1 /*
2 * Copyright © 2019 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <unistd.h>
25 #include <poll.h>
26
27 #include "common/intel_gem.h"
28
29 #include "dev/intel_debug.h"
30 #include "dev/intel_device_info.h"
31
32 #include "perf/intel_perf.h"
33 #include "perf/intel_perf_mdapi.h"
34 #include "perf/intel_perf_private.h"
35 #include "perf/intel_perf_query.h"
36 #include "perf/intel_perf_regs.h"
37
38 #include "drm-uapi/i915_drm.h"
39
40 #include "util/compiler.h"
41 #include "util/u_math.h"
42
43 #define FILE_DEBUG_FLAG DEBUG_PERFMON
44
45 #define MI_RPC_BO_SIZE (4096)
46 #define MI_FREQ_OFFSET_BYTES (256)
47 #define MI_PERF_COUNTERS_OFFSET_BYTES (260)
48
49 #define MAP_READ (1 << 0)
50 #define MAP_WRITE (1 << 1)
51
52 /**
53 * Periodic OA samples are read() into these buffer structures via the
54 * i915 perf kernel interface and appended to the
55 * perf_ctx->sample_buffers linked list. When we process the
56 * results of an OA metrics query we need to consider all the periodic
57 * samples between the Begin and End MI_REPORT_PERF_COUNT command
58 * markers.
59 *
60 * 'Periodic' is a simplification as there are other automatic reports
61 * written by the hardware also buffered here.
62 *
63 * Considering three queries, A, B and C:
64 *
65 * Time ---->
66 * ________________A_________________
67 * | |
68 * | ________B_________ _____C___________
69 * | | | | | |
70 *
71 * And an illustration of sample buffers read over this time frame:
72 * [HEAD ][ ][ ][ ][ ][ ][ ][ ][TAIL ]
73 *
74 * These nodes may hold samples for query A:
75 * [ ][ ][ A ][ A ][ A ][ A ][ A ][ ][ ]
76 *
77 * These nodes may hold samples for query B:
78 * [ ][ ][ B ][ B ][ B ][ ][ ][ ][ ]
79 *
80 * These nodes may hold samples for query C:
81 * [ ][ ][ ][ ][ ][ C ][ C ][ C ][ ]
82 *
83 * The illustration assumes we have an even distribution of periodic
84 * samples so all nodes have the same size plotted against time:
85 *
86 * Note, to simplify code, the list is never empty.
87 *
88 * With overlapping queries we can see that periodic OA reports may
89 * relate to multiple queries and care needs to be take to keep
90 * track of sample buffers until there are no queries that might
91 * depend on their contents.
92 *
93 * We use a node ref counting system where a reference ensures that a
94 * node and all following nodes can't be freed/recycled until the
95 * reference drops to zero.
96 *
97 * E.g. with a ref of one here:
98 * [ 0 ][ 0 ][ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
99 *
100 * These nodes could be freed or recycled ("reaped"):
101 * [ 0 ][ 0 ]
102 *
103 * These must be preserved until the leading ref drops to zero:
104 * [ 1 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ][ 0 ]
105 *
106 * When a query starts we take a reference on the current tail of
107 * the list, knowing that no already-buffered samples can possibly
108 * relate to the newly-started query. A pointer to this node is
109 * also saved in the query object's ->oa.samples_head.
110 *
111 * E.g. starting query A while there are two nodes in .sample_buffers:
112 * ________________A________
113 * |
114 *
115 * [ 0 ][ 1 ]
116 * ^_______ Add a reference and store pointer to node in
117 * A->oa.samples_head
118 *
119 * Moving forward to when the B query starts with no new buffer nodes:
120 * (for reference, i915 perf reads() are only done when queries finish)
121 * ________________A_______
122 * | ________B___
123 * | |
124 *
125 * [ 0 ][ 2 ]
126 * ^_______ Add a reference and store pointer to
127 * node in B->oa.samples_head
128 *
129 * Once a query is finished, after an OA query has become 'Ready',
130 * once the End OA report has landed and after we we have processed
131 * all the intermediate periodic samples then we drop the
132 * ->oa.samples_head reference we took at the start.
133 *
134 * So when the B query has finished we have:
135 * ________________A________
136 * | ______B___________
137 * | | |
138 * [ 0 ][ 1 ][ 0 ][ 0 ][ 0 ]
139 * ^_______ Drop B->oa.samples_head reference
140 *
141 * We still can't free these due to the A->oa.samples_head ref:
142 * [ 1 ][ 0 ][ 0 ][ 0 ]
143 *
144 * When the A query finishes: (note there's a new ref for C's samples_head)
145 * ________________A_________________
146 * | |
147 * | _____C_________
148 * | | |
149 * [ 0 ][ 0 ][ 0 ][ 0 ][ 1 ][ 0 ][ 0 ]
150 * ^_______ Drop A->oa.samples_head reference
151 *
152 * And we can now reap these nodes up to the C->oa.samples_head:
153 * [ X ][ X ][ X ][ X ]
154 * keeping -> [ 1 ][ 0 ][ 0 ]
155 *
156 * We reap old sample buffers each time we finish processing an OA
157 * query by iterating the sample_buffers list from the head until we
158 * find a referenced node and stop.
159 *
160 * Reaped buffers move to a perfquery.free_sample_buffers list and
161 * when we come to read() we first look to recycle a buffer from the
162 * free_sample_buffers list before allocating a new buffer.
163 */
164 struct oa_sample_buf {
165 struct exec_node link;
166 int refcount;
167 int len;
168 uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10];
169 uint32_t last_timestamp;
170 };
171
172 /**
173 * gen representation of a performance query object.
174 *
175 * NB: We want to keep this structure relatively lean considering that
176 * applications may expect to allocate enough objects to be able to
177 * query around all draw calls in a frame.
178 */
179 struct intel_perf_query_object
180 {
181 const struct intel_perf_query_info *queryinfo;
182
183 /* See query->kind to know which state below is in use... */
184 union {
185 struct {
186
187 /**
188 * BO containing OA counter snapshots at query Begin/End time.
189 */
190 void *bo;
191
192 /**
193 * Address of mapped of @bo
194 */
195 void *map;
196
197 /**
198 * The MI_REPORT_PERF_COUNT command lets us specify a unique
199 * ID that will be reflected in the resulting OA report
200 * that's written by the GPU. This is the ID we're expecting
201 * in the begin report and the the end report should be
202 * @begin_report_id + 1.
203 */
204 int begin_report_id;
205
206 /**
207 * Reference the head of the brw->perfquery.sample_buffers
208 * list at the time that the query started (so we only need
209 * to look at nodes after this point when looking for samples
210 * related to this query)
211 *
212 * (See struct brw_oa_sample_buf description for more details)
213 */
214 struct exec_node *samples_head;
215
216 /**
217 * false while in the unaccumulated_elements list, and set to
218 * true when the final, end MI_RPC snapshot has been
219 * accumulated.
220 */
221 bool results_accumulated;
222
223 /**
224 * Accumulated OA results between begin and end of the query.
225 */
226 struct intel_perf_query_result result;
227 } oa;
228
229 struct {
230 /**
231 * BO containing starting and ending snapshots for the
232 * statistics counters.
