• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010 The Guava Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
5  * in compliance with the License. You may obtain a copy of the License at
6  *
7  * http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software distributed under the License
10  * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
11  * or implied. See the License for the specific language governing permissions and limitations under
12  * the License.
13  */
14 
15 package com.google.common.util.concurrent;
16 
17 import static com.google.common.base.Preconditions.checkNotNull;
18 
19 import com.google.common.annotations.GwtIncompatible;
20 import com.google.common.annotations.J2ktIncompatible;
21 import com.google.common.primitives.Longs;
22 import com.google.errorprone.annotations.concurrent.GuardedBy;
23 import com.google.j2objc.annotations.Weak;
24 import java.util.concurrent.TimeUnit;
25 import java.util.concurrent.locks.Condition;
26 import java.util.concurrent.locks.ReentrantLock;
27 import javax.annotation.CheckForNull;
28 
29 /**
30  * A synchronization abstraction supporting waiting on arbitrary boolean conditions.
31  *
32  * <p>This class is intended as a replacement for {@link ReentrantLock}. Code using {@code Monitor}
33  * is less error-prone and more readable than code using {@code ReentrantLock}, without significant
34  * performance loss. {@code Monitor} even has the potential for performance gain by optimizing the
35  * evaluation and signaling of conditions. Signaling is entirely <a
36  * href="http://en.wikipedia.org/wiki/Monitor_(synchronization)#Implicit_signaling">implicit</a>. By
37  * eliminating explicit signaling, this class can guarantee that only one thread is awakened when a
38  * condition becomes true (no "signaling storms" due to use of {@link
39  * java.util.concurrent.locks.Condition#signalAll Condition.signalAll}) and that no signals are lost
40  * (no "hangs" due to incorrect use of {@link java.util.concurrent.locks.Condition#signal
41  * Condition.signal}).
42  *
43  * <p>A thread is said to <i>occupy</i> a monitor if it has <i>entered</i> the monitor but not yet
44  * <i>left</i>. Only one thread may occupy a given monitor at any moment. A monitor is also
45  * reentrant, so a thread may enter a monitor any number of times, and then must leave the same
46  * number of times. The <i>enter</i> and <i>leave</i> operations have the same synchronization
47  * semantics as the built-in Java language synchronization primitives.
48  *
49  * <p>A call to any of the <i>enter</i> methods with <b>void</b> return type should always be
50  * followed immediately by a <i>try/finally</i> block to ensure that the current thread leaves the
51  * monitor cleanly:
52  *
53  * <pre>{@code
54  * monitor.enter();
55  * try {
56  *   // do things while occupying the monitor
57  * } finally {
58  *   monitor.leave();
59  * }
60  * }</pre>
61  *
62  * <p>A call to any of the <i>enter</i> methods with <b>boolean</b> return type should always appear
63  * as the condition of an <i>if</i> statement containing a <i>try/finally</i> block to ensure that
64  * the current thread leaves the monitor cleanly:
65  *
66  * <pre>{@code
67  * if (monitor.tryEnter()) {
68  *   try {
69  *     // do things while occupying the monitor
70  *   } finally {
71  *     monitor.leave();
72  *   }
73  * } else {
74  *   // do other things since the monitor was not available
75  * }
76  * }</pre>
77  *
78  * <h2>Comparison with {@code synchronized} and {@code ReentrantLock}</h2>
79  *
80  * <p>The following examples show a simple threadsafe holder expressed using {@code synchronized},
81  * {@link ReentrantLock}, and {@code Monitor}.
82  *
83  * <h3>{@code synchronized}</h3>
84  *
85  * <p>This version is the fewest lines of code, largely because the synchronization mechanism used
86  * is built into the language and runtime. But the programmer has to remember to avoid a couple of
87  * common bugs: The {@code wait()} must be inside a {@code while} instead of an {@code if}, and
88  * {@code notifyAll()} must be used instead of {@code notify()} because there are two different
89  * logical conditions being awaited.
90  *
91  * <pre>{@code
92  * public class SafeBox<V> {
93  *   private V value;
94  *
95  *   public synchronized V get() throws InterruptedException {
96  *     while (value == null) {
97  *       wait();
98  *     }
99  *     V result = value;
100  *     value = null;
101  *     notifyAll();
102  *     return result;
103  *   }
104  *
105  *   public synchronized void set(V newValue) throws InterruptedException {
106  *     while (value != null) {
107  *       wait();
108  *     }
109  *     value = newValue;
110  *     notifyAll();
111  *   }
112  * }
113  * }</pre>
114  *
115  * <h3>{@code ReentrantLock}</h3>
116  *
117  * <p>This version is much more verbose than the {@code synchronized} version, and still suffers
118  * from the need for the programmer to remember to use {@code while} instead of {@code if}. However,
119  * one advantage is that we can introduce two separate {@code Condition} objects, which allows us to
120  * use {@code signal()} instead of {@code signalAll()}, which may be a performance benefit.
