
102    *
103    * <pre>
104    * Column spec of the dataset's primary table's column the model is
105    * predicting. Snapshotted when model creation started.
106    * Only 3 fields are used:
107    * name - May be set on CreateModel, if it's not then the ColumnSpec
108    *        corresponding to the current target_column_spec_id of the dataset
109    *        the model is trained from is used.
110    *        If neither is set, CreateModel will error.
111    * display_name - Output only.
112    * data_type - Output only.
113    * </pre>
114    *
115    * <code>.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;</code>
116    *
117    * @return The targetColumnSpec.
118    */
getTargetColumnSpec()119   com.google.cloud.automl.v1beta1.ColumnSpec getTargetColumnSpec();
120   /**
121    *
122    *
123    * <pre>
124    * Column spec of the dataset's primary table's column the model is
125    * predicting. Snapshotted when model creation started.
126    * Only 3 fields are used:
127    * name - May be set on CreateModel, if it's not then the ColumnSpec
128    *        corresponding to the current target_column_spec_id of the dataset
129    *        the model is trained from is used.
130    *        If neither is set, CreateModel will error.
131    * display_name - Output only.
132    * data_type - Output only.
133    * </pre>
134    *
135    * <code>.google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2;</code>
136    */
getTargetColumnSpecOrBuilder()137   com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder getTargetColumnSpecOrBuilder();
138 
139   /**
140    *
141    *
142    * <pre>
143    * Column specs of the dataset's primary table's columns, on which
144    * the model is trained and which are used as the input for predictions.
145    * The
146    * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
147    * as well as, according to dataset's state upon model creation,
148    * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
149    * and
150    * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
151    * must never be included here.
152    * Only 3 fields are used:
153    * * name - May be set on CreateModel, if set only the columns specified are
154    *   used, otherwise all primary table's columns (except the ones listed
155    *   above) are used for the training and prediction input.
156    * * display_name - Output only.
157    * * data_type - Output only.
158    * </pre>
159    *
160    * <code>repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;</code>
161    */
getInputFeatureColumnSpecsList()162   java.util.List<com.google.cloud.automl.v1beta1.ColumnSpec> getInputFeatureColumnSpecsList();
163   /**
164    *
165    *
166    * <pre>
167    * Column specs of the dataset's primary table's columns, on which
168    * the model is trained and which are used as the input for predictions.
169    * The
170    * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
171    * as well as, according to dataset's state upon model creation,
172    * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
173    * and
174    * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
175    * must never be included here.
176    * Only 3 fields are used:
177    * * name - May be set on CreateModel, if set only the columns specified are
178    *   used, otherwise all primary table's columns (except the ones listed
179    *   above) are used for the training and prediction input.
180    * * display_name - Output only.
181    * * data_type - Output only.
182    * </pre>
183    *
184    * <code>repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;</code>
185    */
getInputFeatureColumnSpecs(int index)186   com.google.cloud.automl.v1beta1.ColumnSpec getInputFeatureColumnSpecs(int index);
187   /**
188    *
189    *
190    * <pre>
191    * Column specs of the dataset's primary table's columns, on which
192    * the model is trained and which are used as the input for predictions.
193    * The
194    * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
195    * as well as, according to dataset's state upon model creation,
196    * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
197    * and
198    * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
199    * must never be included here.
200    * Only 3 fields are used:
201    * * name - May be set on CreateModel, if set only the columns specified are
202    *   used, otherwise all primary table's columns (except the ones listed
203    *   above) are used for the training and prediction input.
204    * * display_name - Output only.
205    * * data_type - Output only.
206    * </pre>
207    *
208    * <code>repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;</code>
209    */
getInputFeatureColumnSpecsCount()210   int getInputFeatureColumnSpecsCount();
211   /**
212    *
213    *
214    * <pre>
215    * Column specs of the dataset's primary table's columns, on which
216    * the model is trained and which are used as the input for predictions.
217    * The
218    * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
219    * as well as, according to dataset's state upon model creation,
220    * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
221    * and
222    * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
223    * must never be included here.
224    * Only 3 fields are used:
225    * * name - May be set on CreateModel, if set only the columns specified are
226    *   used, otherwise all primary table's columns (except the ones listed
227    *   above) are used for the training and prediction input.
228    * * display_name - Output only.
229    * * data_type - Output only.
230    * </pre>
231    *
232    * <code>repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;</code>
233    */
234   java.util.List<? extends com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder>
getInputFeatureColumnSpecsOrBuilderList()235       getInputFeatureColumnSpecsOrBuilderList();
236   /**
237    *
238    *
239    * <pre>
240    * Column specs of the dataset's primary table's columns, on which
241    * the model is trained and which are used as the input for predictions.
242    * The
243    * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
244    * as well as, according to dataset's state upon model creation,
245    * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
246    * and
247    * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
248    * must never be included here.
249    * Only 3 fields are used:
250    * * name - May be set on CreateModel, if set only the columns specified are
251    *   used, otherwise all primary table's columns (except the ones listed
252    *   above) are used for the training and prediction input.
253    * * display_name - Output only.
254    * * data_type - Output only.
255    * </pre>
256    *
257    * <code>repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3;</code>
258    */
getInputFeatureColumnSpecsOrBuilder( int index)259   com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder getInputFeatureColumnSpecsOrBuilder(
260       int index);
261 
262   /**
263    *
264    *
265    * <pre>
266    * Objective function the model is optimizing towards. The training process
267    * creates a model that maximizes/minimizes the value of the objective
268    * function over the validation set.
269    * The supported optimization objectives depend on the prediction type.
270    * If the field is not set, a default objective function is used.
