• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2022 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #define ATRACE_TAG (ATRACE_TAG_THERMAL | ATRACE_TAG_HAL)
17 
18 #include "thermal_throttling.h"
19 
20 #include <android-base/file.h>
21 #include <android-base/logging.h>
22 #include <android-base/properties.h>
23 #include <android-base/stringprintf.h>
24 #include <android-base/strings.h>
25 #include <utils/Trace.h>
26 
27 #include <iterator>
28 #include <set>
29 #include <sstream>
30 #include <thread>
31 #include <vector>
32 
33 #include "power_files.h"
34 #include "thermal_info.h"
35 
36 namespace aidl {
37 namespace android {
38 namespace hardware {
39 namespace thermal {
40 namespace implementation {
41 using ::android::base::StringPrintf;
42 
43 // To find the next PID target state according to the current thermal severity
getTargetStateOfPID(const SensorInfo & sensor_info,const ThrottlingSeverity curr_severity)44 size_t getTargetStateOfPID(const SensorInfo &sensor_info, const ThrottlingSeverity curr_severity) {
45     size_t target_state = 0;
46 
47     for (const auto &severity : ::ndk::enum_range<ThrottlingSeverity>()) {
48         size_t state = static_cast<size_t>(severity);
49         if (std::isnan(sensor_info.throttling_info->s_power[state])) {
50             continue;
51         }
52         target_state = state;
53         if (severity > curr_severity) {
54             break;
55         }
56     }
57     LOG(VERBOSE) << "PID target state = " << target_state;
58     return target_state;
59 }
60 
parseProfileProperty(std::string_view sensor_name,const SensorInfo & sensor_info)61 void ThermalThrottling::parseProfileProperty(std::string_view sensor_name,
62                                              const SensorInfo &sensor_info) {
63     if (sensor_info.throttling_info == nullptr) {
64         return;
65     }
66 
67     const std::string profile = ::android::base::GetProperty(
68             StringPrintf("vendor.thermal.%s.profile", sensor_name.data()), "");
69 
70     if (profile.empty() || sensor_info.throttling_info->profile_map.count(profile)) {
71         if (profile != thermal_throttling_status_map_[sensor_name.data()].profile) {
72             LOG(INFO) << sensor_name.data() << ": throttling profile change to "
73                       << ((profile.empty()) ? "default" : profile);
74             thermal_throttling_status_map_[sensor_name.data()].profile = profile;
75         }
76     } else {
77         LOG(ERROR) << sensor_name.data() << ": set profile to default because " << profile
78                    << " is invalid";
79         thermal_throttling_status_map_[sensor_name.data()].profile = "";
80     }
81 }
82 
clearThrottlingData(std::string_view sensor_name)83 void ThermalThrottling::clearThrottlingData(std::string_view sensor_name) {
84     if (!thermal_throttling_status_map_.count(sensor_name.data())) {
85         return;
86     }
87     std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
88 
89     for (auto &pid_power_budget_pair :
90          thermal_throttling_status_map_.at(sensor_name.data()).pid_power_budget_map) {
91         pid_power_budget_pair.second = std::numeric_limits<int>::max();
92     }
93 
94     for (auto &pid_cdev_request_pair :
95          thermal_throttling_status_map_.at(sensor_name.data()).pid_cdev_request_map) {
96         pid_cdev_request_pair.second = 0;
97     }
98 
99     for (auto &hardlimit_cdev_request_pair :
100          thermal_throttling_status_map_.at(sensor_name.data()).hardlimit_cdev_request_map) {
101         hardlimit_cdev_request_pair.second = 0;
102     }
103 
104     for (auto &throttling_release_pair :
105          thermal_throttling_status_map_.at(sensor_name.data()).throttling_release_map) {
106         throttling_release_pair.second = 0;
107     }
108 
109     thermal_throttling_status_map_[sensor_name.data()].prev_err = NAN;
110     thermal_throttling_status_map_[sensor_name.data()].i_budget = NAN;
111     thermal_throttling_status_map_[sensor_name.data()].prev_target =
112             static_cast<size_t>(ThrottlingSeverity::NONE);
113     thermal_throttling_status_map_[sensor_name.data()].prev_power_budget = NAN;
114     thermal_throttling_status_map_[sensor_name.data()].tran_cycle = 0;
115 
116     return;
117 }
118 
registerThermalThrottling(std::string_view sensor_name,const std::shared_ptr<ThrottlingInfo> & throttling_info,const std::unordered_map<std::string,CdevInfo> & cooling_device_info_map)119 bool ThermalThrottling::registerThermalThrottling(
120         std::string_view sensor_name, const std::shared_ptr<ThrottlingInfo> &throttling_info,
121         const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map) {
122     if (thermal_throttling_status_map_.count(sensor_name.data())) {
123         LOG(ERROR) << "Sensor " << sensor_name.data() << " throttling map has been registered";
124         return false;
125     }
126 
127     if (throttling_info == nullptr) {
128         LOG(ERROR) << "Sensor " << sensor_name.data() << " has no throttling info";
129         return false;
130     }
131 
132     thermal_throttling_status_map_[sensor_name.data()].prev_err = NAN;
133     thermal_throttling_status_map_[sensor_name.data()].i_budget = NAN;
134     thermal_throttling_status_map_[sensor_name.data()].prev_target =
135             static_cast<size_t>(ThrottlingSeverity::NONE);
136     thermal_throttling_status_map_[sensor_name.data()].prev_power_budget = NAN;
137     thermal_throttling_status_map_[sensor_name.data()].tran_cycle = 0;
138     thermal_throttling_status_map_[sensor_name.data()].profile = "";
139 
140     for (auto &binded_cdev_pair : throttling_info->binded_cdev_info_map) {
141         if (!cooling_device_info_map.count(binded_cdev_pair.first)) {
142             LOG(ERROR) << "Could not find " << sensor_name.data() << "'s binded CDEV "
143                        << binded_cdev_pair.first;