233 */
234 void *bo;
235 } pipeline_stats;
236 };
237 };
238
239 struct intel_perf_context {
240 struct intel_perf_config *perf;
241
242 void * mem_ctx; /* ralloc context */
243 void * ctx; /* driver context (eg, brw_context) */
244 void * bufmgr;
245 const struct intel_device_info *devinfo;
246
247 uint32_t hw_ctx;
248 int drm_fd;
249
250 /* The i915 perf stream we open to setup + enable the OA counters */
251 int oa_stream_fd;
252
253 /* An i915 perf stream fd gives exclusive access to the OA unit that will
254 * report counter snapshots for a specific counter set/profile in a
255 * specific layout/format so we can only start OA queries that are
256 * compatible with the currently open fd...
257 */
258 int current_oa_metrics_set_id;
259 int current_oa_format;
260
261 /* List of buffers containing OA reports */
262 struct exec_list sample_buffers;
263
264 /* Cached list of empty sample buffers */
265 struct exec_list free_sample_buffers;
266
267 int n_active_oa_queries;
268 int n_active_pipeline_stats_queries;
269
270 /* The number of queries depending on running OA counters which
271 * extends beyond brw_end_perf_query() since we need to wait until
272 * the last MI_RPC command has parsed by the GPU.
273 *
274 * Accurate accounting is important here as emitting an
275 * MI_REPORT_PERF_COUNT command while the OA unit is disabled will
276 * effectively hang the gpu.
277 */
278 int n_oa_users;
279
280 /* To help catch an spurious problem with the hardware or perf
281 * forwarding samples, we emit each MI_REPORT_PERF_COUNT command
282 * with a unique ID that we can explicitly check for...
283 */
284 int next_query_start_report_id;
285
286 /**
287 * An array of queries whose results haven't yet been assembled
288 * based on the data in buffer objects.
289 *
290 * These may be active, or have already ended. However, the
291 * results have not been requested.
292 */
293 struct intel_perf_query_object **unaccumulated;
294 int unaccumulated_elements;
295 int unaccumulated_array_size;
296
297 /* The total number of query objects so we can relinquish
298 * our exclusive access to perf if the application deletes
299 * all of its objects. (NB: We only disable perf while
300 * there are no active queries)
301 */
302 int n_query_instances;
303
304 int period_exponent;
305 };
306
307 static bool
inc_n_users(struct intel_perf_context * perf_ctx)308 inc_n_users(struct intel_perf_context *perf_ctx)
309 {
310 if (perf_ctx->n_oa_users == 0 &&
311 intel_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0)
312 {
313 return false;
314 }
315 ++perf_ctx->n_oa_users;
316
317 return true;
318 }
319
320 static void
dec_n_users(struct intel_perf_context * perf_ctx)321 dec_n_users(struct intel_perf_context *perf_ctx)
322 {
323 /* Disabling the i915 perf stream will effectively disable the OA
324 * counters. Note it's important to be sure there are no outstanding
325 * MI_RPC commands at this point since they could stall the CS
326 * indefinitely once OACONTROL is disabled.
327 */
328 --perf_ctx->n_oa_users;
329 if (perf_ctx->n_oa_users == 0 &&
330 intel_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0)
331 {
332 DBG("WARNING: Error disabling gen perf stream: %m\n");
333 }
334 }
335
336 void
intel_perf_close(struct intel_perf_context * perfquery,const struct intel_perf_query_info * query)337 intel_perf_close(struct intel_perf_context *perfquery,
338 const struct intel_perf_query_info *query)
339 {
340 if (perfquery->oa_stream_fd != -1) {
341 close(perfquery->oa_stream_fd);
342 perfquery->oa_stream_fd = -1;
343 }
344 if (query && query->kind == INTEL_PERF_QUERY_TYPE_RAW) {
345 struct intel_perf_query_info *raw_query =
346 (struct intel_perf_query_info *) query;
347 raw_query->oa_metrics_set_id = 0;
348 }
349 }
350
351 bool
intel_perf_open(struct intel_perf_context * perf_ctx,int metrics_set_id,int report_format,int period_exponent,int drm_fd,uint32_t ctx_id,bool enable)352 intel_perf_open(struct intel_perf_context *perf_ctx,
353 int metrics_set_id,
354 int report_format,
355 int period_exponent,
356 int drm_fd,
357 uint32_t ctx_id,
358 bool enable)
359 {
360 uint64_t properties[DRM_I915_PERF_PROP_MAX * 2];
361 uint32_t p = 0;
362
363 /* Single context sampling if valid context id. */
364 if (ctx_id != INTEL_PERF_INVALID_CTX_ID) {
365 properties[p++] = DRM_I915_PERF_PROP_CTX_HANDLE;
366 properties[p++] = ctx_id;
367 }
368
369 /* Include OA reports in samples */
370 properties[p++] = DRM_I915_PERF_PROP_SAMPLE_OA;
371 properties[p++] = true;
372
373 /* OA unit configuration */
374 properties[p++] = DRM_I915_PERF_PROP_OA_METRICS_SET;
375 properties[p++] = metrics_set_id;
376
377 properties[p++] = DRM_I915_PERF_PROP_OA_FORMAT;
378 properties[p++] = report_format;
379
380 properties[p++] = DRM_I915_PERF_PROP_OA_EXPONENT;
381 properties[p++] = period_exponent;
382
383 /* If global SSEU is available, pin it to the default. This will ensure on
384 * Gfx11 for instance we use the full EU array. Initially when perf was
385 * enabled we would use only half on Gfx11 because of functional
386 * requirements.
387 *
388 * Temporary disable this option on Gfx12.5+, kernel doesn't appear to
389 * support it.
390 */
391 if (intel_perf_has_global_sseu(perf_ctx->perf) &&
392 perf_ctx->devinfo->verx10 < 125) {
393 properties[p++] = DRM_I915_PERF_PROP_GLOBAL_SSEU;
394 properties[p++] = to_user_pointer(&perf_ctx->perf->sseu);
395 }
396
397 assert(p <= ARRAY_SIZE(properties));
398
399 struct drm_i915_perf_open_param param = {
400 .flags = I915_PERF_FLAG_FD_CLOEXEC |
401 I915_PERF_FLAG_FD_NONBLOCK |
402 (enable ? 0 : I915_PERF_FLAG_DISABLED),
403 .num_properties = p / 2,
404 .properties_ptr = (uintptr_t) properties,
405 };
406 int fd = intel_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, ¶m);
407 if (fd == -1) {
408 DBG("Error opening gen perf OA stream: %m\n");
409 return false;
410 }
411
412 perf_ctx->oa_stream_fd = fd;
413
414 perf_ctx->current_oa_metrics_set_id = metrics_set_id;
415 perf_ctx->current_oa_format = report_format;
416
417 if (enable)
418 ++perf_ctx->n_oa_users;
419
420 return true;
421 }
422
423 static uint64_t
get_metric_id(struct intel_perf_config * perf,const struct intel_perf_query_info * query)424 get_metric_id(struct intel_perf_config *perf,
425 const struct intel_perf_query_info *query)
426 {
427 /* These queries are know not to ever change, their config ID has been
428 * loaded upon the first query creation. No need to look them up again.
429 */
430 if (query->kind == INTEL_PERF_QUERY_TYPE_OA)
431 return query->oa_metrics_set_id;
432
433 assert(query->kind == INTEL_PERF_QUERY_TYPE_RAW);
434
435 /* Raw queries can be reprogrammed up by an external application/library.
436 * When a raw query is used for the first time it's id is set to a value !=
437 * 0. When it stops being used the id returns to 0. No need to reload the
438 * ID when it's already loaded.
