• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/tracing/core/shared_memory_arbiter_impl.h"
18 
19 #include <algorithm>
20 #include <limits>
21 #include <utility>
22 
23 #include "perfetto/base/logging.h"
24 #include "perfetto/base/task_runner.h"
25 #include "perfetto/base/time.h"
26 #include "perfetto/ext/tracing/core/commit_data_request.h"
27 #include "perfetto/ext/tracing/core/shared_memory.h"
28 #include "perfetto/ext/tracing/core/shared_memory_abi.h"
29 #include "src/tracing/core/null_trace_writer.h"
30 #include "src/tracing/core/trace_writer_impl.h"
31 
32 namespace perfetto {
33 
34 using Chunk = SharedMemoryABI::Chunk;
35 
36 namespace {
37 static_assert(sizeof(BufferID) == sizeof(uint16_t),
38               "The MaybeUnboundBufferID logic requires BufferID not to grow "
39               "above uint16_t.");
40 
MakeTargetBufferIdForReservation(uint16_t reservation_id)41 MaybeUnboundBufferID MakeTargetBufferIdForReservation(uint16_t reservation_id) {
42   // Reservation IDs are stored in the upper bits.
43   PERFETTO_CHECK(reservation_id > 0);
44   return static_cast<MaybeUnboundBufferID>(reservation_id) << 16;
45 }
46 
IsReservationTargetBufferId(MaybeUnboundBufferID buffer_id)47 bool IsReservationTargetBufferId(MaybeUnboundBufferID buffer_id) {
48   return (buffer_id >> 16) > 0;
49 }
50 }  // namespace
51 
52 // static
53 SharedMemoryABI::PageLayout SharedMemoryArbiterImpl::default_page_layout =
54     SharedMemoryABI::PageLayout::kPageDiv1;
55 
56 // static
CreateInstance(SharedMemory * shared_memory,size_t page_size,ShmemMode mode,TracingService::ProducerEndpoint * producer_endpoint,base::TaskRunner * task_runner)57 std::unique_ptr<SharedMemoryArbiter> SharedMemoryArbiter::CreateInstance(
58     SharedMemory* shared_memory,
59     size_t page_size,
60     ShmemMode mode,
61     TracingService::ProducerEndpoint* producer_endpoint,
62     base::TaskRunner* task_runner) {
63   return std::unique_ptr<SharedMemoryArbiterImpl>(new SharedMemoryArbiterImpl(
64       shared_memory->start(), shared_memory->size(), mode, page_size,
65       producer_endpoint, task_runner));
66 }
67 
68 // static
CreateUnboundInstance(SharedMemory * shared_memory,size_t page_size,ShmemMode mode)69 std::unique_ptr<SharedMemoryArbiter> SharedMemoryArbiter::CreateUnboundInstance(
70     SharedMemory* shared_memory,
71     size_t page_size,
72     ShmemMode mode) {
73   return std::unique_ptr<SharedMemoryArbiterImpl>(new SharedMemoryArbiterImpl(
74       shared_memory->start(), shared_memory->size(), mode, page_size,
75       /*producer_endpoint=*/nullptr, /*task_runner=*/nullptr));
76 }
77 
SharedMemoryArbiterImpl(void * start,size_t size,ShmemMode mode,size_t page_size,TracingService::ProducerEndpoint * producer_endpoint,base::TaskRunner * task_runner)78 SharedMemoryArbiterImpl::SharedMemoryArbiterImpl(
79     void* start,
80     size_t size,
81     ShmemMode mode,
82     size_t page_size,
83     TracingService::ProducerEndpoint* producer_endpoint,
84     base::TaskRunner* task_runner)
85     : producer_endpoint_(producer_endpoint),
86       use_shmem_emulation_(mode == ShmemMode::kShmemEmulation),
87       task_runner_(task_runner),
88       shmem_abi_(reinterpret_cast<uint8_t*>(start), size, page_size, mode),
89       active_writer_ids_(kMaxWriterID),
90       fully_bound_(task_runner && producer_endpoint),
91       was_always_bound_(fully_bound_),
92       weak_ptr_factory_(this) {}
93 
GetNewChunk(const SharedMemoryABI::ChunkHeader & header,BufferExhaustedPolicy buffer_exhausted_policy)94 Chunk SharedMemoryArbiterImpl::GetNewChunk(
95     const SharedMemoryABI::ChunkHeader& header,
96     BufferExhaustedPolicy buffer_exhausted_policy) {
97   int stall_count = 0;
98   unsigned stall_interval_us = 0;
99   bool task_runner_runs_on_current_thread = false;
100   static const unsigned kMaxStallIntervalUs = 100000;
101   static const int kLogAfterNStalls = 3;
102   static const int kFlushCommitsAfterEveryNStalls = 2;
103   static const int kAssertAtNStalls = 200;
104 
105   for (;;) {
106     // TODO(primiano): Probably this lock is not really required and this code
107     // could be rewritten leveraging only the Try* atomic operations in
108     // SharedMemoryABI. But let's not be too adventurous for the moment.
109     {
110       std::unique_lock<std::mutex> scoped_lock(lock_);
111 
112       // If ever unbound, we do not support stalling. In theory, we could
113       // support stalling for TraceWriters created after the arbiter and startup
114       // buffer reservations were bound, but to avoid raciness between the
115       // creation of startup writers and binding, we categorically forbid kStall
116       // mode.