121  *
122  * <pre>{@code
123  * public class SafeBox<V> {
124  *   private V value;
125  *   private final ReentrantLock lock = new ReentrantLock();
126  *   private final Condition valuePresent = lock.newCondition();
127  *   private final Condition valueAbsent = lock.newCondition();
128  *
129  *   public V get() throws InterruptedException {
130  *     lock.lock();
131  *     try {
132  *       while (value == null) {
133  *         valuePresent.await();
134  *       }
135  *       V result = value;
136  *       value = null;
137  *       valueAbsent.signal();
138  *       return result;
139  *     } finally {
140  *       lock.unlock();
141  *     }
142  *   }
143  *
144  *   public void set(V newValue) throws InterruptedException {
145  *     lock.lock();
146  *     try {
147  *       while (value != null) {
148  *         valueAbsent.await();
149  *       }
150  *       value = newValue;
151  *       valuePresent.signal();
152  *     } finally {
153  *       lock.unlock();
154  *     }
155  *   }
156  * }
157  * }</pre>
158  *
159  * <h3>{@code Monitor}</h3>
160  *
161  * <p>This version adds some verbosity around the {@code Guard} objects, but removes that same
162  * verbosity, and more, from the {@code get} and {@code set} methods. {@code Monitor} implements the
163  * same efficient signaling as we had to hand-code in the {@code ReentrantLock} version above.
164  * Finally, the programmer no longer has to hand-code the wait loop, and therefore doesn't have to
165  * remember to use {@code while} instead of {@code if}.
166  *
167  * <pre>{@code
168  * public class SafeBox<V> {
169  *   private V value;
170  *   private final Monitor monitor = new Monitor();
171  *   private final Monitor.Guard valuePresent = monitor.newGuard(() -> value != null);
172  *   private final Monitor.Guard valueAbsent = monitor.newGuard(() -> value == null);
173  *
174  *   public V get() throws InterruptedException {
175  *     monitor.enterWhen(valuePresent);
176  *     try {
177  *       V result = value;
178  *       value = null;
179  *       return result;
180  *     } finally {
181  *       monitor.leave();
182  *     }
183  *   }
184  *
185  *   public void set(V newValue) throws InterruptedException {
186  *     monitor.enterWhen(valueAbsent);
187  *     try {
188  *       value = newValue;
189  *     } finally {
190  *       monitor.leave();
191  *     }
192  *   }
193  * }
194  * }</pre>
195  *
196  * @author Justin T. Sampson
197  * @author Martin Buchholz
198  * @since 10.0
199  */
200 @J2ktIncompatible
201 @GwtIncompatible
202 @SuppressWarnings("GuardedBy") // TODO(b/35466881): Fix or suppress.
203 @ElementTypesAreNonnullByDefault
204 public final class Monitor {
205   // TODO(user): Use raw LockSupport or AbstractQueuedSynchronizer instead of ReentrantLock.
206   // TODO(user): "Port" jsr166 tests for ReentrantLock.
207   //
208   // TODO(user): Change API to make it impossible to use a Guard with the "wrong" monitor,
209   //    by making the monitor implicit, and to eliminate other sources of IMSE.
210   //    Imagine:
211   //    guard.lock();
212   //    try { /* monitor locked and guard satisfied here */ }
213   //    finally { guard.unlock(); }
214   // Here are Justin's design notes about this:
215   //
216   // This idea has come up from time to time, and I think one of my
217   // earlier versions of Monitor even did something like this. I ended
218   // up strongly favoring the current interface.
219   //
220   // I probably can't remember all the reasons (it's possible you
221   // could find them in the code review archives), but here are a few:
222   //
223   // 1. What about leaving/unlocking? Are you going to do
224   //    guard.enter() paired with monitor.leave()? That might get
225   //    confusing. It's nice for the finally block to look as close as
226   //    possible to the thing right before the try. You could have
227   //    guard.leave(), but that's a little odd as well because the
228   //    guard doesn't have anything to do with leaving. You can't
229   //    really enforce that the guard you're leaving is the same one
230   //    you entered with, and it doesn't actually matter.
231   //
232   // 2. Since you can enter the monitor without a guard at all, some
233   //    places you'll have monitor.enter()/monitor.leave() and other
234   //    places you'll have guard.enter()/guard.leave() even though
235   //    it's the same lock being acquired underneath. Always using
236   //    monitor.enterXXX()/monitor.leave() will make it really clear
237   //    which lock is held at any point in the code.
238   //
239   // 3. I think "enterWhen(notEmpty)" reads better than "notEmpty.enter()".
240   //
241   // TODO(user): Implement ReentrantLock features:
242   //    - toString() method
243   //    - getOwner() method
244   //    - getQueuedThreads() method
245   //    - getWaitingThreads(Guard) method
246   //    - implement Serializable
247   //    - redo the API to be as close to identical to ReentrantLock as possible,
248   //      since, after all, this class is also a reentrant mutual exclusion lock!?
249 
250   /*
251    * One of the key challenges of this class is to prevent lost signals, while trying hard to
252    * minimize unnecessary signals. One simple and correct algorithm is to signal some other waiter
253    * with a satisfied guard (if one exists) whenever any thread occupying the monitor exits the
254    * monitor, either by unlocking all of its held locks, or by starting to wait for a guard. This
255    * includes exceptional exits, so all control paths involving signalling must be protected by a
256    * finally block.