439 */
440 if (query->oa_metrics_set_id != 0) {
441 DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n",
442 query->name, query->guid, query->oa_metrics_set_id);
443 return query->oa_metrics_set_id;
444 }
445
446 struct intel_perf_query_info *raw_query = (struct intel_perf_query_info *)query;
447 if (!intel_perf_load_metric_id(perf, query->guid,
448 &raw_query->oa_metrics_set_id)) {
449 DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid);
450 raw_query->oa_metrics_set_id = perf->fallback_raw_oa_metric;
451 } else {
452 DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n",
453 query->name, query->guid, query->oa_metrics_set_id);
454 }
455 return query->oa_metrics_set_id;
456 }
457
458 static struct oa_sample_buf *
get_free_sample_buf(struct intel_perf_context * perf_ctx)459 get_free_sample_buf(struct intel_perf_context *perf_ctx)
460 {
461 struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers);
462 struct oa_sample_buf *buf;
463
464 if (node)
465 buf = exec_node_data(struct oa_sample_buf, node, link);
466 else {
467 buf = ralloc_size(perf_ctx->perf, sizeof(*buf));
468
469 exec_node_init(&buf->link);
470 buf->refcount = 0;
471 }
472 buf->len = 0;
473
474 return buf;
475 }
476
477 static void
reap_old_sample_buffers(struct intel_perf_context * perf_ctx)478 reap_old_sample_buffers(struct intel_perf_context *perf_ctx)
479 {
480 struct exec_node *tail_node =
481 exec_list_get_tail(&perf_ctx->sample_buffers);
482 struct oa_sample_buf *tail_buf =
483 exec_node_data(struct oa_sample_buf, tail_node, link);
484
485 /* Remove all old, unreferenced sample buffers walking forward from
486 * the head of the list, except always leave at least one node in
487 * the list so we always have a node to reference when we Begin
488 * a new query.
489 */
490 foreach_list_typed_safe(struct oa_sample_buf, buf, link,
491 &perf_ctx->sample_buffers)
492 {
493 if (buf->refcount == 0 && buf != tail_buf) {
494 exec_node_remove(&buf->link);
495 exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link);
496 } else
497 return;
498 }
499 }
500
501 static void
free_sample_bufs(struct intel_perf_context * perf_ctx)502 free_sample_bufs(struct intel_perf_context *perf_ctx)
503 {
504 foreach_list_typed_safe(struct oa_sample_buf, buf, link,
505 &perf_ctx->free_sample_buffers)
506 ralloc_free(buf);
507
508 exec_list_make_empty(&perf_ctx->free_sample_buffers);
509 }
510
511
512 struct intel_perf_query_object *
intel_perf_new_query(struct intel_perf_context * perf_ctx,unsigned query_index)513 intel_perf_new_query(struct intel_perf_context *perf_ctx, unsigned query_index)
514 {
515 const struct intel_perf_query_info *query =
516 &perf_ctx->perf->queries[query_index];
517
518 switch (query->kind) {
519 case INTEL_PERF_QUERY_TYPE_OA:
520 case INTEL_PERF_QUERY_TYPE_RAW:
521 if (perf_ctx->period_exponent == 0)
522 return NULL;
523 break;
524 case INTEL_PERF_QUERY_TYPE_PIPELINE:
525 break;
526 }
527
528 struct intel_perf_query_object *obj =
529 calloc(1, sizeof(struct intel_perf_query_object));
530
531 if (!obj)
532 return NULL;
533
534 obj->queryinfo = query;
535
536 perf_ctx->n_query_instances++;
537 return obj;
538 }
539
540 int
intel_perf_active_queries(struct intel_perf_context * perf_ctx,const struct intel_perf_query_info * query)541 intel_perf_active_queries(struct intel_perf_context *perf_ctx,
542 const struct intel_perf_query_info *query)
543 {
544 assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0);
545
546 switch (query->kind) {
547 case INTEL_PERF_QUERY_TYPE_OA:
548 case INTEL_PERF_QUERY_TYPE_RAW:
549 return perf_ctx->n_active_oa_queries;
550 break;
551
552 case INTEL_PERF_QUERY_TYPE_PIPELINE:
553 return perf_ctx->n_active_pipeline_stats_queries;
554 break;
555
556 default:
557 unreachable("Unknown query type");
558 break;
559 }
560 }
561
562 const struct intel_perf_query_info*
intel_perf_query_info(const struct intel_perf_query_object * query)563 intel_perf_query_info(const struct intel_perf_query_object *query)
564 {
565 return query->queryinfo;
566 }
567
568 struct intel_perf_context *
intel_perf_new_context(void * parent)569 intel_perf_new_context(void *parent)
570 {
571 struct intel_perf_context *ctx = rzalloc(parent, struct intel_perf_context);
572 if (! ctx)
573 fprintf(stderr, "%s: failed to alloc context\n", __func__);
574 return ctx;
575 }
576
577 struct intel_perf_config *
intel_perf_config(struct intel_perf_context * ctx)578 intel_perf_config(struct intel_perf_context *ctx)
579 {
580 return ctx->perf;
581 }
582
583 void
intel_perf_init_context(struct intel_perf_context * perf_ctx,struct intel_perf_config * perf_cfg,void * mem_ctx,void * ctx,void * bufmgr,const struct intel_device_info * devinfo,uint32_t hw_ctx,int drm_fd)584 intel_perf_init_context(struct intel_perf_context *perf_ctx,
585 struct intel_perf_config *perf_cfg,
586 void * mem_ctx, /* ralloc context */
587 void * ctx, /* driver context (eg, brw_context) */
588 void * bufmgr, /* eg brw_bufmgr */
589 const struct intel_device_info *devinfo,
590 uint32_t hw_ctx,
591 int drm_fd)
592 {
593 perf_ctx->perf = perf_cfg;
594 perf_ctx->mem_ctx = mem_ctx;
595 perf_ctx->ctx = ctx;
596 perf_ctx->bufmgr = bufmgr;
597 perf_ctx->drm_fd = drm_fd;
598 perf_ctx->hw_ctx = hw_ctx;
599 perf_ctx->devinfo = devinfo;
600
601 perf_ctx->unaccumulated =
602 ralloc_array(mem_ctx, struct intel_perf_query_object *, 2);
603 perf_ctx->unaccumulated_elements = 0;
604 perf_ctx->unaccumulated_array_size = 2;
605
606 exec_list_make_empty(&perf_ctx->sample_buffers);
607 exec_list_make_empty(&perf_ctx->free_sample_buffers);
608
609 /* It's convenient to guarantee that this linked list of sample
610 * buffers is never empty so we add an empty head so when we
611 * Begin an OA query we can always take a reference on a buffer
612 * in this list.
613 */
614 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
615 exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
616
617 perf_ctx->oa_stream_fd = -1;
618 perf_ctx->next_query_start_report_id = 1000;
619
620 /* The period_exponent gives a sampling period as follows:
621 * sample_period = timestamp_period * 2^(period_exponent + 1)
622 *
623 * The timestamps increments every 80ns (HSW), ~52ns (GFX9LP) or
624 * ~83ns (GFX8/9).