117       PERFETTO_DCHECK(was_always_bound_ ||
118                       buffer_exhausted_policy == BufferExhaustedPolicy::kDrop);
119 
120       task_runner_runs_on_current_thread =
121           task_runner_ && task_runner_->RunsTasksOnCurrentThread();
122 
123       // If more than half of the SMB.size() is filled with completed chunks for
124       // which we haven't notified the service yet (i.e. they are still enqueued
125       // in |commit_data_req_|), force a synchronous CommitDataRequest() even if
126       // we acquire a chunk, to reduce the likeliness of stalling the writer.
127       //
128       // We can only do this if we're writing on the same thread that we access
129       // the producer endpoint on, since we cannot notify the producer endpoint
130       // to commit synchronously on a different thread. Attempting to flush
131       // synchronously on another thread will lead to subtle bugs caused by
132       // out-of-order commit requests (crbug.com/919187#c28).
133       bool should_commit_synchronously =
134           task_runner_runs_on_current_thread &&
135           buffer_exhausted_policy == BufferExhaustedPolicy::kStall &&
136           commit_data_req_ && bytes_pending_commit_ >= shmem_abi_.size() / 2;
137 
138       const size_t initial_page_idx = page_idx_;
139       for (size_t i = 0; i < shmem_abi_.num_pages(); i++) {
140         page_idx_ = (initial_page_idx + i) % shmem_abi_.num_pages();
141         bool is_new_page = false;
142 
143         // TODO(primiano): make the page layout dynamic.
144         auto layout = SharedMemoryArbiterImpl::default_page_layout;
145 
146         if (shmem_abi_.is_page_free(page_idx_)) {
147           // TODO(primiano): Use the |size_hint| here to decide the layout.
148           is_new_page = shmem_abi_.TryPartitionPage(page_idx_, layout);
149         }
150         uint32_t free_chunks;
151         if (is_new_page) {
152           free_chunks = (1 << SharedMemoryABI::kNumChunksForLayout[layout]) - 1;
153         } else {
154           free_chunks = shmem_abi_.GetFreeChunks(page_idx_);
155         }
156 
157         for (uint32_t chunk_idx = 0; free_chunks;
158              chunk_idx++, free_chunks >>= 1) {
159           if (!(free_chunks & 1))
160             continue;
161           // We found a free chunk.
162           Chunk chunk = shmem_abi_.TryAcquireChunkForWriting(
163               page_idx_, chunk_idx, &header);
164           if (!chunk.is_valid())
165             continue;
166           if (stall_count > kLogAfterNStalls) {
167             PERFETTO_LOG("Recovered from stall after %d iterations",
168                          stall_count);
169           }
170 
171           if (should_commit_synchronously) {
172             // We can't flush while holding the lock.
173             scoped_lock.unlock();
174             FlushPendingCommitDataRequests();
175             return chunk;
176           } else {
177             return chunk;
178           }
179         }
180       }
181     }  // scoped_lock
182 
183     if (buffer_exhausted_policy == BufferExhaustedPolicy::kDrop) {
184       PERFETTO_DLOG("Shared memory buffer exhausted, returning invalid Chunk!");
185       return Chunk();
186     }
187 
188     // Stalling is not supported if we were ever unbound (see earlier comment).
189     PERFETTO_CHECK(was_always_bound_);
190 
191     // All chunks are taken (either kBeingWritten by us or kBeingRead by the
192     // Service).
193     if (stall_count++ == kLogAfterNStalls) {
194       PERFETTO_LOG("Shared memory buffer overrun! Stalling");
195     }
196 
197     if (stall_count == kAssertAtNStalls) {
198       PERFETTO_FATAL(
199           "Shared memory buffer max stall count exceeded; possible deadlock");
200     }
201 
202     // If the IPC thread itself is stalled because the current process has
203     // filled up the SMB, we need to make sure that the service can process and
204     // purge the chunks written by our process, by flushing any pending commit
205     // requests. Because other threads in our process can continue to
206     // concurrently grab, fill and commit any chunks purged by the service, it
207     // is possible that the SMB remains full and the IPC thread remains stalled,
208     // needing to flush the concurrently queued up commits again. This is
209     // particularly likely with in-process perfetto service where the IPC thread
210     // is the service thread. To avoid remaining stalled forever in such a
211     // situation, we attempt to flush periodically after every N stalls.
212     if (stall_count % kFlushCommitsAfterEveryNStalls == 0 &&
213         task_runner_runs_on_current_thread) {
214       // TODO(primiano): sending the IPC synchronously is a temporary workaround
215       // until the backpressure logic in probes_producer is sorted out. Until
216       // then the risk is that we stall the message loop waiting for the tracing
217       // service to consume the shared memory buffer (SMB) and, for this reason,
218       // never run the task that tells the service to purge the SMB. This must
219       // happen iff we are on the IPC thread, not doing this will cause
220       // deadlocks, doing this on the wrong thread causes out-of-order data
221       // commits (crbug.com/919187#c28).