144             return false;
145         }
146         // Register PID throttling map
147         for (const auto &cdev_weight : binded_cdev_pair.second.cdev_weight_for_pid) {
148             if (!std::isnan(cdev_weight)) {
149                 thermal_throttling_status_map_[sensor_name.data()]
150                         .pid_power_budget_map[binded_cdev_pair.first] =
151                         std::numeric_limits<int>::max();
152                 thermal_throttling_status_map_[sensor_name.data()]
153                         .pid_cdev_request_map[binded_cdev_pair.first] = 0;
154                 thermal_throttling_status_map_[sensor_name.data()]
155                         .cdev_status_map[binded_cdev_pair.first] = 0;
156                 cdev_all_request_map_[binded_cdev_pair.first].insert(0);
157                 break;
158             }
159         }
160         // Register hard limit throttling map
161         for (const auto &limit_info : binded_cdev_pair.second.limit_info) {
162             if (limit_info > 0) {
163                 thermal_throttling_status_map_[sensor_name.data()]
164                         .hardlimit_cdev_request_map[binded_cdev_pair.first] = 0;
165                 thermal_throttling_status_map_[sensor_name.data()]
166                         .cdev_status_map[binded_cdev_pair.first] = 0;
167                 cdev_all_request_map_[binded_cdev_pair.first].insert(0);
168                 break;
169             }
170         }
171         // Register throttling release map if power threshold exists
172         if (!binded_cdev_pair.second.power_rail.empty()) {
173             for (const auto &power_threshold : binded_cdev_pair.second.power_thresholds) {
174                 if (!std::isnan(power_threshold)) {
175                     thermal_throttling_status_map_[sensor_name.data()]
176                             .throttling_release_map[binded_cdev_pair.first] = 0;
177                     break;
178                 }
179             }
180         }
181     }
182     return true;
183 }
184 
185 // return power budget based on PID algo
updatePowerBudget(const Temperature & temp,const SensorInfo & sensor_info,const std::unordered_map<std::string,CdevInfo> & cooling_device_info_map,std::chrono::milliseconds time_elapsed_ms,ThrottlingSeverity curr_severity,const bool max_throttling,const std::vector<float> & sensor_predictions)186 float ThermalThrottling::updatePowerBudget(
187         const Temperature &temp, const SensorInfo &sensor_info,
188         const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map,
189         std::chrono::milliseconds time_elapsed_ms, ThrottlingSeverity curr_severity,
190         const bool max_throttling, const std::vector<float> &sensor_predictions) {
191     float p = 0, d = 0;
192     float power_budget = std::numeric_limits<float>::max();
193     bool target_changed = false;
194     float budget_transient = 0.0;
195     auto &throttling_status = thermal_throttling_status_map_.at(temp.name);
196     std::string sensor_name = temp.name;
197 
198     if (curr_severity == ThrottlingSeverity::NONE) {
199         return power_budget;
200     }
201 
202     const auto target_state = getTargetStateOfPID(sensor_info, curr_severity);
203     if (throttling_status.prev_target != static_cast<size_t>(ThrottlingSeverity::NONE) &&
204         target_state != throttling_status.prev_target &&
205         sensor_info.throttling_info->tran_cycle > 0) {
206         throttling_status.tran_cycle = sensor_info.throttling_info->tran_cycle - 1;
207         target_changed = true;
208     }
209     throttling_status.prev_target = target_state;
210 
211     // Compute PID
212     float target = sensor_info.hot_thresholds[target_state];
213     float err = target - temp.value;
214 
215     if (max_throttling && err <= 0) {
216         return sensor_info.throttling_info->min_alloc_power[target_state];
217     }
218 
219     p = err * (err < 0 ? sensor_info.throttling_info->k_po[target_state]
220                        : sensor_info.throttling_info->k_pu[target_state]);
221 
222     if (std::isnan(throttling_status.i_budget)) {
223         if (std::isnan(sensor_info.throttling_info->i_default_pct)) {
224             throttling_status.i_budget = sensor_info.throttling_info->i_default;
225         } else {
226             float default_i_budget = 0.0;
227             for (const auto &binded_cdev_info_pair :
228                  sensor_info.throttling_info->binded_cdev_info_map) {
229                 int max_cdev_vote;
230                 const CdevInfo &cdev_info = cooling_device_info_map.at(binded_cdev_info_pair.first);
231                 max_cdev_vote = getCdevMaxRequest(binded_cdev_info_pair.first, &max_cdev_vote);
232                 default_i_budget += cdev_info.state2power[max_cdev_vote];
233             }
234             throttling_status.i_budget =
235                     default_i_budget * sensor_info.throttling_info->i_default_pct / 100;
236         }
237     }
238 
239     if (err < sensor_info.throttling_info->i_cutoff[target_state]) {
240         throttling_status.i_budget += err * sensor_info.throttling_info->k_i[target_state];
241     }
242 
243     if (fabsf(throttling_status.i_budget) > sensor_info.throttling_info->i_max[target_state]) {
244         throttling_status.i_budget = sensor_info.throttling_info->i_max[target_state] *
245                                      (throttling_status.i_budget > 0 ? 1 : -1);
246     }
247 
248     if (!std::isnan(throttling_status.prev_err) &&
249         time_elapsed_ms != std::chrono::milliseconds::zero()) {
250         d = sensor_info.throttling_info->k_d[target_state] * (err - throttling_status.prev_err) /
251             time_elapsed_ms.count();
252     }
253 
254     // Compute Compensation
255     float compensation = 0;
256     if (sensor_info.predictor_info != nullptr &&
257         sensor_info.predictor_info->support_pid_compensation) {