625 *
626 * The counter overflow period is derived from the EuActive counter
627 * which reads a counter that increments by the number of clock
628 * cycles multiplied by the number of EUs. It can be calculated as:
629 *
630 * 2^(number of bits in A counter) / (n_eus * max_intel_freq * 2)
631 *
632 * (E.g. 40 EUs @ 1GHz = ~53ms)
633 *
634 * We select a sampling period inferior to that overflow period to
635 * ensure we cannot see more than 1 counter overflow, otherwise we
636 * could loose information.
637 */
638
639 int a_counter_in_bits = 32;
640 if (devinfo->ver >= 8)
641 a_counter_in_bits = 40;
642
643 uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus *
644 /* drop 1GHz freq to have units in nanoseconds */
645 2);
646
647 DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n",
648 overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus);
649
650 int period_exponent = 0;
651 uint64_t prev_sample_period, next_sample_period;
652 for (int e = 0; e < 30; e++) {
653 prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency;
654 next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency;
655
656 /* Take the previous sampling period, lower than the overflow
657 * period.
658 */
659 if (prev_sample_period < overflow_period &&
660 next_sample_period > overflow_period)
661 period_exponent = e + 1;
662 }
663
664 perf_ctx->period_exponent = period_exponent;
665
666 if (period_exponent == 0) {
667 DBG("WARNING: enable to find a sampling exponent\n");
668 } else {
669 DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent,
670 prev_sample_period / 1000000ul);
671 }
672 }
673
674 /**
675 * Add a query to the global list of "unaccumulated queries."
676 *
677 * Queries are tracked here until all the associated OA reports have
678 * been accumulated via accumulate_oa_reports() after the end
679 * MI_REPORT_PERF_COUNT has landed in query->oa.bo.
680 */
681 static void
add_to_unaccumulated_query_list(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * obj)682 add_to_unaccumulated_query_list(struct intel_perf_context *perf_ctx,
683 struct intel_perf_query_object *obj)
684 {
685 if (perf_ctx->unaccumulated_elements >=
686 perf_ctx->unaccumulated_array_size)
687 {
688 perf_ctx->unaccumulated_array_size *= 1.5;
689 perf_ctx->unaccumulated =
690 reralloc(perf_ctx->mem_ctx, perf_ctx->unaccumulated,
691 struct intel_perf_query_object *,
692 perf_ctx->unaccumulated_array_size);
693 }
694
695 perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj;
696 }
697
698 /**
699 * Emit MI_STORE_REGISTER_MEM commands to capture all of the
700 * pipeline statistics for the performance query object.
701 */
702 static void
snapshot_statistics_registers(struct intel_perf_context * ctx,struct intel_perf_query_object * obj,uint32_t offset_in_bytes)703 snapshot_statistics_registers(struct intel_perf_context *ctx,
704 struct intel_perf_query_object *obj,
705 uint32_t offset_in_bytes)
706 {
707 struct intel_perf_config *perf = ctx->perf;
708 const struct intel_perf_query_info *query = obj->queryinfo;
709 const int n_counters = query->n_counters;
710
711 for (int i = 0; i < n_counters; i++) {
712 const struct intel_perf_query_counter *counter = &query->counters[i];
713
714 assert(counter->data_type == INTEL_PERF_COUNTER_DATA_TYPE_UINT64);
715
716 perf->vtbl.store_register_mem(ctx->ctx, obj->pipeline_stats.bo,
717 counter->pipeline_stat.reg, 8,
718 offset_in_bytes + counter->offset);
719 }
720 }
721
722 static void
snapshot_query_layout(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,bool end_snapshot)723 snapshot_query_layout(struct intel_perf_context *perf_ctx,
724 struct intel_perf_query_object *query,
725 bool end_snapshot)
726 {
727 struct intel_perf_config *perf_cfg = perf_ctx->perf;
728 const struct intel_perf_query_field_layout *layout = &perf_cfg->query_layout;
729 uint32_t offset = end_snapshot ? align(layout->size, layout->alignment) : 0;
730
731 for (uint32_t f = 0; f < layout->n_fields; f++) {
732 const struct intel_perf_query_field *field =
733 &layout->fields[end_snapshot ? f : (layout->n_fields - 1 - f)];
734
735 switch (field->type) {
736 case INTEL_PERF_QUERY_FIELD_TYPE_MI_RPC:
737 perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo,
738 offset + field->location,
739 query->oa.begin_report_id +
740 (end_snapshot ? 1 : 0));
741 break;
742 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_PERFCNT:
743 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_RPSTAT:
744 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_A:
745 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_B:
746 case INTEL_PERF_QUERY_FIELD_TYPE_SRM_OA_C:
747 perf_cfg->vtbl.store_register_mem(perf_ctx->ctx, query->oa.bo,
748 field->mmio_offset, field->size,
749 offset + field->location);
750 break;
751 default:
752 unreachable("Invalid field type");
753 }
754 }
755 }
756
757 bool
intel_perf_begin_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)758 intel_perf_begin_query(struct intel_perf_context *perf_ctx,
759 struct intel_perf_query_object *query)
760 {
761 struct intel_perf_config *perf_cfg = perf_ctx->perf;
762 const struct intel_perf_query_info *queryinfo = query->queryinfo;
763
764 /* XXX: We have to consider that the command parser unit that parses batch
765 * buffer commands and is used to capture begin/end counter snapshots isn't
766 * implicitly synchronized with what's currently running across other GPU
767 * units (such as the EUs running shaders) that the performance counters are
768 * associated with.
769 *
770 * The intention of performance queries is to measure the work associated
771 * with commands between the begin/end delimiters and so for that to be the
772 * case we need to explicitly synchronize the parsing of commands to capture
773 * Begin/End counter snapshots with what's running across other parts of the
774 * GPU.
775 *
776 * When the command parser reaches a Begin marker it effectively needs to
777 * drain everything currently running on the GPU until the hardware is idle
778 * before capturing the first snapshot of counters - otherwise the results
779 * would also be measuring the effects of earlier commands.
780 *
781 * When the command parser reaches an End marker it needs to stall until
782 * everything currently running on the GPU has finished before capturing the
783 * end snapshot - otherwise the results won't be a complete representation
784 * of the work.
785 *
786 * To achieve this, we stall the pipeline at pixel scoreboard (prevent any
787 * additional work to be processed by the pipeline until all pixels of the
788 * previous draw has be completed).
789 *
790 * N.B. The final results are based on deltas of counters between (inside)
791 * Begin/End markers so even though the total wall clock time of the
792 * workload is stretched by larger pipeline bubbles the bubbles themselves
793 * are generally invisible to the query results. Whether that's a good or a
794 * bad thing depends on the use case. For a lower real-time impact while
795 * capturing metrics then periodic sampling may be a better choice than
796 * INTEL_performance_query.
797 *
798 *
799 * This is our Begin synchronization point to drain current work on the
800 * GPU before we capture our first counter snapshot...
801 */
802 perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
803
804 switch (queryinfo->kind) {
805 case INTEL_PERF_QUERY_TYPE_OA:
806 case INTEL_PERF_QUERY_TYPE_RAW: {
807
808 /* Opening an i915 perf stream implies exclusive access to the OA unit
809 * which will generate counter reports for a specific counter set with a
810 * specific layout/format so we can't begin any OA based queries that
811 * require a different counter set or format unless we get an opportunity
812 * to close the stream and open a new one...