222       FlushPendingCommitDataRequests();
223     } else {
224       base::SleepMicroseconds(stall_interval_us);
225       stall_interval_us =
226           std::min(kMaxStallIntervalUs, (stall_interval_us + 1) * 8);
227     }
228   }
229 }
230 
ReturnCompletedChunk(Chunk chunk,MaybeUnboundBufferID target_buffer,PatchList * patch_list)231 void SharedMemoryArbiterImpl::ReturnCompletedChunk(
232     Chunk chunk,
233     MaybeUnboundBufferID target_buffer,
234     PatchList* patch_list) {
235   PERFETTO_DCHECK(chunk.is_valid());
236   const WriterID writer_id = chunk.writer_id();
237   UpdateCommitDataRequest(std::move(chunk), writer_id, target_buffer,
238                           patch_list);
239 }
240 
SendPatches(WriterID writer_id,MaybeUnboundBufferID target_buffer,PatchList * patch_list)241 void SharedMemoryArbiterImpl::SendPatches(WriterID writer_id,
242                                           MaybeUnboundBufferID target_buffer,
243                                           PatchList* patch_list) {
244   PERFETTO_DCHECK(!patch_list->empty() && patch_list->front().is_patched());
245   UpdateCommitDataRequest(Chunk(), writer_id, target_buffer, patch_list);
246 }
247 
UpdateCommitDataRequest(Chunk chunk,WriterID writer_id,MaybeUnboundBufferID target_buffer,PatchList * patch_list)248 void SharedMemoryArbiterImpl::UpdateCommitDataRequest(
249     Chunk chunk,
250     WriterID writer_id,
251     MaybeUnboundBufferID target_buffer,
252     PatchList* patch_list) {
253   // Note: chunk will be invalid if the call came from SendPatches().
254   base::TaskRunner* task_runner_to_post_delayed_callback_on = nullptr;
255   // The delay with which the flush will be posted.
256   uint32_t flush_delay_ms = 0;
257   base::WeakPtr<SharedMemoryArbiterImpl> weak_this;
258   {
259     std::lock_guard<std::mutex> scoped_lock(lock_);
260 
261     if (!commit_data_req_) {
262       commit_data_req_.reset(new CommitDataRequest());
263 
264       // Flushing the commit is only supported while we're |fully_bound_|. If we
265       // aren't, we'll flush when |fully_bound_| is updated.
266       if (fully_bound_ && !delayed_flush_scheduled_) {
267         weak_this = weak_ptr_factory_.GetWeakPtr();
268         task_runner_to_post_delayed_callback_on = task_runner_;
269         flush_delay_ms = batch_commits_duration_ms_;
270         delayed_flush_scheduled_ = true;
271       }
272     }
273 
274     CommitDataRequest::ChunksToMove* ctm = nullptr;  // Set if chunk is valid.
275     // If a valid chunk is specified, return it and attach it to the request.
276     if (chunk.is_valid()) {
277       PERFETTO_DCHECK(chunk.writer_id() == writer_id);
278       uint8_t chunk_idx = chunk.chunk_idx();
279       bytes_pending_commit_ += chunk.size();
280       size_t page_idx;
281 
282       ctm = commit_data_req_->add_chunks_to_move();
283       // If the chunk needs patching, it should not be marked as complete yet,
284       // because this would indicate to the service that the producer will not
285       // be writing to it anymore, while the producer might still apply patches
286       // to the chunk later on. In particular, when re-reading (e.g. because of
287       // periodic scraping) a completed chunk, the service expects the flags of
288       // that chunk not to be removed between reads. So, let's say the producer
289       // marked the chunk as complete here and the service then read it for the
290       // first time. If the producer then fully patched the chunk, thus removing
291       // the kChunkNeedsPatching flag, and the service re-read the chunk after
292       // the patching, the service would be thrown off by the removed flag.
293       if (direct_patching_enabled_ &&
294           (chunk.GetPacketCountAndFlags().second &
295            SharedMemoryABI::ChunkHeader::kChunkNeedsPatching)) {
296         page_idx = shmem_abi_.GetPageAndChunkIndex(std::move(chunk)).first;
297       } else {
298         // If the chunk doesn't need patching, we can mark it as complete
299         // immediately. This allows the service to read it in full while
300         // scraping, which would not be the case if the chunk was left in a
301         // kChunkBeingWritten state.
302         page_idx = shmem_abi_.ReleaseChunkAsComplete(std::move(chunk));
303       }
304 
305       // DO NOT access |chunk| after this point, it has been std::move()-d
306       // above.
307       ctm->set_page(static_cast<uint32_t>(page_idx));
308       ctm->set_chunk(chunk_idx);
309       ctm->set_target_buffer(target_buffer);
310     }
311 
312     // Process the completed patches for previous chunks from the |patch_list|.
313     CommitDataRequest::ChunkToPatch* last_patch_req = nullptr;
314     while (!patch_list->empty() && patch_list->front().is_patched()) {
315       Patch curr_patch = patch_list->front();
316       patch_list->pop_front();
317       // Patches for the same chunk are contiguous in the |patch_list|. So, to
318       // determine if there are any other patches that apply to the chunk that
319       // is being patched, check if the next patch in the |patch_list| applies
320       // to the same chunk.
321       bool chunk_needs_more_patching =
322           !patch_list->empty() &&
323           patch_list->front().chunk_id == curr_patch.chunk_id;
324 
325       if (direct_patching_enabled_ &&
326           TryDirectPatchLocked(writer_id, curr_patch,
327                                chunk_needs_more_patching)) {
328         continue;
329       }
330 
331       // The chunk that this patch applies to has already been released to the
332       // service, so it cannot be patches here. Add the patch to the commit data
333       // request, so that it can be sent to the service and applied there.
334       if (!last_patch_req ||
335           last_patch_req->chunk_id() != curr_patch.chunk_id) {
336         last_patch_req = commit_data_req_->add_chunks_to_patch();
337         last_patch_req->set_writer_id(writer_id);
338         last_patch_req->set_chunk_id(curr_patch.chunk_id);
339         last_patch_req->set_target_buffer(target_buffer);
340       }
341       auto* patch = last_patch_req->add_patches();
342       patch->set_offset(curr_patch.offset);
343       patch->set_data(&curr_patch.size_field[0], curr_patch.size_field.size());
344     }
345 
346     // Patches are enqueued in the |patch_list| in order and are notified to
347     // the service when the chunk is returned. The only case when the current
348     // patch list is incomplete is if there is an unpatched entry at the head of
349     // the |patch_list| that belongs to the same ChunkID as the last one we are
350     // about to send to the service.
