1# Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""Test configs for conv2d_transpose.""" 16import numpy as np 17import tensorflow.compat.v1 as tf 18from tensorflow.lite.testing.zip_test_utils import create_tensor_data 19from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests 20from tensorflow.lite.testing.zip_test_utils import register_make_test_function 21 22 23@register_make_test_function() 24def make_conv2d_transpose_tests(options): 25 """Make a set of tests to do transpose_conv.""" 26 27 test_parameters = [{ 28 "input_shape": [[1, 50, 54, 3]], 29 "filter_shape": [[1, 1, 8, 3], [1, 2, 8, 3], [1, 3, 8, 3], [1, 4, 8, 3]], 30 "output_shape": [[1, 100, 108, 8]], 31 "dynamic_output_shape": [True, False], 32 }, { 33 "input_shape": [[1, 16, 1, 512]], 34 "filter_shape": [[4, 1, 512, 512]], 35 "output_shape": [[1, 32, 1, 512]], 36 "dynamic_output_shape": [True, False], 37 }, { 38 "input_shape": [[1, 128, 128, 1]], 39 "filter_shape": [[4, 4, 1, 1]], 40 "output_shape": [[1, 256, 256, 1]], 41 "dynamic_output_shape": [True, False], 42 }] 43 44 def build_graph(parameters): 45 """Build a transpose_conv graph given `parameters`.""" 46 input_tensor = tf.compat.v1.placeholder( 47 dtype=tf.float32, name="input", shape=parameters["input_shape"]) 48 49 filter_tensor = tf.compat.v1.placeholder( 50 dtype=tf.float32, name="filter", shape=parameters["filter_shape"]) 51 52 input_tensors = [input_tensor, filter_tensor] 53 54 if parameters["dynamic_output_shape"]: 55 output_shape = tf.compat.v1.placeholder(dtype=tf.int32, shape=[4]) 56 input_tensors.append(output_shape) 57 else: 58 output_shape = parameters["output_shape"] 59 60 out = tf.nn.conv2d_transpose( 61 input_tensor, 62 filter_tensor, 63 output_shape=output_shape, 64 padding="SAME", 65 strides=(1, 2, 2, 1)) 66 67 return input_tensors, [out] 68 69 def build_inputs(parameters, sess, inputs, outputs): 70 values = [ 71 create_tensor_data(np.float32, parameters["input_shape"]), 72 create_tensor_data(np.float32, parameters["filter_shape"]) 73 ] 74 if parameters["dynamic_output_shape"]: 75 values.append(np.array(parameters["output_shape"])) 76 77 return values, sess.run(outputs, feed_dict=dict(zip(inputs, values))) 78 79 make_zip_of_tests(options, test_parameters, build_graph, build_inputs) 80