258         const std::vector<float> &prediction_weights =
259                 sensor_info.predictor_info->prediction_weights;
260         for (size_t i = 0; i < sensor_predictions.size(); ++i) {
261             float prediction_err = target - (sensor_predictions[i] * sensor_info.multiplier);
262             compensation += prediction_weights[i] * prediction_err;
263         }
264         // apply weight based on current severity level
265         compensation *= sensor_info.predictor_info->k_p_compensate[target_state];
266     }
267 
268     throttling_status.prev_err = err;
269     // Calculate power budget
270     power_budget = sensor_info.throttling_info->s_power[target_state] + p +
271                    throttling_status.i_budget + d + compensation;
272     if (power_budget < sensor_info.throttling_info->min_alloc_power[target_state]) {
273         power_budget = sensor_info.throttling_info->min_alloc_power[target_state];
274     }
275     if (power_budget > sensor_info.throttling_info->max_alloc_power[target_state]) {
276         power_budget = sensor_info.throttling_info->max_alloc_power[target_state];
277     }
278 
279     if (target_changed) {
280         throttling_status.budget_transient = throttling_status.prev_power_budget - power_budget;
281     }
282 
283     if (throttling_status.tran_cycle) {
284         budget_transient = throttling_status.budget_transient *
285                            ((static_cast<float>(throttling_status.tran_cycle) /
286                              static_cast<float>(sensor_info.throttling_info->tran_cycle)));
287         power_budget += budget_transient;
288         throttling_status.tran_cycle--;
289     }
290 
291     LOG(INFO) << temp.name << " power_budget=" << power_budget << " err=" << err
292               << " s_power=" << sensor_info.throttling_info->s_power[target_state]
293               << " time_elapsed_ms=" << time_elapsed_ms.count() << " p=" << p
294               << " i=" << throttling_status.i_budget << " d=" << d
295               << " compensation=" << compensation << " budget transient=" << budget_transient
296               << " control target=" << target_state;
297 
298     ATRACE_INT((sensor_name + std::string("-power_budget")).c_str(),
299                static_cast<int>(power_budget));
300     ATRACE_INT((sensor_name + std::string("-s_power")).c_str(),
301                static_cast<int>(sensor_info.throttling_info->s_power[target_state]));
302     ATRACE_INT((sensor_name + std::string("-time_elapsed_ms")).c_str(),
303                static_cast<int>(time_elapsed_ms.count()));
304     ATRACE_INT((sensor_name + std::string("-budget_transient")).c_str(),
305                static_cast<int>(budget_transient));
306     ATRACE_INT((sensor_name + std::string("-i")).c_str(),
307                static_cast<int>(throttling_status.i_budget));
308     ATRACE_INT((sensor_name + std::string("-target_state")).c_str(),
309                static_cast<int>(target_state));
310 
311     ATRACE_INT((sensor_name + std::string("-err")).c_str(),
312                static_cast<int>(err / sensor_info.multiplier));
313     ATRACE_INT((sensor_name + std::string("-p")).c_str(), static_cast<int>(p));
314     ATRACE_INT((sensor_name + std::string("-d")).c_str(), static_cast<int>(d));
315     ATRACE_INT((sensor_name + std::string("-predict_compensation")).c_str(),
316                static_cast<int>(compensation));
317     ATRACE_INT((sensor_name + std::string("-temp")).c_str(),
318                static_cast<int>(temp.value / sensor_info.multiplier));
319 
320     throttling_status.prev_power_budget = power_budget;
321 
322     return power_budget;
323 }
324 
computeExcludedPower(const SensorInfo & sensor_info,const ThrottlingSeverity curr_severity,const std::unordered_map<std::string,PowerStatus> & power_status_map,std::string * log_buf,std::string_view sensor_name)325 float ThermalThrottling::computeExcludedPower(
326         const SensorInfo &sensor_info, const ThrottlingSeverity curr_severity,
327         const std::unordered_map<std::string, PowerStatus> &power_status_map, std::string *log_buf,
328         std::string_view sensor_name) {
329     float excluded_power = 0.0;
330 
331     for (const auto &excluded_power_info_pair :
332          sensor_info.throttling_info->excluded_power_info_map) {
333         const auto last_updated_avg_power =
334                 power_status_map.at(excluded_power_info_pair.first).last_updated_avg_power;
335         if (!std::isnan(last_updated_avg_power)) {
336             excluded_power += last_updated_avg_power *
337                               excluded_power_info_pair.second[static_cast<size_t>(curr_severity)];
338             log_buf->append(StringPrintf(
339                     "(%s: %0.2f mW, cdev_weight: %f)", excluded_power_info_pair.first.c_str(),
340                     last_updated_avg_power,
341                     excluded_power_info_pair.second[static_cast<size_t>(curr_severity)]));
342 
343             ATRACE_INT((std::string(sensor_name) + std::string("-") +
344                         excluded_power_info_pair.first + std::string("-avg_power"))
345                                .c_str(),
346                        static_cast<int>(last_updated_avg_power));
347         }
348     }
349 
350     ATRACE_INT((std::string(sensor_name) + std::string("-excluded_power")).c_str(),
351                static_cast<int>(excluded_power));
352     return excluded_power;
353 }
354 
355 // Allocate power budget to binded cooling devices base on the real ODPM power data
allocatePowerToCdev(const Temperature & temp,const SensorInfo & sensor_info,const ThrottlingSeverity curr_severity,const std::chrono::milliseconds time_elapsed_ms,const std::unordered_map<std::string,PowerStatus> & power_status_map,const std::unordered_map<std::string,CdevInfo> & cooling_device_info_map,const bool max_throttling,const std::vector<float> & sensor_predictions)356 bool ThermalThrottling::allocatePowerToCdev(