351     if (last_patch_req && !patch_list->empty() &&
352         patch_list->front().chunk_id == last_patch_req->chunk_id()) {
353       last_patch_req->set_has_more_patches(true);
354     }
355 
356     // If the buffer is filling up or if we are given a patch for a chunk
357     // that was already sent to the service, we don't want to wait for the next
358     // delayed flush to happen and we flush immediately. Otherwise, if we
359     // accumulate the patch and a crash occurs before the patch is sent, the
360     // service will not know of the patch and won't be able to reconstruct the
361     // trace.
362     if (fully_bound_ &&
363         (last_patch_req || bytes_pending_commit_ >= shmem_abi_.size() / 2)) {
364       weak_this = weak_ptr_factory_.GetWeakPtr();
365       task_runner_to_post_delayed_callback_on = task_runner_;
366       flush_delay_ms = 0;
367     }
368   }  // scoped_lock(lock_)
369 
370   // We shouldn't post tasks while locked.
371   // |task_runner_to_post_delayed_callback_on| remains valid after unlocking,
372   // because |task_runner_| is never reset.
373   if (task_runner_to_post_delayed_callback_on) {
374     task_runner_to_post_delayed_callback_on->PostDelayedTask(
375         [weak_this] {
376           if (!weak_this)
377             return;
378           {
379             std::lock_guard<std::mutex> scoped_lock(weak_this->lock_);
380             // Clear |delayed_flush_scheduled_|, allowing the next call to
381             // UpdateCommitDataRequest to start another batching period.
382             weak_this->delayed_flush_scheduled_ = false;
383           }
384           weak_this->FlushPendingCommitDataRequests();
385         },
386         flush_delay_ms);
387   }
388 }
389 
TryDirectPatchLocked(WriterID writer_id,const Patch & patch,bool chunk_needs_more_patching)390 bool SharedMemoryArbiterImpl::TryDirectPatchLocked(
391     WriterID writer_id,
392     const Patch& patch,
393     bool chunk_needs_more_patching) {
394   // Search the chunks that are being batched in |commit_data_req_| for a chunk
395   // that needs patching and that matches the provided |writer_id| and
396   // |patch.chunk_id|. Iterate |commit_data_req_| in reverse, since
397   // |commit_data_req_| is appended to at the end with newly-returned chunks,
398   // and patches are more likely to apply to chunks that have been returned
399   // recently.
400   SharedMemoryABI::Chunk chunk;
401   bool chunk_found = false;
402   auto& chunks_to_move = commit_data_req_->chunks_to_move();
403   for (auto ctm_it = chunks_to_move.rbegin(); ctm_it != chunks_to_move.rend();
404        ++ctm_it) {
405     uint32_t layout = shmem_abi_.GetPageLayout(ctm_it->page());
406     auto chunk_state =
407         shmem_abi_.GetChunkStateFromLayout(layout, ctm_it->chunk());
408     // Note: the subset of |commit_data_req_| chunks that still need patching is
409     // also the subset of chunks that are still being written to. The rest of
410     // the chunks in |commit_data_req_| do not need patching and have already
411     // been marked as complete.
412     if (chunk_state != SharedMemoryABI::kChunkBeingWritten)
413       continue;
414 
415     chunk =
416         shmem_abi_.GetChunkUnchecked(ctm_it->page(), layout, ctm_it->chunk());
417     if (chunk.writer_id() == writer_id &&
418         chunk.header()->chunk_id.load(std::memory_order_relaxed) ==
419             patch.chunk_id) {
420       chunk_found = true;
421       break;
422     }
423   }
424 
425   if (!chunk_found) {
426     // The chunk has already been committed to the service and the patch cannot
427     // be applied in the producer.
428     return false;
429   }
430 
431   // Apply the patch.
432   size_t page_idx;
433   uint8_t chunk_idx;
434   std::tie(page_idx, chunk_idx) = shmem_abi_.GetPageAndChunkIndex(chunk);
435   PERFETTO_DCHECK(shmem_abi_.GetChunkState(page_idx, chunk_idx) ==
436                   SharedMemoryABI::ChunkState::kChunkBeingWritten);
437   auto chunk_begin = chunk.payload_begin();
438   uint8_t* ptr = chunk_begin + patch.offset;
439   PERFETTO_CHECK(ptr <= chunk.end() - SharedMemoryABI::kPacketHeaderSize);
440   // DCHECK that we are writing into a zero-filled size field and not into
441   // valid data. It relies on ScatteredStreamWriter::ReserveBytes() to
442   // zero-fill reservations in debug builds.
443   const char zero[SharedMemoryABI::kPacketHeaderSize]{};
444   PERFETTO_DCHECK(memcmp(ptr, &zero, SharedMemoryABI::kPacketHeaderSize) == 0);
445 
446   memcpy(ptr, &patch.size_field[0], SharedMemoryABI::kPacketHeaderSize);
447 
448   if (!chunk_needs_more_patching) {
449     // Mark that the chunk doesn't need more patching and mark it as complete,
450     // as the producer will not write to it anymore. This allows the service to
451     // read the chunk in full while scraping, which would not be the case if the
452     // chunk was left in a kChunkBeingWritten state.