813 */
814 uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo);
815
816 if (perf_ctx->oa_stream_fd != -1 &&
817 perf_ctx->current_oa_metrics_set_id != metric_id) {
818
819 if (perf_ctx->n_oa_users != 0) {
820 DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n",
821 perf_ctx->current_oa_metrics_set_id, metric_id);
822 return false;
823 } else
824 intel_perf_close(perf_ctx, queryinfo);
825 }
826
827 /* If the OA counters aren't already on, enable them. */
828 if (perf_ctx->oa_stream_fd == -1) {
829 assert(perf_ctx->period_exponent != 0);
830
831 if (!intel_perf_open(perf_ctx, metric_id, queryinfo->oa_format,
832 perf_ctx->period_exponent, perf_ctx->drm_fd,
833 perf_ctx->hw_ctx, false))
834 return false;
835 } else {
836 assert(perf_ctx->current_oa_metrics_set_id == metric_id &&
837 perf_ctx->current_oa_format == queryinfo->oa_format);
838 }
839
840 if (!inc_n_users(perf_ctx)) {
841 DBG("WARNING: Error enabling i915 perf stream: %m\n");
842 return false;
843 }
844
845 if (query->oa.bo) {
846 perf_cfg->vtbl.bo_unreference(query->oa.bo);
847 query->oa.bo = NULL;
848 }
849
850 query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
851 "perf. query OA MI_RPC bo",
852 MI_RPC_BO_SIZE);
853 #ifdef DEBUG
854 /* Pre-filling the BO helps debug whether writes landed. */
855 void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE);
856 memset(map, 0x80, MI_RPC_BO_SIZE);
857 perf_cfg->vtbl.bo_unmap(query->oa.bo);
858 #endif
859
860 query->oa.begin_report_id = perf_ctx->next_query_start_report_id;
861 perf_ctx->next_query_start_report_id += 2;
862
863 snapshot_query_layout(perf_ctx, query, false /* end_snapshot */);
864
865 ++perf_ctx->n_active_oa_queries;
866
867 /* No already-buffered samples can possibly be associated with this query
868 * so create a marker within the list of sample buffers enabling us to
869 * easily ignore earlier samples when processing this query after
870 * completion.
871 */
872 assert(!exec_list_is_empty(&perf_ctx->sample_buffers));
873 query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers);
874
875 struct oa_sample_buf *buf =
876 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
877
878 /* This reference will ensure that future/following sample
879 * buffers (that may relate to this query) can't be freed until
880 * this drops to zero.
881 */
882 buf->refcount++;
883
884 intel_perf_query_result_clear(&query->oa.result);
885 query->oa.results_accumulated = false;
886
887 add_to_unaccumulated_query_list(perf_ctx, query);
888 break;
889 }
890
891 case INTEL_PERF_QUERY_TYPE_PIPELINE:
892 if (query->pipeline_stats.bo) {
893 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
894 query->pipeline_stats.bo = NULL;
895 }
896
897 query->pipeline_stats.bo =
898 perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
899 "perf. query pipeline stats bo",
900 STATS_BO_SIZE);
901
902 /* Take starting snapshots. */
903 snapshot_statistics_registers(perf_ctx, query, 0);
904
905 ++perf_ctx->n_active_pipeline_stats_queries;
906 break;
907
908 default:
909 unreachable("Unknown query type");
910 break;
911 }
912
913 return true;
914 }
915
916 void
intel_perf_end_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)917 intel_perf_end_query(struct intel_perf_context *perf_ctx,
918 struct intel_perf_query_object *query)
919 {
920 struct intel_perf_config *perf_cfg = perf_ctx->perf;
921
922 /* Ensure that the work associated with the queried commands will have
923 * finished before taking our query end counter readings.
924 *
925 * For more details see comment in brw_begin_perf_query for
926 * corresponding flush.
927 */
928 perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
929
930 switch (query->queryinfo->kind) {
931 case INTEL_PERF_QUERY_TYPE_OA:
932 case INTEL_PERF_QUERY_TYPE_RAW:
933
934 /* NB: It's possible that the query will have already been marked
935 * as 'accumulated' if an error was seen while reading samples
936 * from perf. In this case we mustn't try and emit a closing
937 * MI_RPC command in case the OA unit has already been disabled
938 */
939 if (!query->oa.results_accumulated)
940 snapshot_query_layout(perf_ctx, query, true /* end_snapshot */);
941
942 --perf_ctx->n_active_oa_queries;
943
944 /* NB: even though the query has now ended, it can't be accumulated
945 * until the end MI_REPORT_PERF_COUNT snapshot has been written
946 * to query->oa.bo
947 */
948 break;
949
950 case INTEL_PERF_QUERY_TYPE_PIPELINE:
951 snapshot_statistics_registers(perf_ctx, query,
952 STATS_BO_END_OFFSET_BYTES);
953 --perf_ctx->n_active_pipeline_stats_queries;
954 break;
955
956 default:
957 unreachable("Unknown query type");
958 break;
959 }
960 }
961
intel_perf_oa_stream_ready(struct intel_perf_context * perf_ctx)962 bool intel_perf_oa_stream_ready(struct intel_perf_context *perf_ctx)
963 {
964 struct pollfd pfd;
965
966 pfd.fd = perf_ctx->oa_stream_fd;
967 pfd.events = POLLIN;
968 pfd.revents = 0;
969
970 if (poll(&pfd, 1, 0) < 0) {
971 DBG("Error polling OA stream\n");
972 return false;
973 }
974
975 if (!(pfd.revents & POLLIN))
976 return false;
977
978 return true;
979 }
980
981 ssize_t
intel_perf_read_oa_stream(struct intel_perf_context * perf_ctx,void * buf,size_t nbytes)982 intel_perf_read_oa_stream(struct intel_perf_context *perf_ctx,
983 void* buf,
984 size_t nbytes)
985 {
986 return read(perf_ctx->oa_stream_fd, buf, nbytes);
987 }
988
989 enum OaReadStatus {
990 OA_READ_STATUS_ERROR,
991 OA_READ_STATUS_UNFINISHED,
992 OA_READ_STATUS_FINISHED,
993 };
994
995 static enum OaReadStatus
read_oa_samples_until(struct intel_perf_context * perf_ctx,uint32_t start_timestamp,uint32_t end_timestamp)996 read_oa_samples_until(struct intel_perf_context *perf_ctx,
997 uint32_t start_timestamp,
998 uint32_t end_timestamp)
999 {
1000 struct exec_node *tail_node =
1001 exec_list_get_tail(&perf_ctx->sample_buffers);
1002 struct oa_sample_buf *tail_buf =
1003 exec_node_data(struct oa_sample_buf, tail_node, link);
1004 uint32_t last_timestamp =
1005 tail_buf->len == 0 ? start_timestamp : tail_buf->last_timestamp;
1006
1007 while (1) {
1008 struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
1009 uint32_t offset;
1010 int len;
1011
1012 while ((len = read(perf_ctx->oa_stream_fd, buf->buf,
1013 sizeof(buf->buf))) < 0 && errno == EINTR)
1014 ;
1015
1016 if (len <= 0) {
1017 exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link);
1018
1019 if (len == 0) {
1020 DBG("Spurious EOF reading i915 perf samples\n");
1021 return OA_READ_STATUS_ERROR;
1022 }
1023
1024 if (errno != EAGAIN) {
1025 DBG("Error reading i915 perf samples: %m\n");
1026 return OA_READ_STATUS_ERROR;
1027 }
1028
1029 if ((last_timestamp - start_timestamp) >= INT32_MAX)
1030 return OA_READ_STATUS_UNFINISHED;
1031
1032 if ((last_timestamp - start_timestamp) <
1033 (end_timestamp - start_timestamp))
1034 return OA_READ_STATUS_UNFINISHED;
1035
1036 return OA_READ_STATUS_FINISHED;
1037 }
1038
1039 buf->len = len;
1040 exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link);
1041
1042 /* Go through the reports and update the last timestamp. */
1043 offset = 0;
1044 while (offset < buf->len) {
1045 const struct drm_i915_perf_record_header *header =
1046 (const struct drm_i915_perf_record_header *) &buf->buf[offset];
1047 uint32_t *report = (uint32_t *) (header + 1);
1048
1049 if (header->type == DRM_I915_PERF_RECORD_SAMPLE)
1050 last_timestamp = report[1];
1051
1052 offset += header->size;
1053 }
1054
1055 buf->last_timestamp = last_timestamp;
1056 }
1057
1058 unreachable("not reached");
1059 return OA_READ_STATUS_ERROR;
1060 }
1061
1062 /**
1063 * Try to read all the reports until either the delimiting timestamp
1064 * or an error arises.