271    * CLASSIFICATION_BINARY:
272    *   "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
273    *                                 operating characteristic (ROC) curve.
274    *   "MINIMIZE_LOG_LOSS" - Minimize log loss.
275    *   "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
276    *   "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
277    *                                   recall value.
278    *   "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
279    *                                    precision value.
280    * CLASSIFICATION_MULTI_CLASS :
281    *   "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
282    * REGRESSION:
283    *   "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
284    *   "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
285    *   "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
286    * </pre>
287    *
288    * <code>string optimization_objective = 4;</code>
289    *
290    * @return The optimizationObjective.
291    */
getOptimizationObjective()292   java.lang.String getOptimizationObjective();
293   /**
294    *
295    *
296    * <pre>
297    * Objective function the model is optimizing towards. The training process
298    * creates a model that maximizes/minimizes the value of the objective
299    * function over the validation set.
300    * The supported optimization objectives depend on the prediction type.
301    * If the field is not set, a default objective function is used.
302    * CLASSIFICATION_BINARY:
303    *   "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
304    *                                 operating characteristic (ROC) curve.
305    *   "MINIMIZE_LOG_LOSS" - Minimize log loss.
306    *   "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
307    *   "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
308    *                                   recall value.
309    *   "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
310    *                                    precision value.
311    * CLASSIFICATION_MULTI_CLASS :
312    *   "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
313    * REGRESSION:
314    *   "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
315    *   "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
316    *   "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
317    * </pre>
318    *
319    * <code>string optimization_objective = 4;</code>
320    *
321    * @return The bytes for optimizationObjective.
322    */
getOptimizationObjectiveBytes()323   com.google.protobuf.ByteString getOptimizationObjectiveBytes();
324 
325   /**
326    *
327    *
328    * <pre>
329    * Output only. Auxiliary information for each of the
330    * input_feature_column_specs with respect to this particular model.
331    * </pre>
332    *
333    * <code>repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
334    * </code>
335    */
336   java.util.List<com.google.cloud.automl.v1beta1.TablesModelColumnInfo>
getTablesModelColumnInfoList()337       getTablesModelColumnInfoList();
338   /**
339    *
340    *
341    * <pre>
342    * Output only. Auxiliary information for each of the
343    * input_feature_column_specs with respect to this particular model.
344    * </pre>
345    *
346    * <code>repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
347    * </code>
348    */
getTablesModelColumnInfo(int index)349   com.google.cloud.automl.v1beta1.TablesModelColumnInfo getTablesModelColumnInfo(int index);
350   /**
351    *
352    *
353    * <pre>
354    * Output only. Auxiliary information for each of the
355    * input_feature_column_specs with respect to this particular model.
356    * </pre>
357    *
358    * <code>repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
359    * </code>
360    */
getTablesModelColumnInfoCount()361   int getTablesModelColumnInfoCount();
362   /**
363    *
364    *
365    * <pre>
366    * Output only. Auxiliary information for each of the
367    * input_feature_column_specs with respect to this particular model.
368    * </pre>
369    *
370    * <code>repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
371    * </code>
372    */
373   java.util.List<? extends com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder>
getTablesModelColumnInfoOrBuilderList()374       getTablesModelColumnInfoOrBuilderList();
375   /**
376    *
377    *
378    * <pre>
379    * Output only. Auxiliary information for each of the
380    * input_feature_column_specs with respect to this particular model.
381    * </pre>
382    *
383    * <code>repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5;
384    * </code>
385    */
getTablesModelColumnInfoOrBuilder( int index)386   com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder getTablesModelColumnInfoOrBuilder(
387       int index);
388 
389   /**
390    *
391    *
392    * <pre>
393    * Required. The train budget of creating this model, expressed in milli node
394    * hours i.e. 1,000 value in this field means 1 node hour.
395    * The training cost of the model will not exceed this budget. The final cost
396    * will be attempted to be close to the budget, though may end up being (even)
397    * noticeably smaller - at the backend's discretion. This especially may
398    * happen when further model training ceases to provide any improvements.
399    * If the budget is set to a value known to be insufficient to train a
400    * model for the given dataset, the training won't be attempted and
401    * will error.
402    * The train budget must be between 1,000 and 72,000 milli node hours,
403    * inclusive.
404    * </pre>
405    *
406    * <code>int64 train_budget_milli_node_hours = 6;</code>
407    *
408    * @return The trainBudgetMilliNodeHours.
409    */
getTrainBudgetMilliNodeHours()410   long getTrainBudgetMilliNodeHours();
411 
412   /**
413    *
414    *
415    * <pre>
416    * Output only. The actual training cost of the model, expressed in milli
417    * node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
418    * to not exceed the train budget.
419    * </pre>
420    *
421    * <code>int64 train_cost_milli_node_hours = 7;</code>
422    *
423    * @return The trainCostMilliNodeHours.
424    */
getTrainCostMilliNodeHours()425   long getTrainCostMilliNodeHours();
426 
427   /**
428    *
429    *
430    * <pre>
431    * Use the entire training budget. This disables the early stopping feature.
432    * By default, the early stopping feature is enabled, which means that AutoML
433    * Tables might stop training before the entire training budget has been used.
434    * </pre>
435    *
436    * <code>bool disable_early_stopping = 12;</code>
437    *
438    * @return The disableEarlyStopping.
439    */
getDisableEarlyStopping()440   boolean getDisableEarlyStopping();
441 
442   public com.google.cloud.automl.v1beta1.TablesModelMetadata
443           .AdditionalOptimizationObjectiveConfigCase
getAdditionalOptimizationObjectiveConfigCase()444       getAdditionalOptimizationObjectiveConfigCase();
445 }
446