453     chunk.ClearNeedsPatchingFlag();
454     shmem_abi_.ReleaseChunkAsComplete(std::move(chunk));
455   }
456 
457   return true;
458 }
459 
SetBatchCommitsDuration(uint32_t batch_commits_duration_ms)460 void SharedMemoryArbiterImpl::SetBatchCommitsDuration(
461     uint32_t batch_commits_duration_ms) {
462   std::lock_guard<std::mutex> scoped_lock(lock_);
463   batch_commits_duration_ms_ = batch_commits_duration_ms;
464 }
465 
EnableDirectSMBPatching()466 bool SharedMemoryArbiterImpl::EnableDirectSMBPatching() {
467   std::lock_guard<std::mutex> scoped_lock(lock_);
468   if (!direct_patching_supported_by_service_) {
469     return false;
470   }
471 
472   return direct_patching_enabled_ = true;
473 }
474 
SetDirectSMBPatchingSupportedByService()475 void SharedMemoryArbiterImpl::SetDirectSMBPatchingSupportedByService() {
476   std::lock_guard<std::mutex> scoped_lock(lock_);
477   direct_patching_supported_by_service_ = true;
478 }
479 
480 // This function is quite subtle. When making changes keep in mind these two
481 // challenges:
482 // 1) If the producer stalls and we happen to be on the |task_runner_| IPC
483 //    thread (or, for in-process cases, on the same thread where
484 //    TracingServiceImpl lives), the CommitData() call must be synchronous and
485 //    not posted, to avoid deadlocks.
486 // 2) When different threads hit this function, we must guarantee that we don't
487 //    accidentally make commits out of order. See commit 4e4fe8f56ef and
488 //    crbug.com/919187 for more context.
FlushPendingCommitDataRequests(std::function<void ()> callback)489 void SharedMemoryArbiterImpl::FlushPendingCommitDataRequests(
490     std::function<void()> callback) {
491   std::unique_ptr<CommitDataRequest> req;
492   {
493     std::unique_lock<std::mutex> scoped_lock(lock_);
494 
495     // Flushing is only supported while |fully_bound_|, and there may still be
496     // unbound startup trace writers. If so, skip the commit for now - it'll be
497     // done when |fully_bound_| is updated.
498     if (!fully_bound_) {
499       if (callback)
500         pending_flush_callbacks_.push_back(callback);
501       return;
502     }
503 
504     // May be called by TraceWriterImpl on any thread.
505     base::TaskRunner* task_runner = task_runner_;
506     if (!task_runner->RunsTasksOnCurrentThread()) {
507       // We shouldn't post a task while holding a lock. |task_runner| remains
508       // valid after unlocking, because |task_runner_| is never reset.
509       scoped_lock.unlock();
510 
511       auto weak_this = weak_ptr_factory_.GetWeakPtr();
512       task_runner->PostTask([weak_this, callback] {
513         if (weak_this)
514           weak_this->FlushPendingCommitDataRequests(std::move(callback));
515       });
516       return;
517     }
518 
519     // |commit_data_req_| could have become a nullptr, for example when a forced
520     // sync flush happens in GetNewChunk().
521     if (commit_data_req_) {
522       // Make sure any placeholder buffer IDs from StartupWriters are replaced
523       // before sending the request.
524       bool all_placeholders_replaced =
525           ReplaceCommitPlaceholderBufferIdsLocked();
526       // We're |fully_bound_|, thus all writers are bound and all placeholders
527       // should have been replaced.
528       PERFETTO_DCHECK(all_placeholders_replaced);
529 
530       // In order to allow patching in the producer we delay the kChunkComplete
531       // transition and keep batched chunks in the kChunkBeingWritten state.
532       // Since we are about to notify the service of all batched chunks, it will
533       // not be possible to apply any more patches to them and we need to move
534       // them to kChunkComplete - otherwise the service won't look at them.
535       for (auto& ctm : *commit_data_req_->mutable_chunks_to_move()) {
536         uint32_t layout = shmem_abi_.GetPageLayout(ctm.page());
537         auto chunk_state =
538             shmem_abi_.GetChunkStateFromLayout(layout, ctm.chunk());
539         // Note: the subset of |commit_data_req_| chunks that still need
540         // patching is also the subset of chunks that are still being written
541         // to. The rest of the chunks in |commit_data_req_| do not need patching
542         // and have already been marked as complete.
543         if (chunk_state == SharedMemoryABI::kChunkBeingWritten) {
544           auto chunk =
545               shmem_abi_.GetChunkUnchecked(ctm.page(), layout, ctm.chunk());
546           shmem_abi_.ReleaseChunkAsComplete(std::move(chunk));
547         }
548 
549         if (use_shmem_emulation_) {
550           // When running in the emulation mode:
551           // 1. serialize the chunk data to |ctm| as we won't modify the chunk
552           // anymore.
553           // 2. free the chunk as the service won't be able to do this.
554           auto chunk =
555               shmem_abi_.GetChunkUnchecked(ctm.page(), layout, ctm.chunk());
556           PERFETTO_CHECK(chunk.is_valid());
557           ctm.set_data(chunk.begin(), chunk.size());
558           shmem_abi_.ReleaseChunkAsFree(std::move(chunk));
559         }
560       }
561 
562       req = std::move(commit_data_req_);
563       bytes_pending_commit_ = 0;
564     }
565   }  // scoped_lock
566 
567   if (req) {
568     producer_endpoint_->CommitData(*req, callback);
569   } else if (callback) {
570     // If |req| was nullptr, it means that an enqueued deferred commit was
571     // executed just before this. At this point send an empty commit request
572     // to the service, just to linearize with it and give the guarantee to the
573     // caller that the data has been flushed into the service.