1065 */
1066 static bool
read_oa_samples_for_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,void * current_batch)1067 read_oa_samples_for_query(struct intel_perf_context *perf_ctx,
1068 struct intel_perf_query_object *query,
1069 void *current_batch)
1070 {
1071 uint32_t *start;
1072 uint32_t *last;
1073 uint32_t *end;
1074 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1075
1076 /* We need the MI_REPORT_PERF_COUNT to land before we can start
1077 * accumulate. */
1078 assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
1079 !perf_cfg->vtbl.bo_busy(query->oa.bo));
1080
1081 /* Map the BO once here and let accumulate_oa_reports() unmap
1082 * it. */
1083 if (query->oa.map == NULL)
1084 query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ);
1085
1086 start = last = query->oa.map;
1087 end = query->oa.map + perf_ctx->perf->query_layout.size;
1088
1089 if (start[0] != query->oa.begin_report_id) {
1090 DBG("Spurious start report id=%"PRIu32"\n", start[0]);
1091 return true;
1092 }
1093 if (end[0] != (query->oa.begin_report_id + 1)) {
1094 DBG("Spurious end report id=%"PRIu32"\n", end[0]);
1095 return true;
1096 }
1097
1098 /* Read the reports until the end timestamp. */
1099 switch (read_oa_samples_until(perf_ctx, start[1], end[1])) {
1100 case OA_READ_STATUS_ERROR:
1101 FALLTHROUGH; /* Let accumulate_oa_reports() deal with the error. */
1102 case OA_READ_STATUS_FINISHED:
1103 return true;
1104 case OA_READ_STATUS_UNFINISHED:
1105 return false;
1106 }
1107
1108 unreachable("invalid read status");
1109 return false;
1110 }
1111
1112 void
intel_perf_wait_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,void * current_batch)1113 intel_perf_wait_query(struct intel_perf_context *perf_ctx,
1114 struct intel_perf_query_object *query,
1115 void *current_batch)
1116 {
1117 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1118 struct brw_bo *bo = NULL;
1119
1120 switch (query->queryinfo->kind) {
1121 case INTEL_PERF_QUERY_TYPE_OA:
1122 case INTEL_PERF_QUERY_TYPE_RAW:
1123 bo = query->oa.bo;
1124 break;
1125
1126 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1127 bo = query->pipeline_stats.bo;
1128 break;
1129
1130 default:
1131 unreachable("Unknown query type");
1132 break;
1133 }
1134
1135 if (bo == NULL)
1136 return;
1137
1138 /* If the current batch references our results bo then we need to
1139 * flush first...
1140 */
1141 if (perf_cfg->vtbl.batch_references(current_batch, bo))
1142 perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
1143
1144 perf_cfg->vtbl.bo_wait_rendering(bo);
1145 }
1146
1147 bool
intel_perf_is_query_ready(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,void * current_batch)1148 intel_perf_is_query_ready(struct intel_perf_context *perf_ctx,
1149 struct intel_perf_query_object *query,
1150 void *current_batch)
1151 {
1152 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1153
1154 switch (query->queryinfo->kind) {
1155 case INTEL_PERF_QUERY_TYPE_OA:
1156 case INTEL_PERF_QUERY_TYPE_RAW:
1157 return (query->oa.results_accumulated ||
1158 (query->oa.bo &&
1159 !perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
1160 !perf_cfg->vtbl.bo_busy(query->oa.bo)));
1161
1162 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1163 return (query->pipeline_stats.bo &&
1164 !perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) &&
1165 !perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo));
1166
1167 default:
1168 unreachable("Unknown query type");
1169 break;
1170 }
1171
1172 return false;
1173 }
1174
1175 /**
1176 * Remove a query from the global list of unaccumulated queries once
1177 * after successfully accumulating the OA reports associated with the
1178 * query in accumulate_oa_reports() or when discarding unwanted query
1179 * results.
1180 */
1181 static void
drop_from_unaccumulated_query_list(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)1182 drop_from_unaccumulated_query_list(struct intel_perf_context *perf_ctx,
1183 struct intel_perf_query_object *query)
1184 {
1185 for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) {
1186 if (perf_ctx->unaccumulated[i] == query) {
1187 int last_elt = --perf_ctx->unaccumulated_elements;
1188
1189 if (i == last_elt)
1190 perf_ctx->unaccumulated[i] = NULL;
1191 else {
1192 perf_ctx->unaccumulated[i] =
1193 perf_ctx->unaccumulated[last_elt];
1194 }
1195
1196 break;
1197 }
1198 }
1199
1200 /* Drop our samples_head reference so that associated periodic
1201 * sample data buffers can potentially be reaped if they aren't
1202 * referenced by any other queries...
1203 */
1204
1205 struct oa_sample_buf *buf =
1206 exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
1207
1208 assert(buf->refcount > 0);
1209 buf->refcount--;
1210
1211 query->oa.samples_head = NULL;
1212
1213 reap_old_sample_buffers(perf_ctx);
1214 }
1215
1216 /* In general if we see anything spurious while accumulating results,
1217 * we don't try and continue accumulating the current query, hoping
1218 * for the best, we scrap anything outstanding, and then hope for the
1219 * best with new queries.
1220 */
1221 static void
discard_all_queries(struct intel_perf_context * perf_ctx)1222 discard_all_queries(struct intel_perf_context *perf_ctx)
1223 {
1224 while (perf_ctx->unaccumulated_elements) {
1225 struct intel_perf_query_object *query = perf_ctx->unaccumulated[0];
1226
1227 query->oa.results_accumulated = true;
1228 drop_from_unaccumulated_query_list(perf_ctx, query);
1229
1230 dec_n_users(perf_ctx);
1231 }
1232 }
1233
1234 /* Looks for the validity bit of context ID (dword 2) of an OA report. */
1235 static bool
oa_report_ctx_id_valid(const struct intel_device_info * devinfo,const uint32_t * report)1236 oa_report_ctx_id_valid(const struct intel_device_info *devinfo,
1237 const uint32_t *report)
1238 {
1239 assert(devinfo->ver >= 8);
1240 if (devinfo->ver == 8)
1241 return (report[0] & (1 << 25)) != 0;
1242 return (report[0] & (1 << 16)) != 0;
1243 }
1244
1245 /**
1246 * Accumulate raw OA counter values based on deltas between pairs of
1247 * OA reports.