357         const Temperature &temp, const SensorInfo &sensor_info,
358         const ThrottlingSeverity curr_severity, const std::chrono::milliseconds time_elapsed_ms,
359         const std::unordered_map<std::string, PowerStatus> &power_status_map,
360         const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map,
361         const bool max_throttling, const std::vector<float> &sensor_predictions) {
362     float total_weight = 0;
363     float last_updated_avg_power = NAN;
364     float allocated_power = 0;
365     float allocated_weight = 0;
366     bool low_power_device_check = true;
367     bool is_budget_allocated = false;
368     bool power_data_invalid = false;
369     std::set<std::string> allocated_cdev;
370     std::string log_buf;
371 
372     std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
373     auto total_power_budget =
374             updatePowerBudget(temp, sensor_info, cooling_device_info_map, time_elapsed_ms,
375                               curr_severity, max_throttling, sensor_predictions);
376     const auto &profile = thermal_throttling_status_map_[temp.name].profile;
377 
378     if (sensor_info.throttling_info->excluded_power_info_map.size()) {
379         total_power_budget -= computeExcludedPower(sensor_info, curr_severity, power_status_map,
380                                                    &log_buf, temp.name);
381         total_power_budget = std::max(total_power_budget, 0.0f);
382         if (!log_buf.empty()) {
383             LOG(INFO) << temp.name << " power budget=" << total_power_budget << " after " << log_buf
384                       << " is excluded";
385         }
386     }
387 
388     // Compute total cdev weight
389     for (const auto &binded_cdev_info_pair :
390          (sensor_info.throttling_info->profile_map.count(profile)
391                   ? sensor_info.throttling_info->profile_map.at(profile)
392                   : sensor_info.throttling_info->binded_cdev_info_map)) {
393         const auto cdev_weight = binded_cdev_info_pair.second
394                                          .cdev_weight_for_pid[static_cast<size_t>(curr_severity)];
395         if (!binded_cdev_info_pair.second.enabled) {
396             continue;
397         } else if (std::isnan(cdev_weight) || cdev_weight == 0) {
398             allocated_cdev.insert(binded_cdev_info_pair.first);
399             continue;
400         }
401         total_weight += cdev_weight;
402     }
403 
404     while (!is_budget_allocated) {
405         for (const auto &binded_cdev_info_pair :
406              (sensor_info.throttling_info->profile_map.count(profile)
407                       ? sensor_info.throttling_info->profile_map.at(profile)
408                       : sensor_info.throttling_info->binded_cdev_info_map)) {
409             float cdev_power_adjustment = 0;
410             const auto cdev_weight =
411                     binded_cdev_info_pair.second
412                             .cdev_weight_for_pid[static_cast<size_t>(curr_severity)];
413 
414             if (allocated_cdev.count(binded_cdev_info_pair.first)) {
415                 continue;
416             }
417 
418             // Get the power data
419             if (!power_data_invalid) {
420                 if (!binded_cdev_info_pair.second.power_rail.empty()) {
421                     last_updated_avg_power =
422                             power_status_map.at(binded_cdev_info_pair.second.power_rail)
423                                     .last_updated_avg_power;
424                     if (std::isnan(last_updated_avg_power)) {
425                         LOG(VERBOSE) << "power data is under collecting";
426                         power_data_invalid = true;
427                         break;
428                     }
429 
430                     ATRACE_INT((temp.name + std::string("-") +
431                                 binded_cdev_info_pair.second.power_rail + std::string("-avg_power"))
432                                        .c_str(),
433                                static_cast<int>(last_updated_avg_power));
434                 } else {
435                     power_data_invalid = true;
436                     break;
437                 }
438                 if (binded_cdev_info_pair.second.throttling_with_power_link) {
439                     return false;
440                 }
441             }
442 
443             auto cdev_power_budget = total_power_budget * (cdev_weight / total_weight);
444             cdev_power_adjustment = cdev_power_budget - last_updated_avg_power;
445 
446             if (low_power_device_check) {
447                 // Share the budget for the CDEV which power is lower than target
448                 if (cdev_power_adjustment > 0 &&
449                     thermal_throttling_status_map_[temp.name].pid_cdev_request_map.at(
450                             binded_cdev_info_pair.first) == 0) {
451                     allocated_power += last_updated_avg_power;
452                     allocated_weight += cdev_weight;
453                     allocated_cdev.insert(binded_cdev_info_pair.first);
454                     if (!binded_cdev_info_pair.second.power_rail.empty()) {
455                         log_buf.append(StringPrintf("(%s: %0.2f mW)",
456                                                     binded_cdev_info_pair.second.power_rail.c_str(),
457                                                     last_updated_avg_power));
458                     }
459                     LOG(VERBOSE) << temp.name << " binded " << binded_cdev_info_pair.first
460                                  << " has been already at min state 0";
461                 }
462             } else {
463                 const CdevInfo &cdev_info = cooling_device_info_map.at(binded_cdev_info_pair.first);
464                 if (!binded_cdev_info_pair.second.power_rail.empty()) {