257    *
258    * Further optimizations of this algorithm become increasingly subtle. A wait that terminates
259    * without the guard being satisfied (due to timeout, but not interrupt) can then immediately exit
260    * the monitor without signalling. If it timed out without being signalled, it does not need to
261    * "pass on" the signal to another thread. If it *was* signalled, then its guard must have been
262    * satisfied at the time of signal, and has since been modified by some other thread to be
263    * non-satisfied before reacquiring the lock, and that other thread takes over the responsibility
264    * of signaling the next waiter.
265    *
266    * Unlike the underlying Condition, if we are not careful, an interrupt *can* cause a signal to be
267    * lost, because the signal may be sent to a condition whose sole waiter has just been
268    * interrupted.
269    *
270    * Imagine a monitor with multiple guards. A thread enters the monitor, satisfies all the guards,
271    * and leaves, calling signalNextWaiter. With traditional locks and conditions, all the conditions
272    * need to be signalled because it is not known which if any of them have waiters (and hasWaiters
273    * can't be used reliably because of a check-then-act race). With our Monitor guards, we only
274    * signal the first active guard that is satisfied. But the corresponding thread may have already
275    * been interrupted and is waiting to reacquire the lock while still registered in activeGuards,
276    * in which case the signal is a no-op, and the bigger-picture signal is lost unless interrupted
277    * threads take special action by participating in the signal-passing game.
278    */
279 
280   /*
281    * Timeout handling is intricate, especially given our ambitious goals:
282    * - Avoid underflow and overflow of timeout values when specified timeouts are close to
283    *   Long.MIN_VALUE or Long.MAX_VALUE.
284    * - Favor responding to interrupts over timeouts.
285    * - System.nanoTime() is expensive enough that we want to call it the minimum required number of
286    *   times, typically once before invoking a blocking method. This often requires keeping track of
287    *   the first time in a method that nanoTime() has been invoked, for which the special value 0L
288    *   is reserved to mean "uninitialized". If timeout is non-positive, then nanoTime need never be
289    *   called.
290    * - Keep behavior of fair and non-fair instances consistent.
291    */
292 
293   /**
294    * A boolean condition for which a thread may wait. A {@code Guard} is associated with a single
295    * {@code Monitor}. The monitor may check the guard at arbitrary times from any thread occupying
296    * the monitor, so code should not be written to rely on how often a guard might or might not be
297    * checked.
298    *
299    * <p>If a {@code Guard} is passed into any method of a {@code Monitor} other than the one it is
300    * associated with, an {@link IllegalMonitorStateException} is thrown.
301    *
302    * @since 10.0
303    */
304   public abstract static class Guard {
305 
306     @Weak final Monitor monitor;
307     final Condition condition;
308 
309     @GuardedBy("monitor.lock")
310     int waiterCount = 0;
311 
312     /** The next active guard */
313     @GuardedBy("monitor.lock")
314     @CheckForNull
315     Guard next;
316 
Guard(Monitor monitor)317     protected Guard(Monitor monitor) {
318       this.monitor = checkNotNull(monitor, "monitor");
319       this.condition = monitor.lock.newCondition();
320     }
321 
322     /**
323      * Evaluates this guard's boolean condition. This method is always called with the associated
324      * monitor already occupied. Implementations of this method must depend only on state protected
325      * by the associated monitor, and must not modify that state.
326      */
isSatisfied()327     public abstract boolean isSatisfied();
328   }
329 
330   /** Whether this monitor is fair. */
331   private final boolean fair;
332 
333   /** The lock underlying this monitor. */
334   private final ReentrantLock lock;
335 
336   /**
337    * The guards associated with this monitor that currently have waiters ({@code waiterCount > 0}).
338    * A linked list threaded through the Guard.next field.
339    */
340   @GuardedBy("lock")
341   @CheckForNull
342   private Guard activeGuards = null;
343 
344   /**
345    * Creates a monitor with a non-fair (but fast) ordering policy. Equivalent to {@code
346    * Monitor(false)}.
347    */
Monitor()348   public Monitor() {
349     this(false);
350   }
351 
352   /**
353    * Creates a monitor with the given ordering policy.
354    *
355    * @param fair whether this monitor should use a fair ordering policy rather than a non-fair (but
356    *     fast) one
357    */
Monitor(boolean fair)358   public Monitor(boolean fair) {
359     this.fair = fair;
360     this.lock = new ReentrantLock(fair);
361   }
362 
363   /** Enters this monitor. Blocks indefinitely. */
enter()364   public void enter() {
365     lock.lock();
366   }
367 
368   /**
369    * Enters this monitor. Blocks at most the given time.
370    *
371    * @return whether the monitor was entered
372    */
373   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enter(long time, TimeUnit unit)374   public boolean enter(long time, TimeUnit unit) {
375     final long timeoutNanos = toSafeNanos(time, unit);
376     final ReentrantLock lock = this.lock;
377     if (!fair && lock.tryLock()) {
378       return true;
379     }
380     boolean interrupted = Thread.interrupted();
381     try {
382       final long startTime = System.nanoTime();
383       for (long remainingNanos = timeoutNanos; ; ) {
384         try {
385           return lock.tryLock(remainingNanos, TimeUnit.NANOSECONDS);
386         } catch (InterruptedException interrupt) {
387           interrupted = true;
388           remainingNanos = remainingNanos(startTime, timeoutNanos);
389         }
390       }
391     } finally {
392       if (interrupted) {
393         Thread.currentThread().interrupt();
394       }
395     }
396   }
397 
398   /**
399    * Enters this monitor. Blocks indefinitely, but may be interrupted.