574     producer_endpoint_->CommitData(CommitDataRequest(), std::move(callback));
575   }
576 }
577 
TryShutdown()578 bool SharedMemoryArbiterImpl::TryShutdown() {
579   std::lock_guard<std::mutex> scoped_lock(lock_);
580   did_shutdown_ = true;
581   // Shutdown is safe if there are no active trace writers for this arbiter.
582   return active_writer_ids_.IsEmpty();
583 }
584 
CreateTraceWriter(BufferID target_buffer,BufferExhaustedPolicy buffer_exhausted_policy)585 std::unique_ptr<TraceWriter> SharedMemoryArbiterImpl::CreateTraceWriter(
586     BufferID target_buffer,
587     BufferExhaustedPolicy buffer_exhausted_policy) {
588   PERFETTO_CHECK(target_buffer > 0);
589   return CreateTraceWriterInternal(target_buffer, buffer_exhausted_policy);
590 }
591 
CreateStartupTraceWriter(uint16_t target_buffer_reservation_id)592 std::unique_ptr<TraceWriter> SharedMemoryArbiterImpl::CreateStartupTraceWriter(
593     uint16_t target_buffer_reservation_id) {
594   return CreateTraceWriterInternal(
595       MakeTargetBufferIdForReservation(target_buffer_reservation_id),
596       BufferExhaustedPolicy::kDrop);
597 }
598 
BindToProducerEndpoint(TracingService::ProducerEndpoint * producer_endpoint,base::TaskRunner * task_runner)599 void SharedMemoryArbiterImpl::BindToProducerEndpoint(
600     TracingService::ProducerEndpoint* producer_endpoint,
601     base::TaskRunner* task_runner) {
602   PERFETTO_DCHECK(producer_endpoint && task_runner);
603   PERFETTO_DCHECK(task_runner->RunsTasksOnCurrentThread());
604 
605   bool should_flush = false;
606   std::function<void()> flush_callback;
607   {
608     std::lock_guard<std::mutex> scoped_lock(lock_);
609     PERFETTO_CHECK(!fully_bound_);
610     PERFETTO_CHECK(!producer_endpoint_ && !task_runner_);
611 
612     producer_endpoint_ = producer_endpoint;
613     task_runner_ = task_runner;
614 
615     // Now that we're bound to a task runner, also reset the WeakPtrFactory to
616     // it. Because this code runs on the task runner, the factory's weak
617     // pointers will be valid on it.
618     weak_ptr_factory_.Reset(this);
619 
620     // All writers registered so far should be startup trace writers, since
621     // the producer cannot feasibly know the target buffer for any future
622     // session yet.
623     for (const auto& entry : pending_writers_) {
624       PERFETTO_CHECK(IsReservationTargetBufferId(entry.second));
625     }
626 
627     // If all buffer reservations are bound, we can flush pending commits.
628     if (UpdateFullyBoundLocked()) {
629       should_flush = true;
630       flush_callback = TakePendingFlushCallbacksLocked();
631     }
632   }  // scoped_lock
633 
634   // Attempt to flush any pending commits (and run pending flush callbacks). If
635   // there are none, this will have no effect. If we ended up in a race that
636   // changed |fully_bound_| back to false, the commit will happen once we become
637   // |fully_bound_| again.
638   if (should_flush)
639     FlushPendingCommitDataRequests(flush_callback);
640 }
641 
BindStartupTargetBuffer(uint16_t target_buffer_reservation_id,BufferID target_buffer_id)642 void SharedMemoryArbiterImpl::BindStartupTargetBuffer(
643     uint16_t target_buffer_reservation_id,
644     BufferID target_buffer_id) {
645   PERFETTO_DCHECK(target_buffer_id > 0);
646 
647   std::unique_lock<std::mutex> scoped_lock(lock_);
648 
649   // We should already be bound to an endpoint.
650   PERFETTO_CHECK(producer_endpoint_);
651   PERFETTO_CHECK(task_runner_);
652   PERFETTO_CHECK(task_runner_->RunsTasksOnCurrentThread());
653 
654   BindStartupTargetBufferImpl(std::move(scoped_lock),
655                               target_buffer_reservation_id, target_buffer_id);
656 }
657 
AbortStartupTracingForReservation(uint16_t target_buffer_reservation_id)658 void SharedMemoryArbiterImpl::AbortStartupTracingForReservation(
659     uint16_t target_buffer_reservation_id) {
660   std::unique_lock<std::mutex> scoped_lock(lock_);
661 
662   // If we are already bound to an arbiter, we may need to flush after aborting
663   // the session, and thus should be running on the arbiter's task runner.
664   if (task_runner_ && !task_runner_->RunsTasksOnCurrentThread()) {
665     // We shouldn't post tasks while locked.
666     auto* task_runner = task_runner_;
667     scoped_lock.unlock();
668 
669     auto weak_this = weak_ptr_factory_.GetWeakPtr();
670     task_runner->PostTask([weak_this, target_buffer_reservation_id]() {
671       if (!weak_this)
672         return;
673       weak_this->AbortStartupTracingForReservation(
674           target_buffer_reservation_id);
675     });
676     return;
677   }
678 
679   // Bind the target buffer reservation to an invalid buffer (ID 0), so that
680   // existing commits, as well as future commits (of currently acquired chunks),
681   // will be released as free free by the service but otherwise ignored (i.e.
682   // not copied into any valid target buffer).
683   BindStartupTargetBufferImpl(std::move(scoped_lock),
684                               target_buffer_reservation_id,
685                               /*target_buffer_id=*/kInvalidBufferId);
686 }
687 
BindStartupTargetBufferImpl(std::unique_lock<std::mutex> scoped_lock,uint16_t target_buffer_reservation_id,BufferID target_buffer_id)688 void SharedMemoryArbiterImpl::BindStartupTargetBufferImpl(
689     std::unique_lock<std::mutex> scoped_lock,
690     uint16_t target_buffer_reservation_id,
691     BufferID target_buffer_id) {
692   // We should already be bound to an endpoint if the target buffer is valid.