465                     log_buf.append(StringPrintf("(%s: %0.2f mW)",
466                                                 binded_cdev_info_pair.second.power_rail.c_str(),
467                                                 last_updated_avg_power));
468                 }
469                 // Ignore the power distribution if the CDEV has no space to reduce power
470                 if ((cdev_power_adjustment < 0 &&
471                      thermal_throttling_status_map_[temp.name].pid_cdev_request_map.at(
472                              binded_cdev_info_pair.first) == cdev_info.max_state)) {
473                     LOG(VERBOSE) << temp.name << " binded " << binded_cdev_info_pair.first
474                                  << " has been already at max state " << cdev_info.max_state;
475                     continue;
476                 }
477 
478                 if (!binded_cdev_info_pair.second.enabled) {
479                     cdev_power_budget = cdev_info.state2power[0];
480                 } else if (!power_data_invalid && binded_cdev_info_pair.second.power_rail != "") {
481                     auto cdev_curr_power_budget =
482                             thermal_throttling_status_map_[temp.name].pid_power_budget_map.at(
483                                     binded_cdev_info_pair.first);
484 
485                     if (last_updated_avg_power > cdev_curr_power_budget) {
486                         cdev_power_budget = cdev_curr_power_budget +=
487                                 (cdev_power_adjustment *
488                                  (cdev_curr_power_budget / last_updated_avg_power));
489                     } else {
490                         cdev_power_budget = cdev_curr_power_budget += cdev_power_adjustment;
491                     }
492                 } else {
493                     cdev_power_budget = total_power_budget * (cdev_weight / total_weight);
494                 }
495 
496                 if (!std::isnan(cdev_info.state2power[0]) &&
497                     cdev_power_budget > cdev_info.state2power[0]) {
498                     cdev_power_budget = cdev_info.state2power[0];
499                 } else if (cdev_power_budget < 0) {
500                     cdev_power_budget = 0;
501                 }
502 
503                 int max_cdev_vote;
504                 if (!getCdevMaxRequest(binded_cdev_info_pair.first, &max_cdev_vote)) {
505                     return false;
506                 }
507 
508                 const auto curr_cdev_vote =
509                         thermal_throttling_status_map_[temp.name].pid_cdev_request_map.at(
510                                 binded_cdev_info_pair.first);
511 
512                 if (!max_throttling) {
513                     if (binded_cdev_info_pair.second.max_release_step !=
514                                 std::numeric_limits<int>::max() &&
515                         (power_data_invalid || cdev_power_adjustment > 0)) {
516                         if (!power_data_invalid && curr_cdev_vote < max_cdev_vote) {
517                             cdev_power_budget = cdev_info.state2power[curr_cdev_vote];
518                             LOG(VERBOSE) << temp.name << "'s " << binded_cdev_info_pair.first
519                                          << " vote: " << curr_cdev_vote
520                                          << " is lower than max cdev vote: " << max_cdev_vote;
521                         } else {
522                             int target_release_step = binded_cdev_info_pair.second.max_release_step;
523                             while ((curr_cdev_vote - target_release_step) >
524                                            binded_cdev_info_pair.second
525                                                    .limit_info[static_cast<size_t>(
526                                                            curr_severity)] &&
527                                    cdev_info.state2power[curr_cdev_vote - target_release_step] ==
528                                            cdev_info.state2power[curr_cdev_vote]) {
529                                 target_release_step += 1;
530                             }
531                             const auto target_state =
532                                     std::max(curr_cdev_vote - target_release_step, 0);
533 
534                             cdev_power_budget = std::min(cdev_power_budget,
535                                                          cdev_info.state2power[target_state]);
536                         }
537                     }
538 
539                     if (binded_cdev_info_pair.second.max_throttle_step !=
540                                 std::numeric_limits<int>::max() &&
541                         (power_data_invalid || cdev_power_adjustment < 0)) {
542                         int target_throttle_step = binded_cdev_info_pair.second.max_throttle_step;
543                         while ((curr_cdev_vote + target_throttle_step) <
544                                        binded_cdev_info_pair.second
545                                                .cdev_ceiling[static_cast<size_t>(curr_severity)] &&
546                                cdev_info.state2power[curr_cdev_vote + target_throttle_step] ==
547                                        cdev_info.state2power[curr_cdev_vote]) {
548                             target_throttle_step += 1;
549                         }
550                         const auto target_state =
551                                 std::min(curr_cdev_vote + target_throttle_step,
552                                          binded_cdev_info_pair.second
553                                                  .cdev_ceiling[static_cast<size_t>(curr_severity)]);
554                         cdev_power_budget =
555                                 std::max(cdev_power_budget, cdev_info.state2power[target_state]);