400    *
401    * @throws InterruptedException if interrupted while waiting
402    */
enterInterruptibly()403   public void enterInterruptibly() throws InterruptedException {
404     lock.lockInterruptibly();
405   }
406 
407   /**
408    * Enters this monitor. Blocks at most the given time, and may be interrupted.
409    *
410    * @return whether the monitor was entered
411    * @throws InterruptedException if interrupted while waiting
412    */
413   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterInterruptibly(long time, TimeUnit unit)414   public boolean enterInterruptibly(long time, TimeUnit unit) throws InterruptedException {
415     return lock.tryLock(time, unit);
416   }
417 
418   /**
419    * Enters this monitor if it is possible to do so immediately. Does not block.
420    *
421    * <p><b>Note:</b> This method disregards the fairness setting of this monitor.
422    *
423    * @return whether the monitor was entered
424    */
tryEnter()425   public boolean tryEnter() {
426     return lock.tryLock();
427   }
428 
429   /**
430    * Enters this monitor when the guard is satisfied. Blocks indefinitely, but may be interrupted.
431    *
432    * @throws InterruptedException if interrupted while waiting
433    */
enterWhen(Guard guard)434   public void enterWhen(Guard guard) throws InterruptedException {
435     if (guard.monitor != this) {
436       throw new IllegalMonitorStateException();
437     }
438     final ReentrantLock lock = this.lock;
439     boolean signalBeforeWaiting = lock.isHeldByCurrentThread();
440     lock.lockInterruptibly();
441 
442     boolean satisfied = false;
443     try {
444       if (!guard.isSatisfied()) {
445         await(guard, signalBeforeWaiting);
446       }
447       satisfied = true;
448     } finally {
449       if (!satisfied) {
450         leave();
451       }
452     }
453   }
454 
455   /**
456    * Enters this monitor when the guard is satisfied. Blocks at most the given time, including both
457    * the time to acquire the lock and the time to wait for the guard to be satisfied, and may be
458    * interrupted.
459    *
460    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
461    * @throws InterruptedException if interrupted while waiting
462    */
463   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterWhen(Guard guard, long time, TimeUnit unit)464   public boolean enterWhen(Guard guard, long time, TimeUnit unit) throws InterruptedException {
465     final long timeoutNanos = toSafeNanos(time, unit);
466     if (guard.monitor != this) {
467       throw new IllegalMonitorStateException();
468     }
469     final ReentrantLock lock = this.lock;
470     boolean reentrant = lock.isHeldByCurrentThread();
471     long startTime = 0L;
472 
473     locked:
474     {
475       if (!fair) {
476         // Check interrupt status to get behavior consistent with fair case.
477         if (Thread.interrupted()) {
478           throw new InterruptedException();
479         }
480         if (lock.tryLock()) {
481           break locked;
482         }
483       }
484       startTime = initNanoTime(timeoutNanos);
485       if (!lock.tryLock(time, unit)) {
486         return false;
487       }
488     }
489 
490     boolean satisfied = false;
491     boolean threw = true;
492     try {
493       satisfied =
494           guard.isSatisfied()
495               || awaitNanos(
496                   guard,
497                   (startTime == 0L) ? timeoutNanos : remainingNanos(startTime, timeoutNanos),
498                   reentrant);
499       threw = false;
500       return satisfied;
501     } finally {
502       if (!satisfied) {
503         try {
504           // Don't need to signal if timed out, but do if interrupted
505           if (threw && !reentrant) {
506             signalNextWaiter();
507           }
508         } finally {
509           lock.unlock();
510         }
511       }
512     }
513   }
514 
515   /** Enters this monitor when the guard is satisfied. Blocks indefinitely. */
enterWhenUninterruptibly(Guard guard)516   public void enterWhenUninterruptibly(Guard guard) {
517     if (guard.monitor != this) {
518       throw new IllegalMonitorStateException();
519     }
520     final ReentrantLock lock = this.lock;
521     boolean signalBeforeWaiting = lock.isHeldByCurrentThread();
522     lock.lock();
523 
524     boolean satisfied = false;
525     try {
526       if (!guard.isSatisfied()) {
527         awaitUninterruptibly(guard, signalBeforeWaiting);
528       }
529       satisfied = true;
530     } finally {
531       if (!satisfied) {
532         leave();
533       }
534     }
535   }
536 
537   /**
538    * Enters this monitor when the guard is satisfied. Blocks at most the given time, including both
539    * the time to acquire the lock and the time to wait for the guard to be satisfied.