1248 *
1249 * Accumulation starts from the first report captured via
1250 * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the
1251 * last MI_RPC report requested by brw_end_perf_query(). Between these
1252 * two reports there may also some number of periodically sampled OA
1253 * reports collected via the i915 perf interface - depending on the
1254 * duration of the query.
1255 *
1256 * These periodic snapshots help to ensure we handle counter overflow
1257 * correctly by being frequent enough to ensure we don't miss multiple
1258 * overflows of a counter between snapshots. For Gfx8+ the i915 perf
1259 * snapshots provide the extra context-switch reports that let us
1260 * subtract out the progress of counters associated with other
1261 * contexts running on the system.
1262 */
1263 static void
accumulate_oa_reports(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)1264 accumulate_oa_reports(struct intel_perf_context *perf_ctx,
1265 struct intel_perf_query_object *query)
1266 {
1267 const struct intel_device_info *devinfo = perf_ctx->devinfo;
1268 uint32_t *start;
1269 uint32_t *last;
1270 uint32_t *end;
1271 struct exec_node *first_samples_node;
1272 bool last_report_ctx_match = true;
1273 int out_duration = 0;
1274
1275 assert(query->oa.map != NULL);
1276
1277 start = last = query->oa.map;
1278 end = query->oa.map + perf_ctx->perf->query_layout.size;
1279
1280 if (start[0] != query->oa.begin_report_id) {
1281 DBG("Spurious start report id=%"PRIu32"\n", start[0]);
1282 goto error;
1283 }
1284 if (end[0] != (query->oa.begin_report_id + 1)) {
1285 DBG("Spurious end report id=%"PRIu32"\n", end[0]);
1286 goto error;
1287 }
1288
1289 /* On Gfx12+ OA reports are sourced from per context counters, so we don't
1290 * ever have to look at the global OA buffer. Yey \o/
1291 */
1292 if (perf_ctx->devinfo->ver >= 12) {
1293 last = start;
1294 goto end;
1295 }
1296
1297 /* See if we have any periodic reports to accumulate too... */
1298
1299 /* N.B. The oa.samples_head was set when the query began and
1300 * pointed to the tail of the perf_ctx->sample_buffers list at
1301 * the time the query started. Since the buffer existed before the
1302 * first MI_REPORT_PERF_COUNT command was emitted we therefore know
1303 * that no data in this particular node's buffer can possibly be
1304 * associated with the query - so skip ahead one...
1305 */
1306 first_samples_node = query->oa.samples_head->next;
1307
1308 foreach_list_typed_from(struct oa_sample_buf, buf, link,
1309 &perf_ctx->sample_buffers,
1310 first_samples_node)
1311 {
1312 int offset = 0;
1313
1314 while (offset < buf->len) {
1315 const struct drm_i915_perf_record_header *header =
1316 (const struct drm_i915_perf_record_header *)(buf->buf + offset);
1317
1318 assert(header->size != 0);
1319 assert(header->size <= buf->len);
1320
1321 offset += header->size;
1322
1323 switch (header->type) {
1324 case DRM_I915_PERF_RECORD_SAMPLE: {
1325 uint32_t *report = (uint32_t *)(header + 1);
1326 bool report_ctx_match = true;
1327 bool add = true;
1328
1329 /* Ignore reports that come before the start marker.
1330 * (Note: takes care to allow overflow of 32bit timestamps)
1331 */
1332 if (intel_device_info_timebase_scale(devinfo,
1333 report[1] - start[1]) > 5000000000) {
1334 continue;
1335 }
1336
1337 /* Ignore reports that come after the end marker.
1338 * (Note: takes care to allow overflow of 32bit timestamps)
1339 */
1340 if (intel_device_info_timebase_scale(devinfo,
1341 report[1] - end[1]) <= 5000000000) {
1342 goto end;
1343 }
1344
1345 /* For Gfx8+ since the counters continue while other
1346 * contexts are running we need to discount any unrelated
1347 * deltas. The hardware automatically generates a report
1348 * on context switch which gives us a new reference point
1349 * to continuing adding deltas from.
1350 *
1351 * For Haswell we can rely on the HW to stop the progress
1352 * of OA counters while any other context is acctive.
1353 */
1354 if (devinfo->ver >= 8) {
1355 /* Consider that the current report matches our context only if
1356 * the report says the report ID is valid.
1357 */
1358 report_ctx_match = oa_report_ctx_id_valid(devinfo, report) &&
1359 report[2] == start[2];
1360 if (report_ctx_match)
1361 out_duration = 0;
1362 else
1363 out_duration++;
1364
1365 /* Only add the delta between <last, report> if the last report
1366 * was clearly identified as our context, or if we have at most
1367 * 1 report without a matching ID.
1368 *
1369 * The OA unit will sometimes label reports with an invalid
1370 * context ID when i915 rewrites the execlist submit register
1371 * with the same context as the one currently running. This
1372 * happens when i915 wants to notify the HW of ringbuffer tail
1373 * register update. We have to consider this report as part of
1374 * our context as the 3d pipeline behind the OACS unit is still
1375 * processing the operations started at the previous execlist
1376 * submission.
1377 */
1378 add = last_report_ctx_match && out_duration < 2;
1379 }
1380
1381 if (add) {
1382 intel_perf_query_result_accumulate(&query->oa.result,
1383 query->queryinfo,
1384 last, report);
1385 } else {
1386 /* We're not adding the delta because we've identified it's not
1387 * for the context we filter for. We can consider that the
1388 * query was split.
1389 */
1390 query->oa.result.query_disjoint = true;
1391 }
1392
1393 last = report;
1394 last_report_ctx_match = report_ctx_match;
1395
1396 break;
1397 }
1398
1399 case DRM_I915_PERF_RECORD_OA_BUFFER_LOST:
1400 DBG("i915 perf: OA error: all reports lost\n");
1401 goto error;
1402 case DRM_I915_PERF_RECORD_OA_REPORT_LOST:
1403 DBG("i915 perf: OA report lost\n");
1404 break;
1405 }
1406 }
1407 }
1408
1409 end:
1410
1411 intel_perf_query_result_accumulate(&query->oa.result, query->queryinfo,
1412 last, end);
1413
1414 query->oa.results_accumulated = true;
1415 drop_from_unaccumulated_query_list(perf_ctx, query);
1416 dec_n_users(perf_ctx);
1417
1418 return;
1419
1420 error:
1421
1422 discard_all_queries(perf_ctx);
1423 }
1424
1425 void
intel_perf_delete_query(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query)1426 intel_perf_delete_query(struct intel_perf_context *perf_ctx,
1427 struct intel_perf_query_object *query)
1428 {
1429 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1430
1431 /* We can assume that the frontend waits for a query to complete
1432 * before ever calling into here, so we don't have to worry about
1433 * deleting an in-flight query object.
1434 */
1435 switch (query->queryinfo->kind) {
1436 case INTEL_PERF_QUERY_TYPE_OA:
1437 case INTEL_PERF_QUERY_TYPE_RAW:
1438 if (query->oa.bo) {
1439 if (!query->oa.results_accumulated) {
1440 drop_from_unaccumulated_query_list(perf_ctx, query);
1441 dec_n_users(perf_ctx);
1442 }
1443
1444 perf_cfg->vtbl.bo_unreference(query->oa.bo);
1445 query->oa.bo = NULL;
1446 }
1447
1448 query->oa.results_accumulated = false;
1449 break;
1450
1451 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1452 if (query->pipeline_stats.bo) {
1453 perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
1454 query->pipeline_stats.bo = NULL;
1455 }
1456 break;
1457
1458 default:
1459 unreachable("Unknown query type");
1460 break;
1461 }
1462
1463 /* As an indication that the INTEL_performance_query extension is no
1464 * longer in use, it's a good time to free our cache of sample
1465 * buffers and close any current i915-perf stream.