556                     }
557                 }
558 
559                 thermal_throttling_status_map_[temp.name].pid_power_budget_map.at(
560                         binded_cdev_info_pair.first) = cdev_power_budget;
561                 LOG(VERBOSE) << temp.name << " allocate "
562                              << thermal_throttling_status_map_[temp.name].pid_power_budget_map.at(
563                                         binded_cdev_info_pair.first)
564                              << "mW to " << binded_cdev_info_pair.first
565                              << "(cdev_weight=" << cdev_weight << ")";
566             }
567         }
568 
569         if (!power_data_invalid) {
570             total_power_budget -= allocated_power;
571             total_weight -= allocated_weight;
572         }
573         allocated_power = 0;
574         allocated_weight = 0;
575 
576         if (low_power_device_check) {
577             low_power_device_check = false;
578         } else {
579             is_budget_allocated = true;
580         }
581     }
582     if (log_buf.size()) {
583         LOG(INFO) << temp.name << " binded power rails: " << log_buf;
584     }
585     return true;
586 }
587 
updateCdevRequestByPower(std::string sensor_name,const std::unordered_map<std::string,CdevInfo> & cooling_device_info_map)588 void ThermalThrottling::updateCdevRequestByPower(
589         std::string sensor_name,
590         const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map) {
591     size_t i;
592 
593     std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
594     for (auto &pid_power_budget_pair :
595          thermal_throttling_status_map_[sensor_name.data()].pid_power_budget_map) {
596         const CdevInfo &cdev_info = cooling_device_info_map.at(pid_power_budget_pair.first);
597 
598         for (i = 0; i < cdev_info.state2power.size() - 1; ++i) {
599             if (pid_power_budget_pair.second >= cdev_info.state2power[i]) {
600                 break;
601             }
602         }
603         thermal_throttling_status_map_[sensor_name.data()].pid_cdev_request_map.at(
604                 pid_power_budget_pair.first) = static_cast<int>(i);
605     }
606 
607     return;
608 }
609 
updateCdevRequestBySeverity(std::string_view sensor_name,const SensorInfo & sensor_info,ThrottlingSeverity curr_severity)610 void ThermalThrottling::updateCdevRequestBySeverity(std::string_view sensor_name,
611                                                     const SensorInfo &sensor_info,
612                                                     ThrottlingSeverity curr_severity) {
613     std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
614     const auto &profile = thermal_throttling_status_map_[sensor_name.data()].profile;
615 
616     for (const auto &binded_cdev_info_pair :
617          (sensor_info.throttling_info->profile_map.count(profile)
618                   ? sensor_info.throttling_info->profile_map.at(profile)
619                   : sensor_info.throttling_info->binded_cdev_info_map)) {
620         if (!thermal_throttling_status_map_[sensor_name.data()].hardlimit_cdev_request_map.count(
621                     binded_cdev_info_pair.first)) {
622             continue;
623         }
624         thermal_throttling_status_map_[sensor_name.data()].hardlimit_cdev_request_map.at(
625                 binded_cdev_info_pair.first) =
626                 (binded_cdev_info_pair.second.enabled)
627                         ? binded_cdev_info_pair.second
628                                   .limit_info[static_cast<size_t>(curr_severity)]
629                         : 0;
630         LOG(VERBOSE) << "Hard Limit: Sensor " << sensor_name.data() << " update cdev "
631                      << binded_cdev_info_pair.first << " to "
632                      << thermal_throttling_status_map_[sensor_name.data()]
633                                 .hardlimit_cdev_request_map.at(binded_cdev_info_pair.first);
634     }
635 }
636 
throttlingReleaseUpdate(std::string_view sensor_name,const std::unordered_map<std::string,CdevInfo> & cooling_device_info_map,const std::unordered_map<std::string,PowerStatus> & power_status_map,const ThrottlingSeverity severity,const SensorInfo & sensor_info)637 bool ThermalThrottling::throttlingReleaseUpdate(
638         std::string_view sensor_name,
639         const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map,
640         const std::unordered_map<std::string, PowerStatus> &power_status_map,
641         const ThrottlingSeverity severity, const SensorInfo &sensor_info) {
642     ATRACE_CALL();
643     std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
644     if (!thermal_throttling_status_map_.count(sensor_name.data())) {
645         return false;
646     }
647     auto &thermal_throttling_status = thermal_throttling_status_map_.at(sensor_name.data());
648     for (const auto &binded_cdev_info_pair : sensor_info.throttling_info->binded_cdev_info_map) {
649         float avg_power = -1;
650 
651         if (!thermal_throttling_status.throttling_release_map.count(binded_cdev_info_pair.first) ||
652             !power_status_map.count(binded_cdev_info_pair.second.power_rail)) {
653             return false;
654         }
655 
656         const auto max_state = cooling_device_info_map.at(binded_cdev_info_pair.first).max_state;
657 
658         auto &release_step =
659                 thermal_throttling_status.throttling_release_map.at(binded_cdev_info_pair.first);
660         avg_power =
661                 power_status_map.at(binded_cdev_info_pair.second.power_rail).last_updated_avg_power;
662 
663         if (std::isnan(avg_power) || avg_power < 0) {
664             release_step = binded_cdev_info_pair.second.throttling_with_power_link ? max_state : 0;
665             continue;
666         }
667 
668         bool is_over_budget = true;
669         if (!binded_cdev_info_pair.second.high_power_check) {