540    *
541    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
542    */
543   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterWhenUninterruptibly(Guard guard, long time, TimeUnit unit)544   public boolean enterWhenUninterruptibly(Guard guard, long time, TimeUnit unit) {
545     final long timeoutNanos = toSafeNanos(time, unit);
546     if (guard.monitor != this) {
547       throw new IllegalMonitorStateException();
548     }
549     final ReentrantLock lock = this.lock;
550     long startTime = 0L;
551     boolean signalBeforeWaiting = lock.isHeldByCurrentThread();
552     boolean interrupted = Thread.interrupted();
553     try {
554       if (fair || !lock.tryLock()) {
555         startTime = initNanoTime(timeoutNanos);
556         for (long remainingNanos = timeoutNanos; ; ) {
557           try {
558             if (lock.tryLock(remainingNanos, TimeUnit.NANOSECONDS)) {
559               break;
560             } else {
561               return false;
562             }
563           } catch (InterruptedException interrupt) {
564             interrupted = true;
565             remainingNanos = remainingNanos(startTime, timeoutNanos);
566           }
567         }
568       }
569 
570       boolean satisfied = false;
571       try {
572         while (true) {
573           try {
574             if (guard.isSatisfied()) {
575               satisfied = true;
576             } else {
577               final long remainingNanos;
578               if (startTime == 0L) {
579                 startTime = initNanoTime(timeoutNanos);
580                 remainingNanos = timeoutNanos;
581               } else {
582                 remainingNanos = remainingNanos(startTime, timeoutNanos);
583               }
584               satisfied = awaitNanos(guard, remainingNanos, signalBeforeWaiting);
585             }
586             return satisfied;
587           } catch (InterruptedException interrupt) {
588             interrupted = true;
589             signalBeforeWaiting = false;
590           }
591         }
592       } finally {
593         if (!satisfied) {
594           lock.unlock(); // No need to signal if timed out
595         }
596       }
597     } finally {
598       if (interrupted) {
599         Thread.currentThread().interrupt();
600       }
601     }
602   }
603 
604   /**
605    * Enters this monitor if the guard is satisfied. Blocks indefinitely acquiring the lock, but does
606    * not wait for the guard to be satisfied.
607    *
608    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
609    */
enterIf(Guard guard)610   public boolean enterIf(Guard guard) {
611     if (guard.monitor != this) {
612       throw new IllegalMonitorStateException();
613     }
614     final ReentrantLock lock = this.lock;
615     lock.lock();
616 
617     boolean satisfied = false;
618     try {
619       return satisfied = guard.isSatisfied();
620     } finally {
621       if (!satisfied) {
622         lock.unlock();
623       }
624     }
625   }
626 
627   /**
628    * Enters this monitor if the guard is satisfied. Blocks at most the given time acquiring the
629    * lock, but does not wait for the guard to be satisfied.
630    *
631    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
632    */
633   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterIf(Guard guard, long time, TimeUnit unit)634   public boolean enterIf(Guard guard, long time, TimeUnit unit) {
635     if (guard.monitor != this) {
636       throw new IllegalMonitorStateException();
637     }
638     if (!enter(time, unit)) {
639       return false;
640     }
641 
642     boolean satisfied = false;
643     try {
644       return satisfied = guard.isSatisfied();
645     } finally {
646       if (!satisfied) {
647         lock.unlock();
648       }
649     }
650   }
651 
652   /**
653    * Enters this monitor if the guard is satisfied. Blocks indefinitely acquiring the lock, but does
654    * not wait for the guard to be satisfied, and may be interrupted.
655    *
656    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
657    * @throws InterruptedException if interrupted while waiting
658    */
enterIfInterruptibly(Guard guard)659   public boolean enterIfInterruptibly(Guard guard) throws InterruptedException {
660     if (guard.monitor != this) {
661       throw new IllegalMonitorStateException();
662     }
663     final ReentrantLock lock = this.lock;
664     lock.lockInterruptibly();
665 
666     boolean satisfied = false;
667     try {
668       return satisfied = guard.isSatisfied();
669     } finally {
670       if (!satisfied) {
671         lock.unlock();
672       }
673     }
674   }
675 
676   /**
677    * Enters this monitor if the guard is satisfied. Blocks at most the given time acquiring the
678    * lock, but does not wait for the guard to be satisfied, and may be interrupted.
679    *
680    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
681    */
682   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
enterIfInterruptibly(Guard guard, long time, TimeUnit unit)683   public boolean enterIfInterruptibly(Guard guard, long time, TimeUnit unit)
684       throws InterruptedException {
685     if (guard.monitor != this) {
686       throw new IllegalMonitorStateException();
687     }
688     final ReentrantLock lock = this.lock;
689     if (!lock.tryLock(time, unit)) {
690       return false;
691     }
692 
693     boolean satisfied = false;
694     try {
695       return satisfied = guard.isSatisfied();
696     } finally {
697       if (!satisfied) {
698         lock.unlock();
699       }
700     }
701   }
702 
703   /**
704    * Enters this monitor if it is possible to do so immediately and the guard is satisfied. Does not
705    * block acquiring the lock and does not wait for the guard to be satisfied.
706    *
707    * <p><b>Note:</b> This method disregards the fairness setting of this monitor.
708    *
709    * @return whether the monitor was entered, which guarantees that the guard is now satisfied
710    */
tryEnterIf(Guard guard)711   public boolean tryEnterIf(Guard guard) {
712     if (guard.monitor != this) {
713       throw new IllegalMonitorStateException();
714     }
715     final ReentrantLock lock = this.lock;
716     if (!lock.tryLock()) {
717       return false;
718     }
719 
720     boolean satisfied = false;
721     try {
722       return satisfied = guard.isSatisfied();
723     } finally {
724       if (!satisfied) {
725         lock.unlock();
726       }
727     }
728   }
729 
730   /**
731    * Waits for the guard to be satisfied. Waits indefinitely, but may be interrupted. May be called
732    * only by a thread currently occupying this monitor.