1466 */
1467 if (--perf_ctx->n_query_instances == 0) {
1468 free_sample_bufs(perf_ctx);
1469 intel_perf_close(perf_ctx, query->queryinfo);
1470 }
1471
1472 free(query);
1473 }
1474
1475 static int
get_oa_counter_data(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,size_t data_size,uint8_t * data)1476 get_oa_counter_data(struct intel_perf_context *perf_ctx,
1477 struct intel_perf_query_object *query,
1478 size_t data_size,
1479 uint8_t *data)
1480 {
1481 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1482 const struct intel_perf_query_info *queryinfo = query->queryinfo;
1483 int n_counters = queryinfo->n_counters;
1484 int written = 0;
1485
1486 for (int i = 0; i < n_counters; i++) {
1487 const struct intel_perf_query_counter *counter = &queryinfo->counters[i];
1488 uint64_t *out_uint64;
1489 float *out_float;
1490 size_t counter_size = intel_perf_query_counter_get_size(counter);
1491
1492 if (counter_size) {
1493 switch (counter->data_type) {
1494 case INTEL_PERF_COUNTER_DATA_TYPE_UINT64:
1495 out_uint64 = (uint64_t *)(data + counter->offset);
1496 *out_uint64 =
1497 counter->oa_counter_read_uint64(perf_cfg, queryinfo,
1498 &query->oa.result);
1499 break;
1500 case INTEL_PERF_COUNTER_DATA_TYPE_FLOAT:
1501 out_float = (float *)(data + counter->offset);
1502 *out_float =
1503 counter->oa_counter_read_float(perf_cfg, queryinfo,
1504 &query->oa.result);
1505 break;
1506 default:
1507 /* So far we aren't using uint32, double or bool32... */
1508 unreachable("unexpected counter data type");
1509 }
1510
1511 if (counter->offset + counter_size > written)
1512 written = counter->offset + counter_size;
1513 }
1514 }
1515
1516 return written;
1517 }
1518
1519 static int
get_pipeline_stats_data(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,size_t data_size,uint8_t * data)1520 get_pipeline_stats_data(struct intel_perf_context *perf_ctx,
1521 struct intel_perf_query_object *query,
1522 size_t data_size,
1523 uint8_t *data)
1524
1525 {
1526 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1527 const struct intel_perf_query_info *queryinfo = query->queryinfo;
1528 int n_counters = queryinfo->n_counters;
1529 uint8_t *p = data;
1530
1531 uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ);
1532 uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
1533
1534 for (int i = 0; i < n_counters; i++) {
1535 const struct intel_perf_query_counter *counter = &queryinfo->counters[i];
1536 uint64_t value = end[i] - start[i];
1537
1538 if (counter->pipeline_stat.numerator !=
1539 counter->pipeline_stat.denominator) {
1540 value *= counter->pipeline_stat.numerator;
1541 value /= counter->pipeline_stat.denominator;
1542 }
1543
1544 *((uint64_t *)p) = value;
1545 p += 8;
1546 }
1547
1548 perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo);
1549
1550 return p - data;
1551 }
1552
1553 void
intel_perf_get_query_data(struct intel_perf_context * perf_ctx,struct intel_perf_query_object * query,void * current_batch,int data_size,unsigned * data,unsigned * bytes_written)1554 intel_perf_get_query_data(struct intel_perf_context *perf_ctx,
1555 struct intel_perf_query_object *query,
1556 void *current_batch,
1557 int data_size,
1558 unsigned *data,
1559 unsigned *bytes_written)
1560 {
1561 struct intel_perf_config *perf_cfg = perf_ctx->perf;
1562 int written = 0;
1563
1564 switch (query->queryinfo->kind) {
1565 case INTEL_PERF_QUERY_TYPE_OA:
1566 case INTEL_PERF_QUERY_TYPE_RAW:
1567 if (!query->oa.results_accumulated) {
1568 /* Due to the sampling frequency of the OA buffer by the i915-perf
1569 * driver, there can be a 5ms delay between the Mesa seeing the query
1570 * complete and i915 making all the OA buffer reports available to us.
1571 * We need to wait for all the reports to come in before we can do
1572 * the post processing removing unrelated deltas.
1573 * There is a i915-perf series to address this issue, but it's
1574 * not been merged upstream yet.
1575 */
1576 while (!read_oa_samples_for_query(perf_ctx, query, current_batch))
1577 ;
1578
1579 uint32_t *begin_report = query->oa.map;
1580 uint32_t *end_report = query->oa.map + perf_cfg->query_layout.size;
1581 intel_perf_query_result_accumulate_fields(&query->oa.result,
1582 query->queryinfo,
1583 begin_report,
1584 end_report,
1585 true /* no_oa_accumulate */);
1586 accumulate_oa_reports(perf_ctx, query);
1587 assert(query->oa.results_accumulated);
1588
1589 perf_cfg->vtbl.bo_unmap(query->oa.bo);
1590 query->oa.map = NULL;
1591 }
1592 if (query->queryinfo->kind == INTEL_PERF_QUERY_TYPE_OA) {
1593 written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data);
1594 } else {
1595 const struct intel_device_info *devinfo = perf_ctx->devinfo;
1596
1597 written = intel_perf_query_result_write_mdapi((uint8_t *)data, data_size,
1598 devinfo, query->queryinfo,
1599 &query->oa.result);
1600 }
1601 break;
1602
1603 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1604 written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data);
1605 break;
1606
1607 default:
1608 unreachable("Unknown query type");
1609 break;
1610 }
1611
1612 if (bytes_written)
1613 *bytes_written = written;
1614 }
1615
1616 void
intel_perf_dump_query_count(struct intel_perf_context * perf_ctx)1617 intel_perf_dump_query_count(struct intel_perf_context *perf_ctx)
1618 {
1619 DBG("Queries: (Open queries = %d, OA users = %d)\n",
1620 perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users);
1621 }
1622
1623 void
intel_perf_dump_query(struct intel_perf_context * ctx,struct intel_perf_query_object * obj,void * current_batch)1624 intel_perf_dump_query(struct intel_perf_context *ctx,
1625 struct intel_perf_query_object *obj,
1626 void *current_batch)
1627 {
1628 switch (obj->queryinfo->kind) {
1629 case INTEL_PERF_QUERY_TYPE_OA:
1630 case INTEL_PERF_QUERY_TYPE_RAW:
1631 DBG("BO: %-4s OA data: %-10s %-15s\n",
1632 obj->oa.bo ? "yes," : "no,",
1633 intel_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,",
1634 obj->oa.results_accumulated ? "accumulated" : "not accumulated");
1635 break;
1636 case INTEL_PERF_QUERY_TYPE_PIPELINE:
1637 DBG("BO: %-4s\n",
1638 obj->pipeline_stats.bo ? "yes" : "no");
1639 break;
1640 default:
1641 unreachable("Unknown query type");
1642 break;
1643 }
1644 }
1645