693   PERFETTO_DCHECK((producer_endpoint_ && task_runner_) ||
694                   target_buffer_id == kInvalidBufferId);
695 
696   PERFETTO_DLOG("Binding startup target buffer reservation %" PRIu16
697                 " to buffer %" PRIu16,
698                 target_buffer_reservation_id, target_buffer_id);
699 
700   MaybeUnboundBufferID reserved_id =
701       MakeTargetBufferIdForReservation(target_buffer_reservation_id);
702 
703   bool should_flush = false;
704   std::function<void()> flush_callback;
705   std::vector<std::pair<WriterID, BufferID>> writers_to_register;
706 
707   TargetBufferReservation& reservation =
708       target_buffer_reservations_[reserved_id];
709   PERFETTO_CHECK(!reservation.resolved);
710   reservation.resolved = true;
711   reservation.target_buffer = target_buffer_id;
712 
713   // Collect trace writers associated with the reservation.
714   for (auto it = pending_writers_.begin(); it != pending_writers_.end();) {
715     if (it->second == reserved_id) {
716       // No need to register writers that have an invalid target buffer.
717       if (target_buffer_id != kInvalidBufferId) {
718         writers_to_register.push_back(
719             std::make_pair(it->first, target_buffer_id));
720       }
721       it = pending_writers_.erase(it);
722     } else {
723       it++;
724     }
725   }
726 
727   // If all buffer reservations are bound, we can flush pending commits.
728   if (UpdateFullyBoundLocked()) {
729     should_flush = true;
730     flush_callback = TakePendingFlushCallbacksLocked();
731   }
732 
733   scoped_lock.unlock();
734 
735   // Register any newly bound trace writers with the service.
736   for (const auto& writer_and_target_buffer : writers_to_register) {
737     producer_endpoint_->RegisterTraceWriter(writer_and_target_buffer.first,
738                                             writer_and_target_buffer.second);
739   }
740 
741   // Attempt to flush any pending commits (and run pending flush callbacks). If
742   // there are none, this will have no effect. If we ended up in a race that
743   // changed |fully_bound_| back to false, the commit will happen once we become
744   // |fully_bound_| again.
745   if (should_flush)
746     FlushPendingCommitDataRequests(flush_callback);
747 }
748 
749 std::function<void()>
TakePendingFlushCallbacksLocked()750 SharedMemoryArbiterImpl::TakePendingFlushCallbacksLocked() {
751   if (pending_flush_callbacks_.empty())
752     return std::function<void()>();
753 
754   std::vector<std::function<void()>> pending_flush_callbacks;
755   pending_flush_callbacks.swap(pending_flush_callbacks_);
756   // Capture the callback list into the lambda by copy.
757   return [pending_flush_callbacks]() {
758     for (auto& callback : pending_flush_callbacks)
759       callback();
760   };
761 }
762 
NotifyFlushComplete(FlushRequestID req_id)763 void SharedMemoryArbiterImpl::NotifyFlushComplete(FlushRequestID req_id) {
764   base::TaskRunner* task_runner_to_commit_on = nullptr;
765 
766   {
767     std::lock_guard<std::mutex> scoped_lock(lock_);
768     // If a commit_data_req_ exists it means that somebody else already posted a
769     // FlushPendingCommitDataRequests() task.
770     if (!commit_data_req_) {
771       commit_data_req_.reset(new CommitDataRequest());
772 
773       // Flushing the commit is only supported while we're |fully_bound_|. If we
774       // aren't, we'll flush when |fully_bound_| is updated.
775       if (fully_bound_)
776         task_runner_to_commit_on = task_runner_;
777     } else {
778       // If there is another request queued and that also contains is a reply
779       // to a flush request, reply with the highest id.
780       req_id = std::max(req_id, commit_data_req_->flush_request_id());
781     }
782     commit_data_req_->set_flush_request_id(req_id);
783   }  // scoped_lock
784 
785   // We shouldn't post tasks while locked. |task_runner_to_commit_on|
786   // remains valid after unlocking, because |task_runner_| is never reset.
787   if (task_runner_to_commit_on) {
788     auto weak_this = weak_ptr_factory_.GetWeakPtr();
789     task_runner_to_commit_on->PostTask([weak_this] {
790       if (weak_this)
791         weak_this->FlushPendingCommitDataRequests();
792     });
793   }
794 }
795 
CreateTraceWriterInternal(MaybeUnboundBufferID target_buffer,BufferExhaustedPolicy buffer_exhausted_policy)796 std::unique_ptr<TraceWriter> SharedMemoryArbiterImpl::CreateTraceWriterInternal(
797     MaybeUnboundBufferID target_buffer,
798     BufferExhaustedPolicy buffer_exhausted_policy) {
799   WriterID id;
800   base::TaskRunner* task_runner_to_register_on = nullptr;
801 
802   {
803     std::lock_guard<std::mutex> scoped_lock(lock_);
804     if (did_shutdown_)
805       return std::unique_ptr<TraceWriter>(new NullTraceWriter());
806 
807     id = active_writer_ids_.Allocate();
808     if (!id)
809       return std::unique_ptr<TraceWriter>(new NullTraceWriter());
810 
811     PERFETTO_DCHECK(!pending_writers_.count(id));
812 
813     if (IsReservationTargetBufferId(target_buffer)) {
814       // If the reservation is new, mark it as unbound in
815       // |target_buffer_reservations_|. Otherwise, if the reservation was
816       // already bound, choose the bound buffer ID now.