733    *
734    * @throws InterruptedException if interrupted while waiting
735    */
waitFor(Guard guard)736   public void waitFor(Guard guard) throws InterruptedException {
737     if (!((guard.monitor == this) && lock.isHeldByCurrentThread())) {
738       throw new IllegalMonitorStateException();
739     }
740     if (!guard.isSatisfied()) {
741       await(guard, true);
742     }
743   }
744 
745   /**
746    * Waits for the guard to be satisfied. Waits at most the given time, and may be interrupted. May
747    * be called only by a thread currently occupying this monitor.
748    *
749    * @return whether the guard is now satisfied
750    * @throws InterruptedException if interrupted while waiting
751    */
752   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
waitFor(Guard guard, long time, TimeUnit unit)753   public boolean waitFor(Guard guard, long time, TimeUnit unit) throws InterruptedException {
754     final long timeoutNanos = toSafeNanos(time, unit);
755     if (!((guard.monitor == this) && lock.isHeldByCurrentThread())) {
756       throw new IllegalMonitorStateException();
757     }
758     if (guard.isSatisfied()) {
759       return true;
760     }
761     if (Thread.interrupted()) {
762       throw new InterruptedException();
763     }
764     return awaitNanos(guard, timeoutNanos, true);
765   }
766 
767   /**
768    * Waits for the guard to be satisfied. Waits indefinitely. May be called only by a thread
769    * currently occupying this monitor.
770    */
waitForUninterruptibly(Guard guard)771   public void waitForUninterruptibly(Guard guard) {
772     if (!((guard.monitor == this) && lock.isHeldByCurrentThread())) {
773       throw new IllegalMonitorStateException();
774     }
775     if (!guard.isSatisfied()) {
776       awaitUninterruptibly(guard, true);
777     }
778   }
779 
780   /**
781    * Waits for the guard to be satisfied. Waits at most the given time. May be called only by a
782    * thread currently occupying this monitor.
783    *
784    * @return whether the guard is now satisfied
785    */
786   @SuppressWarnings("GoodTime") // should accept a java.time.Duration
waitForUninterruptibly(Guard guard, long time, TimeUnit unit)787   public boolean waitForUninterruptibly(Guard guard, long time, TimeUnit unit) {
788     final long timeoutNanos = toSafeNanos(time, unit);
789     if (!((guard.monitor == this) && lock.isHeldByCurrentThread())) {
790       throw new IllegalMonitorStateException();
791     }
792     if (guard.isSatisfied()) {
793       return true;
794     }
795     boolean signalBeforeWaiting = true;
796     final long startTime = initNanoTime(timeoutNanos);
797     boolean interrupted = Thread.interrupted();
798     try {
799       for (long remainingNanos = timeoutNanos; ; ) {
800         try {
801           return awaitNanos(guard, remainingNanos, signalBeforeWaiting);
802         } catch (InterruptedException interrupt) {
803           interrupted = true;
804           if (guard.isSatisfied()) {
805             return true;
806           }
807           signalBeforeWaiting = false;
808           remainingNanos = remainingNanos(startTime, timeoutNanos);
809         }
810       }
811     } finally {
812       if (interrupted) {
813         Thread.currentThread().interrupt();
814       }
815     }
816   }
817 
818   /** Leaves this monitor. May be called only by a thread currently occupying this monitor. */
leave()819   public void leave() {
820     final ReentrantLock lock = this.lock;
821     try {
822       // No need to signal if we will still be holding the lock when we return
823       if (lock.getHoldCount() == 1) {
824         signalNextWaiter();
825       }
826     } finally {
827       lock.unlock(); // Will throw IllegalMonitorStateException if not held
828     }
829   }
830 
831   /** Returns whether this monitor is using a fair ordering policy. */
isFair()832   public boolean isFair() {
833     return fair;
834   }
835 
836   /**
837    * Returns whether this monitor is occupied by any thread. This method is designed for use in
838    * monitoring of the system state, not for synchronization control.
839    */
isOccupied()840   public boolean isOccupied() {
841     return lock.isLocked();
842   }
843 
844   /**
845    * Returns whether the current thread is occupying this monitor (has entered more times than it
846    * has left).
847    */
isOccupiedByCurrentThread()848   public boolean isOccupiedByCurrentThread() {
849     return lock.isHeldByCurrentThread();
850   }
851 
852   /**
853    * Returns the number of times the current thread has entered this monitor in excess of the number
854    * of times it has left. Returns 0 if the current thread is not occupying this monitor.
855    */
getOccupiedDepth()856   public int getOccupiedDepth() {
857     return lock.getHoldCount();
858   }
859 
860   /**
861    * Returns an estimate of the number of threads waiting to enter this monitor. The value is only
862    * an estimate because the number of threads may change dynamically while this method traverses
863    * internal data structures. This method is designed for use in monitoring of the system state,
864    * not for synchronization control.