670             if (avg_power <
671                 binded_cdev_info_pair.second.power_thresholds[static_cast<int>(severity)]) {
672                 is_over_budget = false;
673             }
674         } else {
675             if (avg_power >
676                 binded_cdev_info_pair.second.power_thresholds[static_cast<int>(severity)]) {
677                 is_over_budget = false;
678             }
679         }
680         LOG(INFO) << sensor_name.data() << "'s " << binded_cdev_info_pair.first
681                   << " binded power rail " << binded_cdev_info_pair.second.power_rail
682                   << ": power threshold = "
683                   << binded_cdev_info_pair.second.power_thresholds[static_cast<int>(severity)]
684                   << ", avg power = " << avg_power;
685         std::string atrace_prefix = ::android::base::StringPrintf(
686                 "%s-%s", sensor_name.data(), binded_cdev_info_pair.second.power_rail.data());
687         ATRACE_INT(
688                 (atrace_prefix + std::string("-power_threshold")).c_str(),
689                 static_cast<int>(
690                         binded_cdev_info_pair.second.power_thresholds[static_cast<int>(severity)]));
691         ATRACE_INT((atrace_prefix + std::string("-avg_power")).c_str(), avg_power);
692 
693         switch (binded_cdev_info_pair.second.release_logic) {
694             case ReleaseLogic::INCREASE:
695                 if (!is_over_budget) {
696                     if (std::abs(release_step) < static_cast<int>(max_state)) {
697                         release_step--;
698                     }
699                 } else {
700                     release_step = 0;
701                 }
702                 break;
703             case ReleaseLogic::DECREASE:
704                 if (!is_over_budget) {
705                     if (release_step < static_cast<int>(max_state)) {
706                         release_step++;
707                     }
708                 } else {
709                     release_step = 0;
710                 }
711                 break;
712             case ReleaseLogic::STEPWISE:
713                 if (!is_over_budget) {
714                     if (release_step < static_cast<int>(max_state)) {
715                         release_step++;
716                     }
717                 } else {
718                     if (std::abs(release_step) < static_cast<int>(max_state)) {
719                         release_step--;
720                     }
721                 }
722                 break;
723             case ReleaseLogic::RELEASE_TO_FLOOR:
724                 release_step = is_over_budget ? 0 : max_state;
725                 break;
726             case ReleaseLogic::NONE:
727             default:
728                 break;
729         }
730     }
731     return true;
732 }
733 
thermalThrottlingUpdate(const Temperature & temp,const SensorInfo & sensor_info,const ThrottlingSeverity curr_severity,const std::chrono::milliseconds time_elapsed_ms,const std::unordered_map<std::string,PowerStatus> & power_status_map,const std::unordered_map<std::string,CdevInfo> & cooling_device_info_map,const bool max_throttling,const std::vector<float> & sensor_predictions)734 void ThermalThrottling::thermalThrottlingUpdate(
735         const Temperature &temp, const SensorInfo &sensor_info,
736         const ThrottlingSeverity curr_severity, const std::chrono::milliseconds time_elapsed_ms,
737         const std::unordered_map<std::string, PowerStatus> &power_status_map,
738         const std::unordered_map<std::string, CdevInfo> &cooling_device_info_map,
739         const bool max_throttling, const std::vector<float> &sensor_predictions) {
740     if (!thermal_throttling_status_map_.count(temp.name)) {
741         return;
742     }
743 
744     if (sensor_info.throttling_info->profile_map.size()) {
745         parseProfileProperty(temp.name.c_str(), sensor_info);
746     }
747 
748     if (thermal_throttling_status_map_[temp.name].pid_power_budget_map.size()) {
749         if (!allocatePowerToCdev(temp, sensor_info, curr_severity, time_elapsed_ms,
750                                  power_status_map, cooling_device_info_map, max_throttling,
751                                  sensor_predictions)) {
752             LOG(ERROR) << "Sensor " << temp.name << " PID request cdev failed";
753             // Clear the CDEV request if the power budget is failed to be allocated
754             for (auto &pid_cdev_request_pair :
755                  thermal_throttling_status_map_[temp.name].pid_cdev_request_map) {
756                 pid_cdev_request_pair.second = 0;
757             }
758         }
759         updateCdevRequestByPower(temp.name, cooling_device_info_map);
760     }
761 
762     if (thermal_throttling_status_map_[temp.name].hardlimit_cdev_request_map.size()) {
763         updateCdevRequestBySeverity(temp.name.c_str(), sensor_info, curr_severity);
764     }
765 
766     if (thermal_throttling_status_map_[temp.name].throttling_release_map.size()) {
767         throttlingReleaseUpdate(temp.name.c_str(), cooling_device_info_map, power_status_map,
768                                 curr_severity, sensor_info);
769     }
770 }
771 
computeCoolingDevicesRequest(std::string_view sensor_name,const SensorInfo & sensor_info,const ThrottlingSeverity curr_severity,std::vector<std::string> * cooling_devices_to_update,ThermalStatsHelper * thermal_stats_helper)772 void ThermalThrottling::computeCoolingDevicesRequest(
773         std::string_view sensor_name, const SensorInfo &sensor_info,
774         const ThrottlingSeverity curr_severity, std::vector<std::string> *cooling_devices_to_update,
775         ThermalStatsHelper *thermal_stats_helper) {
776     int release_step = 0;
777     std::unique_lock<std::shared_mutex> _lock(thermal_throttling_status_map_mutex_);
778 
779     if (!thermal_throttling_status_map_.count(sensor_name.data())) {