817       auto it_and_inserted = target_buffer_reservations_.insert(
818           {target_buffer, TargetBufferReservation()});
819       if (it_and_inserted.first->second.resolved)
820         target_buffer = it_and_inserted.first->second.target_buffer;
821     }
822 
823     if (IsReservationTargetBufferId(target_buffer)) {
824       // The arbiter and/or startup buffer reservations are not bound yet, so
825       // buffer the registration of the writer until after we're bound.
826       pending_writers_[id] = target_buffer;
827 
828       // Mark the arbiter as not fully bound, since we now have at least one
829       // unbound trace writer / target buffer reservation.
830       fully_bound_ = false;
831       was_always_bound_ = false;
832     } else if (target_buffer != kInvalidBufferId) {
833       // Trace writer is bound, so arbiter should be bound to an endpoint, too.
834       PERFETTO_CHECK(producer_endpoint_ && task_runner_);
835       task_runner_to_register_on = task_runner_;
836     }
837 
838     // All trace writers must use kDrop policy if the arbiter ever becomes
839     // unbound.
840     bool uses_drop_policy =
841         buffer_exhausted_policy == BufferExhaustedPolicy::kDrop;
842     all_writers_have_drop_policy_ &= uses_drop_policy;
843     PERFETTO_DCHECK(fully_bound_ || uses_drop_policy);
844     PERFETTO_CHECK(fully_bound_ || all_writers_have_drop_policy_);
845     PERFETTO_CHECK(was_always_bound_ || uses_drop_policy);
846   }  // scoped_lock
847 
848   // We shouldn't post tasks while locked. |task_runner_to_register_on|
849   // remains valid after unlocking, because |task_runner_| is never reset.
850   if (task_runner_to_register_on) {
851     auto weak_this = weak_ptr_factory_.GetWeakPtr();
852     task_runner_to_register_on->PostTask([weak_this, id, target_buffer] {
853       if (weak_this)
854         weak_this->producer_endpoint_->RegisterTraceWriter(id, target_buffer);
855     });
856   }
857 
858   return std::unique_ptr<TraceWriter>(
859       new TraceWriterImpl(this, id, target_buffer, buffer_exhausted_policy));
860 }
861 
ReleaseWriterID(WriterID id)862 void SharedMemoryArbiterImpl::ReleaseWriterID(WriterID id) {
863   base::TaskRunner* task_runner = nullptr;
864   {
865     std::lock_guard<std::mutex> scoped_lock(lock_);
866     active_writer_ids_.Free(id);
867 
868     auto it = pending_writers_.find(id);
869     if (it != pending_writers_.end()) {
870       // Writer hasn't been bound yet and thus also not yet registered with the
871       // service.
872       pending_writers_.erase(it);
873       return;
874     }
875 
876     // A trace writer from an aborted session may be destroyed before the
877     // arbiter is bound to a task runner. In that case, it was never registered
878     // with the service.
879     if (!task_runner_)
880       return;
881 
882     task_runner = task_runner_;
883   }  // scoped_lock
884 
885   // We shouldn't post tasks while locked. |task_runner| remains valid after
886   // unlocking, because |task_runner_| is never reset.
887   auto weak_this = weak_ptr_factory_.GetWeakPtr();
888   task_runner->PostTask([weak_this, id] {
889     if (weak_this)
890       weak_this->producer_endpoint_->UnregisterTraceWriter(id);
891   });
892 }
893 
ReplaceCommitPlaceholderBufferIdsLocked()894 bool SharedMemoryArbiterImpl::ReplaceCommitPlaceholderBufferIdsLocked() {
895   if (!commit_data_req_)
896     return true;
897 
898   bool all_placeholders_replaced = true;
899   for (auto& chunk : *commit_data_req_->mutable_chunks_to_move()) {
900     if (!IsReservationTargetBufferId(chunk.target_buffer()))
901       continue;
902     const auto it = target_buffer_reservations_.find(chunk.target_buffer());
903     PERFETTO_DCHECK(it != target_buffer_reservations_.end());
904     if (!it->second.resolved) {
905       all_placeholders_replaced = false;
906       continue;
907     }
908     chunk.set_target_buffer(it->second.target_buffer);
909   }
910   for (auto& chunk : *commit_data_req_->mutable_chunks_to_patch()) {
911     if (!IsReservationTargetBufferId(chunk.target_buffer()))
912       continue;
913     const auto it = target_buffer_reservations_.find(chunk.target_buffer());
914     PERFETTO_DCHECK(it != target_buffer_reservations_.end());
915     if (!it->second.resolved) {
916       all_placeholders_replaced = false;
917       continue;
918     }
919     chunk.set_target_buffer(it->second.target_buffer);
920   }
921   return all_placeholders_replaced;
922 }
923 
UpdateFullyBoundLocked()924 bool SharedMemoryArbiterImpl::UpdateFullyBoundLocked() {
925   if (!producer_endpoint_) {
926     PERFETTO_DCHECK(!fully_bound_);
927     return false;
928   }
929   // We're fully bound if all target buffer reservations have a valid associated
930   // BufferID.
931   fully_bound_ = std::none_of(
932       target_buffer_reservations_.begin(), target_buffer_reservations_.end(),
933       [](std::pair<MaybeUnboundBufferID, TargetBufferReservation> entry) {
934         return !entry.second.resolved;
935       });
936   if (!fully_bound_)
937     was_always_bound_ = false;
938   return fully_bound_;
939 }
940 
941 }  // namespace perfetto
942