865    */
getQueueLength()866   public int getQueueLength() {
867     return lock.getQueueLength();
868   }
869 
870   /**
871    * Returns whether any threads are waiting to enter this monitor. Note that because cancellations
872    * may occur at any time, a {@code true} return does not guarantee that any other thread will ever
873    * enter this monitor. This method is designed primarily for use in monitoring of the system
874    * state.
875    */
hasQueuedThreads()876   public boolean hasQueuedThreads() {
877     return lock.hasQueuedThreads();
878   }
879 
880   /**
881    * Queries whether the given thread is waiting to enter this monitor. Note that because
882    * cancellations may occur at any time, a {@code true} return does not guarantee that this thread
883    * will ever enter this monitor. This method is designed primarily for use in monitoring of the
884    * system state.
885    */
hasQueuedThread(Thread thread)886   public boolean hasQueuedThread(Thread thread) {
887     return lock.hasQueuedThread(thread);
888   }
889 
890   /**
891    * Queries whether any threads are waiting for the given guard to become satisfied. Note that
892    * because timeouts and interrupts may occur at any time, a {@code true} return does not guarantee
893    * that the guard becoming satisfied in the future will awaken any threads. This method is
894    * designed primarily for use in monitoring of the system state.
895    */
hasWaiters(Guard guard)896   public boolean hasWaiters(Guard guard) {
897     return getWaitQueueLength(guard) > 0;
898   }
899 
900   /**
901    * Returns an estimate of the number of threads waiting for the given guard to become satisfied.
902    * Note that because timeouts and interrupts may occur at any time, the estimate serves only as an
903    * upper bound on the actual number of waiters. This method is designed for use in monitoring of
904    * the system state, not for synchronization control.
905    */
getWaitQueueLength(Guard guard)906   public int getWaitQueueLength(Guard guard) {
907     if (guard.monitor != this) {
908       throw new IllegalMonitorStateException();
909     }
910     lock.lock();
911     try {
912       return guard.waiterCount;
913     } finally {
914       lock.unlock();
915     }
916   }
917 
918   /**
919    * Returns unit.toNanos(time), additionally ensuring the returned value is not at risk of
920    * overflowing or underflowing, by bounding the value between 0 and (Long.MAX_VALUE / 4) * 3.
921    * Actually waiting for more than 219 years is not supported!
922    */
toSafeNanos(long time, TimeUnit unit)923   private static long toSafeNanos(long time, TimeUnit unit) {
924     long timeoutNanos = unit.toNanos(time);
925     return Longs.constrainToRange(timeoutNanos, 0L, (Long.MAX_VALUE / 4) * 3);
926   }
927 
928   /**
929    * Returns System.nanoTime() unless the timeout has already elapsed. Returns 0L if and only if the
930    * timeout has already elapsed.
931    */
initNanoTime(long timeoutNanos)932   private static long initNanoTime(long timeoutNanos) {
933     if (timeoutNanos <= 0L) {
934       return 0L;
935     } else {
936       long startTime = System.nanoTime();
937       return (startTime == 0L) ? 1L : startTime;
938     }
939   }
940 
941   /**
942    * Returns the remaining nanos until the given timeout, or 0L if the timeout has already elapsed.
943    * Caller must have previously sanitized timeoutNanos using toSafeNanos.
944    */
remainingNanos(long startTime, long timeoutNanos)945   private static long remainingNanos(long startTime, long timeoutNanos) {
946     // assert timeoutNanos == 0L || startTime != 0L;
947 
948     // TODO : NOT CORRECT, BUT TESTS PASS ANYWAYS!
949     // if (true) return timeoutNanos;
950     // ONLY 2 TESTS FAIL IF WE DO:
951     // if (true) return 0;
952 
953     return (timeoutNanos <= 0L) ? 0L : timeoutNanos - (System.nanoTime() - startTime);
954   }
955 
956   /**
957    * Signals some other thread waiting on a satisfied guard, if one exists.
958    *
959    * <p>We manage calls to this method carefully, to signal only when necessary, but never losing a
960    * signal, which is the classic problem of this kind of concurrency construct. We must signal if
961    * the current thread is about to relinquish the lock and may have changed the state protected by
962    * the monitor, thereby causing some guard to be satisfied.
963    *
964    * <p>In addition, any thread that has been signalled when its guard was satisfied acquires the
965    * responsibility of signalling the next thread when it again relinquishes the lock. Unlike a
966    * normal Condition, there is no guarantee that an interrupted thread has not been signalled,
967    * since the concurrency control must manage multiple Conditions. So this method must generally be
968    * called when waits are interrupted.
969    *
970    * <p>On the other hand, if a signalled thread wakes up to discover that its guard is still not
971    * satisfied, it does *not* need to call this method before returning to wait. This can only
972    * happen due to spurious wakeup (ignorable) or another thread acquiring the lock before the
973    * current thread can and returning the guard to the unsatisfied state. In the latter case the
974    * other thread (last thread modifying the state protected by the monitor) takes over the
975    * responsibility of signalling the next waiter.
976    *
977    * <p>This method must not be called from within a beginWaitingFor/endWaitingFor block, or else
978    * the current thread's guard might be mistakenly signalled, leading to a lost signal.