780         return;
781     }
782 
783     auto &thermal_throttling_status = thermal_throttling_status_map_.at(sensor_name.data());
784     const auto &cdev_release_map = thermal_throttling_status.throttling_release_map;
785 
786     const auto &profile = thermal_throttling_status_map_[sensor_name.data()].profile;
787     const auto &binded_cdev_info_map =
788             sensor_info.throttling_info->profile_map.count(profile)
789                     ? sensor_info.throttling_info->profile_map.at(profile)
790                     : sensor_info.throttling_info->binded_cdev_info_map;
791 
792     for (auto &cdev_request_pair : thermal_throttling_status.cdev_status_map) {
793         int pid_cdev_request = 0;
794         int hardlimit_cdev_request = 0;
795         const auto &cdev_name = cdev_request_pair.first;
796         const auto &binded_cdev_info = binded_cdev_info_map.at(cdev_name);
797         const auto cdev_ceiling = binded_cdev_info.cdev_ceiling[static_cast<size_t>(curr_severity)];
798         const auto cdev_floor =
799                 binded_cdev_info.cdev_floor_with_power_link[static_cast<size_t>(curr_severity)];
800         release_step = 0;
801 
802         if (thermal_throttling_status.pid_cdev_request_map.count(cdev_name)) {
803             pid_cdev_request = thermal_throttling_status.pid_cdev_request_map.at(cdev_name);
804         }
805 
806         if (thermal_throttling_status.hardlimit_cdev_request_map.count(cdev_name)) {
807             hardlimit_cdev_request =
808                     thermal_throttling_status.hardlimit_cdev_request_map.at(cdev_name);
809         }
810 
811         if (cdev_release_map.count(cdev_name)) {
812             release_step = cdev_release_map.at(cdev_name);
813         }
814 
815         LOG(VERBOSE) << sensor_name.data() << " binded cooling device " << cdev_name
816                      << "'s pid_request=" << pid_cdev_request
817                      << " hardlimit_cdev_request=" << hardlimit_cdev_request
818                      << " release_step=" << release_step
819                      << " cdev_floor_with_power_link=" << cdev_floor
820                      << " cdev_ceiling=" << cdev_ceiling;
821         std::string atrace_prefix =
822                 ::android::base::StringPrintf("%s-%s", sensor_name.data(), cdev_name.data());
823         ATRACE_INT((atrace_prefix + std::string("-pid_request")).c_str(), pid_cdev_request);
824         ATRACE_INT((atrace_prefix + std::string("-hardlimit_request")).c_str(),
825                    hardlimit_cdev_request);
826         ATRACE_INT((atrace_prefix + std::string("-release_step")).c_str(), release_step);
827         ATRACE_INT((atrace_prefix + std::string("-cdev_floor")).c_str(), cdev_floor);
828         ATRACE_INT((atrace_prefix + std::string("-cdev_ceiling")).c_str(), cdev_ceiling);
829 
830         auto request_state = std::max(pid_cdev_request, hardlimit_cdev_request);
831         if (release_step) {
832             if (release_step >= request_state) {
833                 request_state = 0;
834             } else {
835                 request_state = request_state - release_step;
836             }
837             // Only check the cdev_floor when release step is non zero
838             request_state = std::max(request_state, cdev_floor);
839         }
840         request_state = std::min(request_state, cdev_ceiling);
841         if (cdev_request_pair.second != request_state) {
842             ATRACE_INT((atrace_prefix + std::string("-final_request")).c_str(), request_state);
843             if (updateCdevMaxRequestAndNotifyIfChange(cdev_name, cdev_request_pair.second,
844                                                       request_state)) {
845                 cooling_devices_to_update->emplace_back(cdev_name);
846             }
847             cdev_request_pair.second = request_state;
848             // Update sensor cdev request time in state
849             thermal_stats_helper->updateSensorCdevRequestStats(sensor_name, cdev_name,
850                                                                cdev_request_pair.second);
851         }
852     }
853 }
854 
updateCdevMaxRequestAndNotifyIfChange(std::string_view cdev_name,int cur_request,int new_request)855 bool ThermalThrottling::updateCdevMaxRequestAndNotifyIfChange(std::string_view cdev_name,
856                                                               int cur_request, int new_request) {
857     std::unique_lock<std::shared_mutex> _lock(cdev_all_request_map_mutex_);
858     auto &request_set = cdev_all_request_map_.at(cdev_name.data());
859     int cur_max_request = (*request_set.begin());
860     // Remove old cdev request and add the new one.
861     request_set.erase(request_set.find(cur_request));
862     request_set.insert(new_request);
863     // Check if there is any change in aggregated max cdev request.
864     int new_max_request = (*request_set.begin());
865     LOG(VERBOSE) << "For cooling device [" << cdev_name.data()
866                  << "] cur_max_request is: " << cur_max_request
867                  << " new_max_request is: " << new_max_request;
868     return new_max_request != cur_max_request;
869 }
870 
getCdevMaxRequest(std::string_view cdev_name,int * max_state)871 bool ThermalThrottling::getCdevMaxRequest(std::string_view cdev_name, int *max_state) {
872     std::shared_lock<std::shared_mutex> _lock(cdev_all_request_map_mutex_);
873     if (!cdev_all_request_map_.count(cdev_name.data())) {
874         LOG(ERROR) << "Cooling device [" << cdev_name.data()
875                    << "] not present in cooling device request map";
876         return false;
877     }
878     *max_state = *cdev_all_request_map_.at(cdev_name.data()).begin();
879     return true;
880 }
881 
882 }  // namespace implementation
883 }  // namespace thermal
884 }  // namespace hardware
885 }  // namespace android
886 }  // namespace aidl
887