979    */
980   @GuardedBy("lock")
signalNextWaiter()981   private void signalNextWaiter() {
982     for (Guard guard = activeGuards; guard != null; guard = guard.next) {
983       if (isSatisfied(guard)) {
984         guard.condition.signal();
985         break;
986       }
987     }
988   }
989 
990   /**
991    * Exactly like signalNextWaiter, but caller guarantees that guardToSkip need not be considered,
992    * because caller has previously checked that guardToSkip.isSatisfied() returned false. An
993    * optimization for the case that guardToSkip.isSatisfied() may be expensive.
994    *
995    * <p>We decided against using this method, since in practice, isSatisfied() is likely to be very
996    * cheap (typically one field read). Resurrect this method if you find that not to be true.
997    */
998   //   @GuardedBy("lock")
999   //   private void signalNextWaiterSkipping(Guard guardToSkip) {
1000   //     for (Guard guard = activeGuards; guard != null; guard = guard.next) {
1001   //       if (guard != guardToSkip && isSatisfied(guard)) {
1002   //         guard.condition.signal();
1003   //         break;
1004   //       }
1005   //     }
1006   //   }
1007 
1008   /**
1009    * Exactly like guard.isSatisfied(), but in addition signals all waiting threads in the (hopefully
1010    * unlikely) event that isSatisfied() throws.
1011    */
1012   @GuardedBy("lock")
isSatisfied(Guard guard)1013   private boolean isSatisfied(Guard guard) {
1014     try {
1015       return guard.isSatisfied();
1016     } catch (Throwable throwable) {
1017       // Any Exception is either a RuntimeException or sneaky checked exception.
1018       signalAllWaiters();
1019       throw throwable;
1020     }
1021   }
1022 
1023   /** Signals all threads waiting on guards. */
1024   @GuardedBy("lock")
signalAllWaiters()1025   private void signalAllWaiters() {
1026     for (Guard guard = activeGuards; guard != null; guard = guard.next) {
1027       guard.condition.signalAll();
1028     }
1029   }
1030 
1031   /** Records that the current thread is about to wait on the specified guard. */
1032   @GuardedBy("lock")
beginWaitingFor(Guard guard)1033   private void beginWaitingFor(Guard guard) {
1034     int waiters = guard.waiterCount++;
1035     if (waiters == 0) {
1036       // push guard onto activeGuards
1037       guard.next = activeGuards;
1038       activeGuards = guard;
1039     }
1040   }
1041 
1042   /** Records that the current thread is no longer waiting on the specified guard. */
1043   @GuardedBy("lock")
endWaitingFor(Guard guard)1044   private void endWaitingFor(Guard guard) {
1045     int waiters = --guard.waiterCount;
1046     if (waiters == 0) {
1047       // unlink guard from activeGuards
1048       for (Guard p = activeGuards, pred = null; ; pred = p, p = p.next) {
1049         if (p == guard) {
1050           if (pred == null) {
1051             activeGuards = p.next;
1052           } else {
1053             pred.next = p.next;
1054           }
1055           p.next = null; // help GC
1056           break;
1057         }
1058       }
1059     }
1060   }
1061 
1062   /*
1063    * Methods that loop waiting on a guard's condition until the guard is satisfied, while recording
1064    * this fact so that other threads know to check our guard and signal us. It's caller's
1065    * responsibility to ensure that the guard is *not* currently satisfied.
1066    */
1067 
1068   @GuardedBy("lock")
await(Guard guard, boolean signalBeforeWaiting)1069   private void await(Guard guard, boolean signalBeforeWaiting) throws InterruptedException {
1070     if (signalBeforeWaiting) {
1071       signalNextWaiter();
1072     }
1073     beginWaitingFor(guard);
1074     try {
1075       do {
1076         guard.condition.await();
1077       } while (!guard.isSatisfied());
1078     } finally {
1079       endWaitingFor(guard);
1080     }
1081   }
1082 
1083   @GuardedBy("lock")
awaitUninterruptibly(Guard guard, boolean signalBeforeWaiting)1084   private void awaitUninterruptibly(Guard guard, boolean signalBeforeWaiting) {
1085     if (signalBeforeWaiting) {
1086       signalNextWaiter();
1087     }
1088     beginWaitingFor(guard);
1089     try {
1090       do {
1091         guard.condition.awaitUninterruptibly();
1092       } while (!guard.isSatisfied());
1093     } finally {
1094       endWaitingFor(guard);
1095     }
1096   }
1097 
1098   /** Caller should check before calling that guard is not satisfied. */
1099   @GuardedBy("lock")
awaitNanos(Guard guard, long nanos, boolean signalBeforeWaiting)1100   private boolean awaitNanos(Guard guard, long nanos, boolean signalBeforeWaiting)
1101       throws InterruptedException {
1102     boolean firstTime = true;
1103     try {
1104       do {
1105         if (nanos <= 0L) {
1106           return false;
1107         }
1108         if (firstTime) {
1109           if (signalBeforeWaiting) {
1110             signalNextWaiter();
1111           }
1112           beginWaitingFor(guard);
1113           firstTime = false;
1114         }
1115         nanos = guard.condition.awaitNanos(nanos);
1116       } while (!guard.isSatisfied());
1117       return true;
1118     } finally {
1119       if (!firstTime) {
1120         endWaitingFor(guard);
1121       }
1122     }
1123   }
1124 }
1125